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Abstract – A noble clustering algorithm is presented for data 
sets of mixed features: numerical, ordinal and nominal. The 
algorithm uses the concept of fuzzy clustering to reduce negative 
effect from noises, and uses the iterative partitional algorithm 
founded on an optimization function to reduce the time 
complexity. The optimization function uses the likelihood for 
each individual feature as the optimization criterion of the 
similarity or likeliness between patterns and clusters, not like the 
fuzzy c-means clustering algorithm based on distance or the EM 
clustering algorithm. Hence the algorithm can quickly find fuzzy 
clusters having different distributions in the each feature level. 
The simulations show the algorithm to be quite efficient. 

I. INTRODUCTION

Clustering partitions patterns into groups called clusters 
that have similar properties in terms of their features. Features 
can be numerical, ordinal and nominal. Many different types 
of clustering algorithms [1, 2] have been presented. The 
iterative partitional type clustering algorithms have been 
known to find quickly good quality clusters in a data set of 
numerical features as well as ordinal and nominal features 
with some modifications. The algorithms have an iteration
loop founded on certain optimization functions regarding to 
the similarity or likeliness between patterns and clusters. At 
each iteration, the algorithms partition patterns into clusters, 
and the clusters are updated to better ones. The examples of 
the iterative partitional clustering algorithms are the k-means 
clustering algorithm [3, 4], the fuzzy c-mean clustering 
algorithm [5, 6], the modified k-means and fuzzy c-means 
algorithms [7-10], and the EM clustering algorithms [11, 12].  

The iterative partitional clustering algorithms can be 
classified into hard clustering and soft clustering according to 
the methods of assignment of patterns into clusters. In hard 
clustering, such as k-means and EM [11], patterns are 
exclusively partitioned into clusters. Hence hard clustering 
algorithms tend to quickly get stuck in a local solution. One 
way of alleviating this problem is to use soft clustering, such 
as fuzzy c-means and EM with soft assignment [12]. The time 
complexity of the EM algorithm with soft assignment is high 
due to the additional use of the simulated annealing method 
after the EM algorithm. In soft clustering, patterns are 
partitioned into clusters with certain degrees repeatedly in the 
iteration loop.  

The iterative partitional clustering algorithms can be 
classified in another way, regarding to the optimization criteria 
to measure the similarity or likeliness between patterns and 
clusters. The k-means, fuzz c-means and their variances use 

various types of distances, i.e., general type distances like 
Euclidean, Mahalanobis and so on, between patterns and the 
prototypes of clusters. Therefore, those algorithms do not 
efficiently separate non-convex type clusters as well as 
clusters having different distribution models. On the contrary 
the EM algorithm uses the likelihood as the optimization 
criterion. Gaussian distributions are assumed in clusters, and 
multivariate Gaussian probability density functions are used to 
measure the likelihoods of clusters given patterns. Therefore, 
the algorithm can find clusters having Gaussian distributions. 
However, the patterns of mixed features cannot be partitioned
using the algorithm.  

All the above iterative partitional clustering algorithms 
have some advantages and disadvantages. None of them, 
within our knowledge, supports all the concepts in good 
clustering algorithms, which were discussed in the above 
paragraphs: iterative partitioning for the less time complexity; 
soft clustering for reducing negative effect from noises; the 
likelihood as the optimization criterion for clusters having 
different distribution models; clustering of patterns of mixed 
features. In this paper, we present a likelihood based fuzzy 
clustering algorithm that supports all of those concepts. 

In the next section, we discuss the meaning of the 
likelihood and how the likelihood can be used as the 
optimization criterion in iterative paritional clustering 
algorithms for patterns of mixed features. In section III, our 
likelihood based fuzzy clustering algorithm is presented, and 
the experimental results and concluding remarks follow. 

II. LIKELIHOOD, PROBABILITY, AND ITERATIVE PARTITIONAL 

CLUSTERING

There are several types of clustering algorithms – 
hierarchical, constructive, iterative partitional, and so on [1, 2]. 
The iterative partitional clustering algorithms have been 
effectively used in many application areas. Those algorithms 
find at each iteration in an iteration loop the best clusters to 
which each pattern might belong, and the clusters are updated 
to better ones as the algorithms repeat the iteration. Then the 
decision step in those algorithms to find the best clusters 
fitting to the pattern finds the cluster y  maximizing the 

likeliness that the implication 1 2 3 4x x x x y∧ ∧ ∧ ⇒  (shortly 

1 2 3 4x x x x y⇒ ) is true. (For the purpose of easy explanation in 
this section, we assume that all patterns in a given data set 
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have four features, and we let 1 2 3, ,x x x  and 4x  be the feature 
values of a pattern in the given data set.) 

In general, the appealing model of cognition [13-15] is to 
generalize Aristotelian implication αβγδ ε⇒  by finding that 

symbol ε  which maximizes a posterior probability 
( | )P ε αβγδ  (for concreteness, four assumed fact symbols 

, ,α β γ  and δ , and a conclusion symbol ε , each drawn from 

its own separate lexicon, with juxtaposition indicating 
Boolean AND.) The posterior probability is also called the 
likelihood. 

Therefore, assuming that the features are mutually 
independent, the iterative paritional clustering problem 
becomes now the problem to find the cluster y  maximizing 

the likelihood 1 2 3 4( | )P y x x x x  for each pattern having feature 

values 1 2 3, ,x x x  and 4x . By the Bayes’ rule, the likelihood can 
be rewritten in (2.1). 

1 2 3 4
1 2 3 4

1 2 3 4

( | ) ( )
( | )

( )

P x x x x y P y
P y x x x x

P x x x x
= (2.1)

One of the iterative partitional clustering algorithm, the 
EM algorithm, finds clusters in a data set of patterns of 
numerical features only, using the likelihood in (2.1). In the 
computation of the probability 1 2 3 4( | )P x x x x y  in the right side 
part in Formula (2.1), the algorithm uses a multivariate 
probability density function for each cluster, assuming each 
cluster has a multivariate Gaussian distribution. Hence the 
algorithm cannot be directly used in clustering of patterns of 
mixed features, such as numerical, ordinal and nominal. 

In the iterative partitional clustering problem, it is 
assumed that the number of clusters is given and only one 
instance of each cluster is handled obviously in the interation 
loop. This implies that ( )P y ’s, i.e., the probabilities of 

clusters, in the right side part of Formula (2.1) are all equal. 
Therefore, finding the cluster y  maximizing the likelihood 

1 2 3 4( | ),P y x x x x  given each pattern having feature values 

1 2 3, ,x x x  and 4 ,x  is equal to finding the cluster y  maximizing 

the probability 1 2 3 4( | ).P x x x x y  Furthermore, the assumption 
that the features of given patterns are mutually independent 
gives us: 

1 2 3 4 1 2 3 4( | ) ( | ) ( | ) ( | ) ( | )P x x x x y P x y P x y P x y P x y= (2.2)

Then the problem of finding the cluster y  maximizing the 

likeliness that the implication 1 2 3 4x x x x y⇒  is true becomes 
now the problem of finding the cluster maximizing the right 
side part in Formula (2.2). This reasoning conclusion is also 
advocated by the claim in [16] that a correct model of 
vertebrate cognition for αβγδ ε⇒  is the maximization of 

cogency ( | )P αβγδ ε  and the maximization of the cogency is 

equal to the maximization of ( | ) ( | ) ( | ) ( | )P P P Pα ε β ε γ ε δ ε . 
We summarize all the above explanations as the next 
proposition. The proposition is the basis of our likelihood 
based fuzzy clustering algorithm for patterns of mixed features. 

Proposition 1: The iterative partitional clustering problem is 
equal to the problem finding the cluster maximizing the 
product of the individual probabilities of feature values of a 
pattern, given the cluster. 

Now we can handle any type of feature in the iterative 
partitional clustering problem, as long as we know how to find 
the probability of a feature value given a cluster, e.g., 

( | )iP x y  in the right side part in (2.2). The meaning of the 

probability ( | )iP x y  is the probability of the feature value ,ix

given all the same type feature values of the cluster ,y  not as 

the set of multivariate patterns belonging to the cluster. Hence 
( | )iP x y  is the probability expressing how often ix  occurs in 

the set of all the same type feature values of .y  That is, 

( | )iP x y  is a sort of frequency of x  in the set of all the same 

type feature values of .y

We can separate features into two categories – discrete 
ones and continuous ones. Nominal features and ordinal 
features fall in the discrete feature category. Discrete 
numerical features, e.g., integers, are also discrete. The 
numerical features of real numbers are the continuous feature 
type. When the feature is discrete, the normalized frequency 
distribution over the feature space might be used to find 

( | ).iP x y  When the feature is continuous, a parameterized 
probability density function representing the set of all the 
same type feature values of ,y  or the normalized frequency 

distribution over the discretized feature of the continuous 
feature might be used to find ( | ).iP x y  Further discussion is 
given in subsection III.B. 

III. LIKELIHOOD BASED ITERATIVE PARTITIONAL FUZZY 

CLUSTERING

Now we present an iterative partitional fuzzy clustering 
algorithm, based on Proposition 1 explained in the previous 
section. The algorithm has the very similar algorithmic 
structure as the fuzzy c-means clustering algorithm [5, 6]. 
Hence we first give a brief explanation of the fuzzy c-means 
clustering algorithm in the next subsection for the better 
understanding our algorithm explained in subsection B. 

A. Fuzzy c-means clustering algorithm 
The fuzzy c-means clustering algorithm for patterns 

consisting of all numerical features is defined by: Minimizing 
the objective function in (3.1). 

2

,
1 1

c N
m
i j j i

i j

Q u X V
= =

= −∑∑ (3.1)

subject to 
,

,
1

,
1

0, 1,..., ; 1,...,

1, 1,...,

0, 1,...,

1

i j

c

i j
i

N

i j
j

u i c j N

u j N

u i c

m

=

=

≥ ∀ = ∀ =

= ∀ =

> ∀ =

>

∑

∑

(3.2)
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where 1,..., NX X  are N  patterns; c  is the number of clusters; 

, , 1,..., ; 1,..., ,i ju i c j N∀ = ∀ =  is the membership of the pattern 

jX  to the thi  cluster; , 1,..., ,iV i c∀ = is the prototype of the thi

cluster; and m  is the indicator of fuzziness of clusters. 
The minimal solution of the above objective function is: 

, 2

1

1

1
1,..., ; 1, ...,s t

mc
t s

i t i

u s c t N

X V

X V

−

=

= ∀ = ∀ =
⎛ ⎞−
⎜ ⎟
⎜ ⎟−⎝ ⎠

∑

(3.3)

,
1

,
1

1,...,

N
m
s j j

j
s N

m
s j

j

u X

V s c

u

=

=

= ∀ =
∑

∑

(3.4)

From the above Formulas (3.3) and (3.4), we can see that the 
computation of the memberships in (3.3) uses the distances 
between patterns and the prototypes of clusters, and the 
prototypes are updated from the memberships. Formulas (3.3) 
and (3.4) are computed repeatedly in Algorithm 1 until a 
termination criterion is met.  

Algorithm 1. (Fuzzy c-Means Clustering) 
Initialization: 

Initialize , 1,..., ,iV i c∀ =  with random numbers; 

Repeat: 
(Step 1) Compute , , 1,..., ; 1,..., ,i ju i c j N∀ = ∀ = using (3.3); 

(Step 2) Compute , 1,..., ,iV i c∀ =  using (3.4);  

while { }, , ,max _ _i j i j i jold u new uε ≤ − ; 

B. Proposed likelihood based fuzzy clustering algorithm 
The idea of our likelihood based fuzzy clustering 

algorithm for patterns of mixed features is to use the 
likelihoods of clusters, given patterns, as explained in the 
previous section with Proposition 1, instead of the distances 
used in the fuzzy c-means clustering algorithm (3.1). We 
explain our algorithm in the top-down manner. We start the 
explanation of the algorithm with the next objective functions 
(3.5) and (3.6). The objective functions are very similar to the 
objective function (3.1) in the fuzzy c-means clustering 
algorithm, except the optimization criteria: Maximizing 

, ,
1 1

c N
m
i j i j

i j

Q w L
= =

=∑∑ (3.5)

or equivalently, minimizing 

, ,
1 1

c N
m
i j i j

i j

Q w U
= =

=∑∑ (3.6)

subject to 
,

,
1

,
1

0, 1,..., ; 1,...,

1, 1,...,

0, 1,...,

i j

c

i j
i

N

i j
j

w i c j N

w j N

w i c

=

=

≥ ∀ = ∀ =

= ∀ =

> ∀ =

∑

∑

(3.7)

where 

{ }
( )

1

th
,1 ,

th
,

,

number of patterns

number of features

1 number of clusters

1 fuzziness factor

,...,  patterns of  mixed features

,...,  pattern

likelihood of the  cluster, given  

log-un

N

j j j M

i j j

i j

N

M

c

m

X X X N M

X x x j

L i X

U

>
>
�

�

th

th
,

likelihood of the  cluster, given  

membership matrix of  to the  cluster 

j

i j jc N

i X

W w X i
×

⎡ ⎤⎣ ⎦�

(3.8)

Relying on Proposition 1 in section 2, we use the next 
definition (3.9) of the likelihood ,i jL  as the optimization 

criterion in the objective function (3.5). 

, , ,
1

M

i j i j k
k

L p
=

∏�  (3.9) 

where , ,i j kp  is the probability of ,j kx , i.e, thk  feature value of 
thj  pattern, given the thi  cluster iC , and is defined in (3.10) 

as explained in Proposition 1: 
, , ,( | )i j k j k ip P x C� (3.10)

The log-unlikelihood ,i jU  in (3.6) is defined as: 

, ,lni j i jU L−� (3.11)

Then the objective function in (3.6) is rewritten as follow. 

, ,
1 1

, , ,
1 1 1

, , ,
1 1 1

ln

ln

c N
m
i j i j

i j

Mc N
m
i j i j k

i j k

c N M
m
i j i j k

i j k

Q w U

w p

w p

= =

= = =

= = =

=

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

∑∑

∑∑

∑∑ ∑

� (3.12)

The objective in our likelihood based fuzzy clustering 
algorithm is to find the memberships 

, , 1,..., ; 1,..., ,i jw i c j N∀ = ∀ =  minimizing the objective 

function (3.6). First, assuming the log-unlikelihoods 

, , 1,..., ; 1,..., ,i jU i c j N∀ = ∀ =  (or equivalently the probabilities 

, , , 1,..., ; 1,..., ; 1,..., ,i j kp i c j N k M∀ = ∀ = ∀ =  in (3.10),) are 

given, the minimal solutions , , 1,..., ; 1,..., ,s tw s c t N∀ = ∀ =  are 

computed. Later, assuming the memberships are given, the 
probabilities , , , 1,..., ; 1,..., ; 1,..., ,i j kp i c j N k M∀ = ∀ = ∀ =  are 

computed. These two steps are repeated until a termination 
criterion is met, in the similar way of Algorithm 1 in the 
previous subsection. 

In order to compute , , 1,..., ; 1,..., ,s tw s c t N∀ = ∀ =  we 

include the Lagrange multiplier and have the following 
function in (3.13).  

, , ,
1 1

1
c c

m
t i t i t i t

i i

R w U wλ
= =

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

∑ ∑ (3.13)

The partial derivative of tR  with respect to , , 1,..., ,s tw s c∀ =  is  

1
, ,

,

mt
s t s t

s t

R
mU w

w
λ−∂

= −
∂

(3.14)
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From 
,

0,t

s t

R

w

∂ =
∂

 we can find the minimal solution ,s tw

regarding to the Lagrange multiplier and the log-unlikelihoods, 
as follows. 

1

1
1

, , ,

,

0
m

m
s t s t s t

s t

mU w w
mU

λλ
−

−
⎛ ⎞

− = ⇒ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

(3.15)

Now we can find the Lagrange multiplier λ  by applying the 
unity constraint in (3.7). 

1

1

,

,

11
11

,
1 1 ,

1

1

1

1

1 ,

1
1

1

1

m

s t

s t

mc cm

i t
i i i t

m

mc

i i t

w
mU

w
m U

m

U

λ

λ

λ

−

−−

= =

−

−

=

⎛ ⎞
= ⎜ ⎟
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⇒ = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
⇒ =⎜ ⎟

⎝ ⎠ ⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑

∑

(3.16)

The Lagrange multiplier λ  is applied back into the formula 
(3.15) to obtain the final ,s tw . 

1

1

, 1
, 1

,

1 ,

1m

s t

s t mc
s t

i i t

w
mU

U

U

λ −

−

=

⎛ ⎞
= =⎜ ⎟
⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

(3.17)

Next, we start the discussion how to compute the 
conditional probabilities , ,i j kp ’s in (3.10), assuming the fuzzy 

memberships , , 1,..., ; 1,..., ,s tw s c t N∀ = ∀ =  are given. (Note 

that the log-likelihoods ,i jU ’s in (3.11) are computed from 

, ,i j kp ’s.) We consider the different types of features. We can 

separate features into two categories – discrete and continuous. 
Nominal and ordinal features as well as discrete numerical 
features fall in the discrete feature category. The numerical 
features of real numbers are the continuous feature type.  

First, we assume that the thk  feature is discrete. A finite 
family of discrete values is not easily expressed with a 
differentiable distribution model. Hence we assume a simple 
sphere-shape model, and then the probability , ,i j kp  can be 

expressed in the term of the distance from the center or mode 
of the family, depending on the type of feature – numerical, 
ordinal or nominal. A mode of a discrete family is a most-
frequent element in the family. The concept of mode is used in 
a variant of the fuzzy c-means clustering algorithm [8].

( ), , *, ,1 , ,i j k l k j kp d x x−� (3.18)

where *,l kx  is a weighted center of all thk  feature members of 

the thi  cluster if the  thk  feature is numerical, otherwise a 
mode. The distance function ( , )d ⋅ ⋅  is the Euclidean distance 

in the numerical feature, or ( , )d ⋅ ⋅  for an ordinal or nominal 

feature is defined as 
0

( , )
1 , where 0< <<1

x y
d x y

x yε ε
=⎧

⎨ − ≠⎩
� (3.19)

Minimizing the objective function in (3.12) is equivalent 
to maximizing the inner sum. This is because the inner sum is 
independent of features, and , , ,0; ln 0s j s j kw p≥ ≤ , and hence 

the inner sum is negative. We rewrite the inner sum: 

( )( ) ( )
, , , ,

, ,

, ,

, ,

, , , , ,
1 1; 1;

,
1;

,
1;

, ,
1 1;

ln 1 , ln 1 ln

ln

ln

ln

t k j k t k j k

t k j k

t k j k

t k j k

N N N
m m m
s j t k j k s j s j

j j x x j x x

N
m
s j

j x x

N
m
s j

j x x

N N
m m
s j s j

j j x x

w d x x w w

w

w

w w

ε

ε

ε

ε

= = = = ≠

= ≠

= ≠

= = =

− = +

=

=

⎛ ⎞
= −⎜ ⎟

⎜ ⎟
⎝ ⎠

∑ ∑ ∑

∑

∑

∑ ∑

(3.20)

Since 
, ,

, ,
1 1;

ln 0;  0
t k j k

N N
m m
s j s j

j j x x

w wε
= = =

≤ − ≥∑ ∑ , maximizing the above 

inner sum is equal to minimizing 
, ,

, ,
1 1; t k j k

N N
m m
s j s j

j j x x

w w
= = =

−∑ ∑ . Since 

,
1

N
m
s j

j

w
=
∑  is a constant and 

, ,

, ,
1; 1

0
t k j k

N N
m m
s j s j

j x x j

w w
= = =

≤ ≤∑ ∑ , minimizing 

, ,

, ,
1 1; t k j k

N N
m m
s j s j

j j x x

w w
= = =

−∑ ∑  is equal to maximizing 
, ,

,
1; t k j k

N
m
s j

j x x

w
= =
∑ . This 

means that ,t kx  is a most frequent feature value w.r.t W , i.e., 

,t kx  is a mode. 

Second, let’s assume that the thk  feature is continuous. 
One idea is to assume a simple sphere model for a family of 
continuous values, with the use of the probability in (3.18). 
(Note that the simple sphere model is used in the k-means 
clustering algorithm, fuzzy c-means clustering algorithm and 
their variants.) Another approach is to assume that the 
continuous feature has a parameterized probability density 
function, e.g., Gaussian distribution. (Note that the EM 
clustering algorithm assumes Gaussian distributions in 
clusters.) 

Let ,i kf  be the Gaussian probability density function of 

the set of all the thk  feature values of the thi  cluster. ,i kf  with 

the standard deviation ,i kσ  and the mean ,i kμ  is defined as 

follows. 
( )2

,
2
,2

,

,

1
( )

2

i k

i k

x

i k

i k

f x e

μ
σ

σ π

−
−

= (3.21)

Then ,i kf  can be used as , ,i j kp : 

( )2
, ,

2
,2

, , , , , ,

,

1
( )

2

j k i k

i k

x

i j k i j k i k j k

i k

p f f x e

μ
σ

σ π

−
−

=� � (3.22)

For that purpose, we need to compute ,i kσ  and ,i kμ  from 

the set of all the thk  feature values of the fuzzy thi  cluster, not 
crisp. The computations are done by solving the following 
equations with the partial derivatives of the objective function 
in (3.12). 

, ,
1 1

, ,

0

c N
m
i j i j

i j

s t s t

w U
Q

μ μ
= =

⎛ ⎞
∂ ⎜ ⎟

∂ ⎝ ⎠= =
∂ ∂

∑∑
(3.23)
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, ,
1 1

, ,

0

c N
m
i j i j

i j

s t s t

w U
Q

σ σ
= =

⎛ ⎞
∂ ⎜ ⎟

∂ ⎝ ⎠= =
∂ ∂

∑∑
(3.24)

The equation in (3.23) is rewritten as follow, and ,i kμ  is 

obtained: 

( )

2
, ,

2
,

, , ,
1 1 1

,

, ,

,
1 ,

( )

2

,

,
1 ,

, , ,2
1,

ln

ln

1
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2

1
( ) 0

j t s t

s t

c N M
m
i j i j k

i j k
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N
s j tm
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m
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μ
σ

μ

μ

σ π

μ

μ
σ

= = =

=

−
−

=

=

⎛ ⎞
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⎝ ⎠

∂

∂
= −

∂

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟∂
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⎝ ⎠⎝ ⎠= −
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= − − =
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∑

∑

∑

(3.25)

, , ,2
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, , ,
1

, ,
1

,

,
1

1
( ) 0

( ) 0

N
m
s j j t s t

js t

N
m
s j j t s t

j

N
m
s j j t
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m
s j
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σ
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μ

=

=

=

=

− − =

⇒ − =

⇒ =

∑

∑

∑

∑

(3.26)

In the similar way, we can obtain ,i kσ  from (3.24), as follow. 

2
, , ,

12
,

,
1

( )
N

m
s j j t s t

j
s t N

m
s j

j

w x

w

μ
σ =

=

−
=
∑

∑

(3.27)

Now, assuming that the fuzzy memberships 

, , 1,..., ; 1,..., ,s tw s c t N∀ = ∀ =  are given, we can compute the 

probability , ,i j kp  of the thk  feature value ,j kx  in the set of all 

the thk  feature values of the thi  cluster, from (3.18) when the 
feature is discrete, or from (3.22) when the feature is 
continuous. 

As the last part in this subsection, Algorithm 2, our 
likelihood based fuzzy clustering algorithm for patterns of 
mixed features, is following. Algorithm 2 starts with random 
initial probabilities , , , 1,..., ; 1,..., ; 1,..., .i j kp i c j N k M∀ = ∀ = ∀ =
The algorithm iterates two steps to find the cluster 
memberships from , ,i j kp ’s, and next , ,i j kp ’s from the 

memberships.  

Algorithm 2. (Likelihood based fuzzy clustering) 
Initialize , , , 1,..., ; 1,..., ; 1,..., ,i j kp i c j N k M∀ = ∀ = ∀ =   

with random numbers; 
Repeat: 

(Step 1) Compute , , 1,..., ; 1,..., ,i jw i c j N∀ = ∀ =  using (3.17); 

(Step 2) Compute , ,i j kp  for 1,..., ;i c∀ = 1,..., ;j N∀ =

1,..., ,k M∀ = using (3.18) or (3.22) according to the 

type of the thk  feature; 

while { }, , ,max _ _i j i j i jold w new wε ≤ − ; 

Algorithm 3. (Likelihood for a continuous feature having a Gaussian 
distribution) 

The fuzzy cluster memberships , , 1,..., ; 1,..., ,i jw i c j N∀ = ∀ =  are given; 

(Step 1) Compute , , 1,..., ; 1,..., ,i k i c k Mμ ∀ = ∀ = using (3.26);  

(Step 2) Compute , , 1,..., ; 1,..., ,i k i c k Mσ ∀ = ∀ =  using (3.27); 

(Step 3) Compute , , , 1,..., ; 1,..., ; 1,..., ,i j kp i c j N k M∀ = ∀ = ∀ =   

using (3.22); 

IV. EXPERIMENTAL RESULTS

We compared two algorithms, the fuzzy c-means 
clustering algorithm (denoted FCM) and our likelihood based 
fuzzy clustering algorithm (denoted LFCM,) with synthetic 
data sets of patterns of two numerical features only. This is 
because data sets of patterns of two numerical features can be 
drawn easily and hence helpful for better understanding of the 
difference of the two algorithms. The comparisons were done 
with respect to the performance measures – partition 
coefficient (denoted BPC) and partition entropy (denoted 
BPE) in [17-19], and another measure partition index (denoted 
XBPI) in [19]. (Note that the more BPC, the better; the less 
BPE, the better; and the less XBPI, the better.) 

We used two different synthetic data sets. One data set 
has two clusters that have normal distribution of different 
variances. The other data set has three clusters that have 
normal distribution of different variances also. The 
simulations were performed 10 times and averages were 
obtained. The next Table 1 shows the better performance of 
our algorithm LFCM for the both synthetic data sets in terms 
of the above three performance measurements. Figures 1 and 2 
show the clusters to which patterns belong to mainly. We can 
easily see which one of the two algorithms separates clusters 
more clearly, especially around the borders between clusters.  

 FCM 
2 

clusters 

LFCM 
2 

clusters 

FCM 
3 

clusters 

LFCM 
3 

clusters 

FCM 
4 

clusters 

LFCM 
4 

clusters 
BPC 0.868 0.960 0.783 0.940 0.655 0.896 
BPE 0.232 0.067 0.363 0.105 0.675 0.188 
XBPI 0.094 0.069 0.181 0.069 0.156 0.098 

Table 1. Comparison results of the two clustering algorithms, with the data 
sets having 2, 3 and 4 clusters 

Fig. 1. Crisp clusters found by FCM and LFCM from a numerical data set 
having two clusters  
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Fig. 2. Crisp clusters found by FCM and LFCM from a numerical data set 
having three clusters

V. CONCLUDING REMARKS

We presented a novel fuzzy clustering algorithm, not hard 
clustering in order to reduce negative effect from noises. The 
algorithm has the same time complexity as the fuzzy c-means 
clustering algorithm, which means the algorithm runs fast. The 
algorithm is based on the likelihood as the EM algorithm so 
that the algorithm can find clusters of different distributions. 
Furthermore, the likelihood is expressed as the product of the 
probabilities of individual features, and hence even patterns of 
mixed features can be clusters, not like the EM algorithm. The 
simulation showed the effectiveness of our algorithm.  

It is expected that the proposed algorithm can be easily 
updated to the generalized clustering problem for the patterns 
of non-singleton feature values, such as fuzzy sets and 
intervals. 
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