
Abstract—In this paper, a GA-based framework for finding 
membership functions suitable for fuzzy mining problems is 
proposed. Each individual represents a possible set of 
membership functions for the items and is divided into two parts, 
control genes and parametric genes. Control genes are encoded 
into binary strings and used to determine whether membership 
functions are active or not. Each set of membership functions for 
an item is encoded as parametric genes with real-number schema. 
Seven fitness functions are proposed, each of which is used to 
evaluate the goodness of the obtained membership functions and 
used as the evolutionary criteria in GA. Experiments are also 
made to show the effectiveness of the framework and to compare 
the seven fitness functions. 

I. INTRODUCTION
Data mining is commonly used to induce association rules 

from transaction data [1]. Most previous studies focused on 
binary valued transaction data. Transaction data in real-world 
applications, however, usually consist of quantitative values. 
Designing a sophisticated data-mining algorithm able to deal 
with various types of data presents a challenge to workers in 
this research field. 

Recently, fuzzy set theory has been used more and more 
frequently in intelligent systems because of its simplicity and 
similarity to human reasoning [7]. Several fuzzy learning 
algorithms for inducing rules from given sets of data have been 
designed and used to good effect with specific domains [3]. As 
to fuzzy data mining, Hong et al. proposed an algorithm to 
mine fuzzy rules from quantitative data [6]. They transformed 
each quantitative item into a fuzzy set and used fuzzy 
operations to find fuzzy rules. Cai et al. proposed weighted 
mining to reflect different importance to different items [2]. 
Each item was attached a numerical weight given by users. 
Weighted supports and weighted confidences were then 
defined to determine interesting association rules. Yue et al.
then extended their concepts to fuzzy item vectors [13]. In the 
above approaches, the membership functions were assumed to 
be known in advance. Although many approaches for learning 
membership functions were proposed [3, 12], most of them 
were usually used for classification or control problems. 

In the fuzzy mining problem, the given membership 
functions may have a critical influence on the final mining 
results. Kaya et al. proposed a GA-based approach to derive a 
predefined number of membership functions for getting a 
maximum profit within an interval of user specified minimum 
support values [8]. Kaya et al. also proposed a multi-objective 
genetic algorithm to find a number of Pareto-optimal rules sets 
according to two objective functions, number of rules and 
execution time [9]. We also proposed a fuzzy data-mining 
framework for extracting both association rules and 
membership functions from quantitative transactions [5]. It 
maintained a population of sets of membership functions, and 
used the genetic algorithm to automatically derive the resulting 
one. The number of membership functions was, however, 
predefined.

This paper thus modifies the previous algorithm [5] and 
compares seven fitness evaluation functions for extracting an 
appropriate number of linguistic terms and their membership 
functions used in fuzzy data mining for the given items. 

II. A GA-BASED MINING FRAMEWORK

The proposed framework is shown in Fig. 1. 
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Fig. 1. A GA-based framework for searching for an appropriate number of 
linguistic terms and membership functions 
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an appropriate number of linguistic terms and membership 
functions, and mining fuzzy association rules. In the first phase, 
it maintains a population of individuals, each including control 
genes (CG) and parametric genes (PG), and uses the genetic 
algorithm to automatically derive the resulting one. Control 
genes are encoded into bit strings and used to determine 
whether parametric genes are active or not. Each set of 
membership functions for an item is encoded as parametric 
genes with real-number schema. The proposed approach first 
transforms each set of membership functions into a 
fixed-length string. It then chooses appropriate strings for 
"mating", gradually creating good offspring membership 
function sets. The offspring membership function sets then 
undergo recursive "evolution" until a good set of membership 
functions has been obtained. Next, in the phase of mining fuzzy 
association rules, the sets of membership function for all the 
items are used to mine the interesting rules from the given 
quantitative database. The fuzzy mining algorithm proposed in 
[6] is adopted to achieve this purpose. 

III. FUZZY-GENETIC DATA MINING

A. Chromosome Representation 
It is important to encode membership functions as string 

representation for GAs to be applied. Several possible encoding 
approaches have been described in [3, 11]. In this paper, we 
adopt the Hierarchical Genetic Algorithm (HGA) to represent 
individuals [10], in order to find appropriate number of 
linguistic terms and membership functions of each item. 

Each individual is thus divided into two parts, control genes 
and parametric genes. In the first part, control genes are 
encoded into binary strings and used to determine whether 
parametric genes are active or not. In the second part, each set 
of membership functions for an item is encoded as parametric 
genes with real-number schema. In order to effectively encode 
the associated membership functions, we assume the 
membership functions are isosceles-triangular and use two 
parameters to represent each membership function as Parodi 
and Bonelli [11] did. Figure 2 shows the membership functions 
for item Ij, where R

jk
 denotes the membership function of the 

k-th linguistic term of item I
j
, c

jk
 indicates the center abscissa of 

fuzzy region R
jk
, and w

jk
 represents half the spread of fuzzy 

region R
jk
. As Parodi and Bonelli did, we then represent each 

membership function as a pair (c, w). Thus, all pairs of (c, w)'s 
for a certain item are concatenated to represent its membership 
functions. 
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Fig. 2. Membership functions of item Ij

Thus the set of membership functions MFj for the first item Ij
is then represented as a substring of aj1aj2…ajl, cj1wj1…cjlwjl,
where ajk represents the k-th control gene of Ij and l is the 

maximum possible number of linguistic terms of I
j
. The entire 

set of membership functions is then encoded by concatenating 
substrings of MF1, MF2, ..., MFm. An example is given below to 
demonstrate the process of encoding a set of membership 
functions. 

Example 1: Assume there are four items in a transaction 
database: milk, bread, cookies and beverage. Also assume the 
maximum possible number of linguistic terms for each item is 3. 
If there is a chromosome shown in Fig. 3, then it represents the 
membership functions shown in Fig. 4. according to the 
encoding scheme mentioned above. 

1, 1, 1, 5, 5, 10, 5, 15, 5, 0, 1, 1, 4, 2, 12, 6, 18, 6, 1, 1, 1, 3, 3, 6, 3, 9, 3, 1, 0, 1, 4, 4, 8, 4, 12, 4 
CG PG CG PG CG PG CG PG

MF1 MF2 MF3 MF4

R11 R12 R13 R21 R22 R23 R31 R32 R33 R41 R42 R43
Low Middle High Low MiddleHigh Low MiddleHigh Low MiddleHigh

(inactive) (inactive)

1, 1, 1, 5, 5, 10, 5, 15, 5, 0, 1, 1, 4, 2, 12, 6, 18, 6, 1, 1, 1, 3, 3, 6, 3, 9, 3, 1, 0, 1, 4, 4, 8, 4, 12, 4 
CG PG CG PG CG PG CG PG

MF1 MF2 MF3 MF4

R11 R12 R13 R21 R22 R23 R31 R32 R33 R41 R42 R43
Low Middle High Low MiddleHigh Low MiddleHigh Low MiddleHigh

(inactive) (inactive)

Fig. 3. A chromosome representation of membership functions 
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Fig. 4. The membership functions for the four items represented by the 
chromosome in Fig. 3 

In Fig. 4, solid lines represent active membership functions 
and dash lines represent inactive ones. Since the membership 
functions of the item milk are encoded as (5, 5, 10, 5, 15, 5), 
milk thus has three possible linguistic terms. Let them be called 
Low, Middle and High. In Fig. 3, all the three bits in the control 
genes of MF1 are 1, representing the three membership 
functions are active. The membership functions for bread are 
encoded as (4, 2, 12, 6, 18, 6). Bread thus also has three 
possible linguistic terms. The first bit in the control genes of 
MF2 is 0, representing the first membership function (Low) is 
inactive. The membership functions for the other two items, 
cookies and beverage, can be similarly explained. 

Note that other types of membership functions can also be 
adopted in our method. For coding non-isosceles triangles and 
trapezes, three and four points are needed, instead of two for 
isosceles triangles. 

According to the proposed representation, each chromosome 
thus consists of a set of membership functions for all the items. 
This representation allows genetic operators to search for 
appropriate solutions. 

B. Initial Population 
A genetic algorithm requires a population of feasible 

solutions to be initialized and updated during the evolution 
process. As mentioned above, each individual within the 
population is a set of isosceles-triangular membership 
functions. Each membership function corresponds to a 
linguistic term of a certain item. The initial set of chromosomes 
is randomly generated with some constraints to form feasible 
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membership functions. A feasible set of membership functions 
must satisfy the condition that cj1 < cj2 < …< cjl, where cjk is the 
center value of the k-th membership function in the j-th
chromosome. 

C. Genetic Operators 
Genetic operators are important to the success of specific 

GA applications. In our approach, different crossover operators 
are performed for control genes and parametric genes. For 
control genes, the single-point crossover and the binary 
one-point mutation operators are used. For parametric genes, 
the max-min-arithmetical (MMA) crossover operator proposed 
in [4] and the one-point mutation for real numbers are used. 
Assume the parametric genes in two parent chromosomes are 
shown below: 

C1
t = ( c1, ……, ch, ……, cZ),

C2
t = ( c1‘, ……, ch‘, ……, cZ‘),

The max-min-arithmetical (MMA) crossover operator will 
generate the following four candidate chromosomes from them. 
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where the parameter d is either a constant or a variable whose 
value depends on the age of the population. The best two 
chromosomes of the four candidates are then chosen as the 
offspring. 

The one-point mutation operator will create a new fuzzy 
membership function by adding a random value  (between -wjk
to + wjk ) to the center or to the spread of an existing linguistic 
term, say Rjk. Assume that c and w represent the center and the 
spread of Rjk. The center or the spread of the newly derived 
membership function will be changed to c +  or w +  by the 
mutation operation. Mutation at the center of a fuzzy 
membership function may however disrupt the order of the 
resulting fuzzy membership functions. These fuzzy 
membership functions then need rearrangement according to 
their center values.

D. Fitness functions 
In order to develop a good set of membership functions from 

an initial population, the genetic algorithm selects parent
membership function sets with high fitness values for mating. 
An evaluation function is then needed to qualify the derived 
membership function sets. The performance of membership 
function sets is then fed back to the genetic algorithm to control 
how the solution space is searched to promote the quality of the 
membership functions. Before the proposed fitness functions 
are described, several related terms are first explained. 

The overlap ratio of two membership functions Rjk and Rji is 
defined as the overlap length divided by half the minimum span 

of the two functions. If the overlap length is larger than half the 
span, then these two membership functions are thought of as a 
little redundant. Appropriate punishment must then be 
considered in this case. Thus, the overlap factor of the 
membership functions for an item Ij in the chromosome Cq is 
defined as: 

]1)1),
),min(

),(
max(([)(_

, activeareRR
ik jijk

jijk
qj

jijk

ww
RRoverlap

Cfactoroverlap

where overlap(Rjk, Rji) is the overlap length of Rjk and Rji. The 
coverage ratio of a set of membership functions for an item Ij is
defined as the coverage range of the functions divided by the 
maximum quantity of that item in the transactions. The more 
the coverage ratio is, the better the derived membership 
functions are. Thus, the coverage factor of the membership 
functions for an item Ij in the chromosome Cq is defined as: 

)(
)...,,(

1)(
1

j

jlj
qj
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where range(Rj1, Rj2, …, Rjl) is the coverage range of the 
membership functions, l is the number of membership 
functions for Ij, and max(Ij) is the maximum quantity of Ij in the 
transactions.

The usage ratio of membership functions for an item Ij is
defined as the number of large-1 itemsets for Ij divided by the 
number of active linguistic terms. Note that the maximum 
possible number of large-1 itemsets for an item is the number of 
its active linguistic terms. The more the usage ratio is, the better 
the derived membership functions are. Thus, the usage factor of 
the membership functions for an item Ij in the chromosome Cq
is defined as: 

)1|,max(|
)(_

1
qj

qj

C
C

qj L

l
Cfactorusage

where lCqj is the active linguistic terms of chromosome Cqj and 
max(|L1

Cqj|, 1) is the maximum of the number of large-1 
itemsets and 1. 

The suitability of the membership functions in a 
chromosome Cq is thus defined as: 

)],(_*
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where m is the number of items and k1, k2, k3 are weighting 
factors.

The suitability factor used in the fitness functions can reduce 
the occurrence of the two bad kinds of membership functions 
shown in Fig. 5, where the first one is too redundant, and the 
second one is too separate. The overlap factor in suitability(Cq)
is designed for avoiding the first bad case, and the coverage 
factor is for the second one. The usage factor is used to avoid 
too many linguistic terms. 
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Fig. 5. Two bad membership functions 
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Several possible fitness functions to evaluate a chromosome 
Cq are defined as follows. 

1. f1(Cq) = suitability(Cq). A smaller value means a better 
quality. It thus focuses only on the suitability of membership 
functions. 

2. f2(Cq) = |L1|, where |L1| is the number of large 1-itemsets 
obtained by the set of membership functions in Cq. A larger 
fitness value means a better quality. It thus focuses only on the 
number of derived large-1 itemsets. 

3. f3(Cq) = |L1|/suitability(Cq). A larger value means a better 
quality. It is a compromise between the number of derived 
large-1 itemsets and the suitability of derived membership 
functions. 

4. f4(Cq) = |Lall|, where |Lall| is the number of all large 
itemsets obtained by the set of membership functions in Cq. A 
larger fitness value means a better quality. It thus focuses only 
on the number of all derived large itemsets. 

5. f5(Cq) = |Lall|/suitability(Cq). A larger value means a better 
quality. It is a compromise between the number of all derived 
large itemsets and the suitability of derived membership 
functions. 

6. f6(Cq) = |R|, where |R| is the number of fuzzy association 
rules obtained by the set of membership functions in Cq. A 
larger fitness value means a better quality. It thus focuses only 
on the number of all derived association rules. 

7. f7(Cq) = |R|/suitability(Cq). A larger value means a better 
quality. It is a compromise between the number of all derived 
association rules and the suitability of derived membership 
functions. 

Functions 2 and 3 use the number of large 1-itemsets to 
evaluate chromosomes. They   can save much execution time 
when the evaluation is done. Usually, a larger number of 
1-itemsets will result in a larger number of all itemsets with a 
higher probability, which will thus usually imply more 
interesting association rules. The evaluation by 1-itemsets is, 
however, faster than that by all itemsets or interesting 
association rules. 

IV. THE PROPOSED MINING ALGORITHM 

According to the above description, the proposed algorithm 
for finding an appropriate number of linguistic terms, their 
membership functions, and the corresponding association rules 
is described below. 
The proposed mining algorithm:
INPUT: A body of n quantitative transaction data, a set of m

items, a maximum possible number T of linguistic 
terms, a support threshold , and a confidence 
threshold .

OUTPUT: A set of fuzzy association rules with its associated 
set of membership functions. 

STEP 1: Randomly generate a population of P individuals; 
each individual is a set of membership functions for all 
m items. 

STEP 2: Encode each set of membership functions into a string 
representation. 

STEP 3: Select the desired fitness function. 

STEP 4: Calculate the fitness value of each chromosome 
according to the selected fitness function. 

STEP 5: Execute crossover operations on the population. 
STEP 6: Execute mutation operations on the population. 
STEP 7: Use the selection criteria to choose individuals for the 

next generation. 
STEP 8: If the termination criterion is not satisfied, go to Step 4; 

otherwise, do the next step. 
STEP 9: Output the set of membership functions with the best 

fitness value. 
STEP 10: Adopt the fuzzy mining algorithm proposed in [6] to 

mine fuzzy association rules from the given database. 

V. EXPERIMENTAL RESULTS

In this section, experiments made to show the performance 
of the proposed approach are described. They were 
implemented in Java on a personal computer with Intel Pentium 
4 3.2GHz and 512MB RAM. 64 items and 10000 transactions 
were used in the experiments. In each data set, the numbers of 
purchased items in transactions were first randomly generated. 
The purchased items and their quantities in each transaction 
were then generated. An item could not be generated twice in a 
transaction. The initial population size P was set at 50, the 
crossover rate pc was set at 0.8, and the mutation rate pm was set 
at 0.001. The parameter d of the crossover operator was set at 
0.35 according to [3] and the minimum support was set at 
0.05 (5%). The third fitness function (f3) was first used to show 
the performance of the proposed algorithm since it could make 
a good trade-off between execution time and accuracy. After 
500 generations, the final membership functions were 
apparently much better than the original ones. For example, the 
initial membership functions of some four items among the 64 
items are shown in Fig. 6, where the membership functions 
with dash lines mean they are inactive. 

30
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Fig. 6. The initial membership functions of some four items 

In Fig. 6, the membership functions had the two bad types of 
shapes according to the definition in the previous section. For 
example, the membership functions for Item1 overlap too much. 
After 500 generations, the final membership functions for the 
same four items are shown in Fig. 7. It is easily seen that the 
membership functions in Fig. 7 was better than those in Fig. 6. 
The two bad kinds of membership functions didn’t appear in 
the final results. 

The average fitness values of the chromosomes along with 
different numbers of generations are shown in Fig. 8. As 
expected, the curve gradually went upward, finally converging 
to a certain value. 
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0
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Item3 Item4

2.121.61

Fig. 7. The final membership functions of some four items after 500 generations 

Fig. 8: The average fitness values along with different numbers of generations 

Next, experiments were made to compare the results by 
using f1 (only suitability), f2 (only |L1|) and f3 as the fitness 
functions. For the same experimental environments and data, 
the membership functions of the above four items after 500 
generations by using f1 as the fitness function are shown in Fig. 
9, and by using f2 are shown in Fig. 10. 
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0
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Item3 Item4

1.531.36

Fig. 9. The final membership functions when only the suitability is considered 

It can be easily seen from Fig. 9 that the derived membership 
functions by considering only suitability were satisfactory 
because the suitability measure was designed for getting good 
shapes of membership functions. Its number of large 1-itemsets 
was, however, less than the original one (which will be shown 
later). On the contrary, it was very natural for the derived 
membership functions by considering only the number of large 
1-itemsets to have a bad shape from Fig. 10. Their overlap 
degrees were quite high. 
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1.431.03

Fig. 10. The final membership functions when only |L1| is considered 

The numbers of large 1-itemsets by the fitness functions f1, f2
and f3, along with different generations were further compared, 
with results shown in Fig. 11. 

Fig. 11. The average number of large 1-itemsets by the three different fitness 
functions

It can be easily seen from Fig. 11 that the number of large 
1-itemsets by f1 (only the suitability) is the least among the 
three fitness functions. The suitability values by the three 
fitness functions along with different generations are shown in 
Fig. 12. 

Fig. 12. The average value of suitability by the three different fitness functions 

It can be easily seen from Fig. 12 that the suitability by only 
f2 (the number of large 1-itemsets) was the worst among the 
three fitness functions. The average values of |L1|/suitability(Cq)
calculated by the proposed algorithm with the three fitness 
functions f1, f2 and f3, along with different generations are 
shown in Fig. 13. 
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Fig. 13. The average value of fitness values by the three different fitness 
functions

It can be easily seen from Fig. 13. that the average values of 
|L1|/suitability(Cq) by f3 was the best among the three fitness 
functions. f3 could thus achieve a good trade-off between 
numbers of large-1 itemsets and suitability of membership 
functions. 

A comparison for f1, f4, f5 and for f1, f6, f7 showed a similar 
result to the comparison for f1, f2, f3. At last, the three fitness 
functions f3, f5, f7 were compared. The execution time by f3 was 
much less than that by f5, which was much less than that by f7.
The number of association rules by f3 was less than that by f5,
which was less than that by f7. The rule numbers by the three 
fitness functions were quite close. The trade-off achieved by f3
was thus acceptable. 

VI. CONCLUSIONS AND FUTURE WORKS

This paper has described a fuzzy-genetic framework for 
extracting an appropriate number of linguistic terms, their 
membership functions and fuzzy association rules from 
quantitative transactions. Seven fitness evaluation functions 
have also been proposed to evaluate the goodness of the 
obtained membership functions and used as the evolutionary 
criteria in GA. The proposed algorithm can thus adjust 
membership functions by genetic algorithms and then uses 
them to fuzzify the quantitative transactions. After the GA 
process terminates, a better set of association rules can then be 
expected with a more suitable set of membership functions. 

 Experiments have also been made to show the effectiveness 
of the framework and to compare the seven fitness functions. 
From the experimental results, it can be inferred that f3

(|L1|/suitability(Cq)) has a good trade-off among the three 
fitness functions f1, f2, and f3. Besides, f5 (|Lall|/suitability(Cq))
and f7 (|R|/suitability(Cq)) has a similar result among f1, f4, f5 and 
among f1, f6, f7. The execution time by f3 is also less than f5 and 
f7, but the rule numbers by the three fitness functions are quite 
close. Using the number of large 1-itemsets and the suitability 
of membership functions in the fitness evaluation can thus 
achieve a good trade-off between execution time and rule 
interestingness. In the future, we will continuously attempt to 
enhance the GA-based mining framework for more complex 
problems.
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