
Scales behind computational intelligence:
exploring properties of finite lattices

Radim Belohlavek, Vilem Vychodil
Dept. Computer Science, Palacky University, Tomkova 40, CZ-779 00, Olomouc, Czech Republic

Email: {radim.belohlavek, vilem.vychodil}@upol.cz

Dedicated to Professor Ivan Chajda on the occasion of his 60th birthday

Abstract— Finite lattices are fundamental structures which can
be found in many fields of information science and computational
intelligence: data analysis, data mining, multiple-valued logics,
fuzzy logics, hierarchical modelling, graph theory, combinatorics,
etc. Surprisingly, not much attention has been paid to structural
properties of finite lattices. In this paper we study properties of
finite lattices up to eleven elements. We present algorithms for
generating non-isomorphic finite lattices up to a given size. We
propose heuristic tests of non-isomorphism of finite lattices and
examine their performance. We present a summary of selected
properties of finite lattices.

I. INTRODUCTION

Motivations and problem setting Ordered sets and lattices
play crucial role in several areas of computer science, e.g.
in visualization of data, data analysis, uncertainty modeling,
many-valued and fuzzy logics [1], [6], graph theory, etc. In
particular, lattices play the role of scales in various types of
uncertainty theories. A favorite choice is the unit interval [0, 1]
which is used, for instance, in probability theory, Dempster-
Shafer theory of evidence, fuzzy logics, etc. The elements
a ∈ [0, 1] are called degrees of probability, degrees of plau-
sibility, degrees of truth, etc., respectively.

Linearly ordered scales, e.g. [0, 1], are not always appro-
priate. Namely, degrees in the respective theories may not be
comparable, see e.g. [8]. Natural arguments from the point of
view of the respective theories lead to the requirement that a
scale be a lattice, i.e. infima and suprema exist. Moreover, an
important role is payed by “small” lattices. Namely, according
to Miller’s 7±2 phenomenon well-known from psychology
[10], humans are able to assign degrees in a consistent manner
provided the scale of degrees contains up to 7±2 elements.
With more than 7±2 elements, the assignments become incon-
sistent. Another argument supporting the importance of finite
lattices comes from fuzzy logic applications. While using [0, 1]
is satisfactory in many cases, quite a lot of problems leads to
infinite structures if [0, 1] is used (consider just the simple fact
that the set of all fuzzy sets in a finite universe is uncountable
when [0, 1] is used as a set of truth degrees). Quite often, a
natural solution, which is computationally tractable, is to take
a finite scale truth degrees instead of [0, 1].

These facts bring us to finite lattices with a reasonably small
number of elements (7±2, perhaps a bit more). Surprisingly,
little has been done in a systematic study of finite lattices and
their properties. A systematic study of small lattices is the

main topic of our paper. We are interested in fundamental
questions related to finite lattices and their properties. For
instance, how many non-isomorphic lattices with n elements
are there? Can we generate lattices in an efficient way?
Which properties of lattices are frequent for small lattices?
Our paper answers several questions of this type. We study
finite lattices with up to 11 elements. We present an efficient
algorithm for generating all non-isomorphic finite lattices with
a given number of elements. Furthermore, we analyze selected
properties of all the lattices generated by our algorithm.

The paper is organized as follows. Section II presents pre-
liminaries from partially ordered sets and lattices, Section III
describes generation of finite lattices. In Section IV we present
a summary of selected properties of generated lattices.

Related work Preliminary version of the method presented
in this paper is described in [9]. In [7] the authors investigated
numbers of finite lattices but they did not present any further
analysis of properties of the generated lattices.

II. PRELIMINARIES

A binary relation R ⊆ U ×U in a set U is called a partial
order (in U) if it is reflexive, antisymmetric, and transitive. If
≤ is a partial order in U , we write a ≤ b instead of 〈a, b〉∈ ≤,
and write a < b if a ≤ b and a 6= b. If ≤ is a partial order
in U , the pair U = 〈U,≤〉 is called a partially ordered set.
Elements a, b ∈ U are called incomparable (in U = 〈U,≤〉),
written a ‖ b, if a � b and b � a.

Let 〈U,≤〉 be a partially ordered set and A ⊆ U . An element
a ∈ A is called a least element of A (with respect to ≤) if
for each b ∈ A we have a ≤ b; a greatest element of A (with
respect to ≤) if for each b ∈ A we have b ≤ a. If there exists
a least or a greatest element of U , it is denoted by 0 or by 1,
respectively. For each A ⊆ U we define sets L(A),U(A) ⊆ U
as follows:

L(A) = {b ∈ U | b ≤ a for each a ∈ A}, (1)
U(A) = {b ∈ U | a ≤ b for each a ∈ A}. (2)

Set L(A) is called a lower cone of A (in 〈U,≤〉), U(A) is
called an upper cone of A (in 〈U,≤〉). An element b ∈ L(A)
is called a lower bound of A (in 〈U,≤〉), an element b ∈ U(A)
is called an upper bound of A (in 〈U,≤〉).

If L(A) has a greatest element a, then a is called an infimum
of A in 〈U,≤〉, denoted by

∧
A. Dually, if U(A) has a least

556

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

element a, then a is called a supremum of A in 〈U,≤〉, denoted
by

∨
A. Note that if the least element 0 of U exists then∧

U = 0 =
∨
∅ by definition. Dually, if 1 (the greatest

element of U) exists then
∧
∅ = 1 =

∨
U .

A partially ordered set 〈U,≤〉 is called lattice ordered if
infimum and supremum exist for any two elements in U .
Lattice ordered set 〈U,≤〉 will be called a lattice. If 〈U,≤〉 is
a lattice with finite U , then 〈U,≤〉 is called a finite lattice. If
A = {a, b} then

∧
A and

∨
A will be denoted by a ∧ b and

a ∨ b, respectively.

Remark 1: A partially ordered set 〈U,≤〉 is called com-
pletely lattice ordered (a complete lattice) if infimum and
supremum exist for any subset of U . It is a well-known fact
that each finite lattice is complete, because for each subset
A = {a1, . . . , an} ⊆ U , we have

∧
A = a1 ∧ a2 ∧ · · · ∧ an,

i.e. in case of finite lattices, the existence of infima for any
two elements from U implies the existence of infima for any
subset of U (and dually for suprema), see [2], [5].

From now on, we denote support sets of (finite) lattices by L
(possibly with indices). Each finite lattice 〈L,≤〉 has the least
and greatest element of L. Indeed, for L = {a1, a2, . . . , an},
the least element (denoted 0) equals a1 ∧ a2 ∧ · · · ∧ an, the
greatest element (denoted 1) equals a1∨a2∨· · ·∨an, see [5].
If L = 〈L,≤〉 is a lattice, then L−1 = 〈L,≤−1〉, where ≤−1

is the inverse relation to ≤, is a lattice which is called a dual
lattice to L.

A partially ordered set 〈U,≤〉 is said to be linearly ordered
(or a chain) if for every a, b ∈ U we have a ≤ b or b ≤ a, i.e.
every two elements are comparable. In this case, ≤ is called
a linear order. Each chain is a lattice with ∧ and ∨ given by

a ∧ b =
{

a if a ≤ b,
b otherwise, a ∨ b =

{
b if a ≤ b,
a otherwise.

In this paper we are interested in general properties of lattices
disregarding the “names of elements” the lattices consist of.
Lattices which differ only in names of their elements will
be treated as indistinguishable. In order to define the notion
of an indistinguishability of lattices precisely, we use lattice
isomorphisms. Let L1 = 〈L1,≤1〉 and L2 = 〈L2,≤2〉
be lattices. A mapping h : L1 → L2 is called a lattice
isomorphism (between L1 and L2) if (i) h is a bijection, and
(ii) for each a, b ∈ L1, we have

a ≤1 b iff h(a) ≤2 h(b). (3)

Lattices L1 and L2 are said to be isomorphic, written L1
∼= L2,

if there is a lattice isomorphism between L1 and L2. Through-
out the paper, we will consider lattices “up to isomorphism”
which means that we tacitly identify all isomorphic lattices.

Remark 2: A partially ordered set U = 〈U,≤〉 with finite U
(that includes finite lattices) may be visualized using so-called
Hasse diagram: each element a ∈ U is depicted as a node
(possibly labeled by “a”) in such a way that if a is covered
by b, i.e. a < b and there is no c ∈ U such that a < c and
c < b, then we connect the nodes of a and b, and put the

Fig. 1. Hasse diagrams of all six-element lattices (up to isomorphism).

node of a below the node of b. From properties of isomorphic
lattices, we get that Hasse diagrams of two isomorphic lattices
can be drawn the same way. Fig. 1 shows Hasse diagrams of
all six-element lattices (up to isomorphism). The lattice in the
lower-right corner of Fig. 1 is a six-element chain.

We introduced lattices as partially ordered sets in which in-
fima and suprema exist for any two elements. Alternatively, lat-
tices can be described as algebras. An algebra M = 〈M,u,t〉
with binary operations u and t in M is called a lattice if, for
each a, b, c ∈ M , we have

a t b = b t a, a u b = b u a,

a t (b t c) = (a t b) t c, a u (b u c) = (a u b) u c,

a t (a u b) = a, a u (a t b) = a.

That is, M = 〈M,u,t〉 is a lattice, if (i) both u and t are
commutative; (ii) both u and t are associative; (iii) u and t
mutually satisfy the law of absorption.

If L = 〈L,≤〉 is a lattice ordered set, put a u b = a ∧ b
and a t b = a ∨ b. Then, 〈L,u,t〉 is a lattice. Conversely, if
M = 〈M,u,t〉 is a lattice, put a ≤ b iff au b = a (or, which
is equivalent, iff a t b = b). Then 〈M,≤〉 is a lattice ordered
set such that a∧ b = au b and a∨ b = at b. Moreover, these
constructions are mutually inverse, see [2], [5].

III. GENERATION OF NON-ISOMORPHIC FINITE LATTICES

In this section we propose a method for generation of
non-isomorphic finite lattice of a given size. The process of
generation of finite lattices includes several problems. First,
we need an efficient representation of finite lattices that can be
implemented in computers. Second, we need a procedure that
generates lattices one by one so that for all isomorphic lattices,
the procedure generates just one representative of them. To
solve the latter problem, we need an efficient method for
checking lattice isomorphism. All these issues will be dis-
cussed in this section. We start by introducing representation
of finite lattices.

557

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

0

b

c

a

d

1≤ 0 a b c d 1

0 × × × × × ×
a × × ×
b × × × ×
c × ×
d × ×
1 ×

Fig. 2. Finite lattice (right) and its adjacency table (left).

A. Representation of finite lattices

A finite lattice L = 〈L,≤〉 is given by its support set L and
a particular binary relation ≤ in L. If L is an n-element lattice,
i.e. if |L| = n, then ≤ can be represented by an adjacency
table (adjacency matrix) consisting of n× n entries. In more
detail, we can consider a table with n rows and n columns
corresponding to elements from L. Table entries are crosses
“×” and blanks. Table entry given by row corresponding to
element a ∈ L and by column corresponding to element
b ∈ L contains “×” iff a ≤ b. Hence, entry given by row
corresponding to a ∈ L and by column corresponding to b ∈ L
is blank iff a � b.

An adjacency table for L = 〈L,≤〉 is not uniquely given
because we can have various adjacency tables that differ in
the ordering of their rows and columns. In what follows we
focus on adjacency tables which are in a special triangular
form. Our representation will take advantage of the following
assertion.

Theorem 3: Let L = 〈L,≤〉 be a finite lattice. Then there
is a linear order 4 in L such that, for each a, b ∈ L,

a ≤ b implies a 4 b. (4)

Proof: See [2], [5].

Theorem 3 says that the lattice order ≤ can be extended to
a linear order 4. Condition (4) ensures that ≤ is a subrelation
of 4. Now, for each finite lattice L = 〈L,≤〉 we can consider
an adjacency table of ≤ such that the rows and columns of
the table are listed in the order given by 4 from Theorem 3.
That is, a column denoted a precedes a column denoted b iff
a 4 b, and analogously for rows. For illustration, see Fig. 2.
In Fig. 2, we have a Hasse diagram of a finite lattice with L =
{0, a, b, c, d, 1}. An adjacency table whose rows and columns
are ordered by a linear order 4 extending ≤ such that 0 4
a 4 b 4 c 4 d 4 1 is depicted in Fig. 2 (left). Let us note, that
4 defined e.g. by 0 4 b 4 a 4 d 4 c 4 1 would also satisfy
the conditions of Theorem 3. Observe that since 4 extends ≤,
i.e. condition (4) is true, the adjacency table is in the upper
triangular form.

So far, we have observed that in order to represent ≤, it is
enough to consider an adjacency table of ≤ in the upper tri-
angular form. For |L| = n, the upper triangle contains exactly
n(n+1)

2 elements. In addition to that, not all crosses in the
upper triangular adjacency table carry interesting information.

From properties of finite lattice orders, for each a ∈ L, we
have 0 4 a, a 4 a, and a 4 1. Thus, the upper triangular
adjacency table can be further reduced to non-trivial records
only which are in case of our illustrative example contained
in the gray area. In general, for an n-element lattice (n ≥ 4),
it is enough to keep track of

3 +
n(n− 5)

2
(5)

entries of the upper triangular adjacency table of ≤ (for each
|L| ≤ 3, there is exactly one lattice up to isomorphism). Such
table entries can be encoded by a binary vector whose length
is given by (5). For instance, the lattice from Fig. 2 can be
represented by a binary vector 001110 (i.e., by a concatenation
of binary vectors 001, 11, and 0 representing relevant bits from
rows a, b, and c of the adjacency table).

Table in Fig. 3 shows lengths of binary vectors given by
(5) that are used to represent n-element lattices as described
above. Obviously, there are 2k mutually different binary vec-
tors of length k which encode 2k mutually different binary
relations some of which (not all of them) are the desired lattice
orders.

size of L 1 2 3 4 5 6 7 8 9 10 11

vector length 0 0 0 1 3 6 10 15 21 28 36

possible relations 20 20 20 21 23 26 210 215 221 228 236

Fig. 3. Lengths of vectors encoding finite lattices up to 11 elements.

Our representation of lattices by binary vectors representing
portions of upper triangular adjacency tables has several
advantages. It is concise and it allows us to have efficient
algorithms for determining ≤, ∧, and ∨. For instance, the fact
that a ≤ b is true (or not) can be checked in a constant time.
Moreover, the upper triangular form ensures that if a ≺ b (i.e.,
if a 4 b and a 6= b), then b � a. Hence, the fact that b � a can
sometimes be decided even without looking in the adjacency
table (binary vector).

Suprema and infima can be computed with asymptotic time
complexity O(n). Consider L = {a1, . . . , an} and 4 such
that a1 4 a2 4 · · · 4 an. Fig. 4 depicts algorithms for
computing infima (meet) and suprema (join) of elements ai

and aj provided that ai 4 aj (i.e., i ≤ j). As we can see, due
to our representation of ≤, it is not necessary to compute the
cones given by (1) and (2) and then to determine their greatest
and least elements—both the tasks are done simultaneously
in less than n elementary steps (proof of soundness of the
algorithms will be presented in a full version of this paper).

We conclude this subsection by showing that our repre-
sentation of lattices is in fact a universal one. The following
assertion shows that all n-element lattices (up to isomorphism)
can be generated using a fixed L with |L| = n and considering
a fixed linear order 4 on L which serves as ordering of
columns and rows of adjacency tables.

Theorem 4: Fix L with |L| = n and let 4 be a linear order
in L. Then for each n-element lattice L′ = 〈L′,≤′〉 there is a
lattice order ≤ in L such that

558

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

procedure meet (ai, aj):
if ai ≤ aj:

return ai

else:
for k from i− 1 downto 1:

if ak ≤ ai and ak ≤ aj:
return ak

procedure join (ai, aj):
if ai ≤ aj:

return aj

else:
for k from j + 1 upto n:

if ai ≤ ak and aj ≤ ak:
return ak

Fig. 4. Implementation of “meet” and “join” operations.

(i) 4 extends ≤ and

(ii) L′ = 〈L′,≤′〉 is isomorphic to L = 〈L,≤〉.
Proof: Because of the limited scope of this paper, we

present only a sketch of the proof. Denote L = {a1, . . . , an}
and L′ = {a′1, . . . , a′n} and assume a1 4 a2 4 · · · 4 an.
Take a linear order 4′ that extends ≤′. We can write a′i1 4′

a′i2 4′ · · · 4′ a′in
, where {i1, . . . , in} = {1, . . . , n}. Define

mapping h : L → L′ by h(aj) = a′ij
(j = 1, . . . , n). Finally,

for aj , ak ∈ L, put aj ≤ ak iff a′ij
≤′ a′ik

. Now it is routine to
check that h is a lattice isomorphism between L′ = 〈L′,≤′〉
and L = 〈L,≤〉.

Due to Theorem 4, each n-element lattice is isomorphic
to a lattice ordered set in a fixed L that can be encoded by a
binary vector as described above. Thus, if we generate all non-
isomorphic lattices on L represented by binary vectors (for a
fixed 4), we get all n-element lattices (up to isomorphism).

B. Characteristic vectors of finite lattices

In the previous section we discussed a representation of
lattices. In this section we turn our attention to important
properties of lattices which will be used to quickly distinguish
non-isomorphic lattices. Isomorphism tests generally belong
to hard problems. For instance, the problem of graph isomor-
phism is NP-complete. In this paper we propose a method
which can help speed up tests of non-isomorphism. With
each finite lattice we associate its characteristic vector which
somehow encodes properties of the lattice which are shared
by all its isomorphic copies but which are highly unlikely
to be shared between non-isomorphic lattices. In this section
we describe the characteristic vectors and in the next section
we show a heuristic test of non-isomorphism based on these
characteristic vectors.

Consider a finite lattice L = 〈L,≤〉 and a linear order 4
extending ≤. We define a subset P(L) of 4 by

P(L) = {〈a, b〉 ∈ 4 | a 6= 0 and b 6= 1 and a 6= b}. (6)

Observe that P(L) is related to the non-trivial part of the
upper triangular adjacency table of ≤. Namely, P(L) is exactly
the set of pairs 〈a, b〉 which are encoded in the binary vector
representing ≤ (see previous subsection).

Using P(L), for each a ∈ L, we define four non-negative
integers v1(a), . . . , v4(a) characterizing properties of a ∈ L:

v1(a) = |L({a})| = |{b ∈ L | b ≤ a}|, (7)
v2(a) = |U({a})| = |{b ∈ L | a ≤ b}|, (8)

v3(a) = |{〈b, c〉 ∈ P(L) | a = b ∧ c}|, (9)
v4(a) = |{〈b, c〉 ∈ P(L) | a = b ∨ c}|. (10)

By definition, v1(a) and v2(a) represent the numbers of
elements which are lower/greater than or equal to a. Values
of v3(a) and v4(a) represent the numbers of non-trivial
pairs of elements from L whose infimum/supremum gives a.
Thus, non-negative integers v1(a), . . . , v4(a) represent some
properties of a ∈ L which are, roughly speaking, given by the
“position” of a ∈ L in the lattice. Moreover, for each a ∈ L,
we consider a tuple of integers as follows:

v(a) = 〈v1(a), v2(a), v3(a), v4(a)〉. (11)

Note that values of vi(a) and v(a) depend on the lattice order
≤ on L, i.e. two different ≤1 and ≤2 on L can yield different
values of vi(a) and v(a). In order to make L = 〈L,≤〉 explicit,
we denote vi(a) and v(a) by vL

i (a) and vL(a).

Example 5: Recall the finite lattice from Fig. 2. The values
of vi’s can be expressed by a table of the following form:

L 0 a b c d 1

v1 1 2 2 3 4 6
v2 6 3 4 2 2 1
v3 2 1 3 0 0 0
v4 0 0 0 1 3 2

Columns of the table correspond to elements from L. Rows of
the table are labeled by v1, . . . , v4. A table entry corresponding
to vi and a contains the value of vi(a). For instance, we can
read from the table that v1(0) = 1, v2(0) = 6, v3(0) = 2,
v4(0) = 0, i.e. v(0) = 〈1, 6, 2, 0〉; v1(c) = 3, v2(c) = 2,
v3(c) = 0, v4(c) = 1, i.e. v(c) = 〈3, 2, 0, 1〉, etc.

Vectors v(a) will be used by the heuristic non-isomorphism
test that will be introduced in next section. In order to
determine equality of such vectors (for all a ∈ L), we sort
these vectors according to their lexical ordering. In more
detail, we can define a lexical (linear) order 6lex on four-
tuples of integers as follows. For x = 〈x1, x2, x3, x4〉 ∈ Z4

and y = 〈y1, y2, y3, y4〉 ∈ Z4 we put x 6lex y iff either x = y
(tuples are identical) or there is i ∈ {1, . . . , 4} such that, for
each j < i, xj = yj and xi < yi. One can easily verify
that 6lex is indeed a linear order on Z4. Since v(a) and v(b)
given by (11) are also four-tuples of integers, we either have
v(a) 6lex v(b) or v(b) 6lex v(a).

We now introduce the characteristic vectors. A characteris-
tic vector of a finite lattice L = 〈L,≤〉 is a vector of integers
given by concatenation of vectors v(a) (a ∈ L) listed in the
lexical order 6lex.

Example 6: (i) In case of lattice from Fig. 2, we can see that
v(0) 6lex v(a) 6lex v(b) 6lex v(c) 6lex v(d) 6lex v(1). That
is, the characteristic vector is a concatenation of vectors v(0),
v(a), v(b), v(c), v(d), and v(1) in this order:
〈1, 6, 2, 0, 2, 3, 1, 0, 2, 4, 3, 0, 3, 2, 0, 1, 4, 2, 0, 3, 6, 1, 0, 2〉.

(ii) Fig. 5 depicts all five-element lattices together with tables
describing values of vi’s. The columns of the tables are already

559

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

0

a c
b

1

0

a

b

c

1

0

a b

c

1

0

a

b c

1

0

a

b

c

1

L5,1 0 a b c 1

v1 1 2 2 2 5
v2 5 2 2 2 1
v3 3 0 0 0 0
v4 0 0 0 0 3

L5,2 0 c a b 1

v1 1 2 2 3 5
v2 5 2 3 2 1
v3 2 0 1 0 0
v4 0 0 0 1 2

L5,3 0 a b c 1

v1 1 2 2 4 5
v2 5 3 3 2 1
v3 1 1 1 0 0
v4 0 0 0 3 0

L5,4 0 a b c 1

v1 1 2 3 3 5
v2 5 4 2 2 1
v3 0 3 0 0 0
v4 0 0 1 1 1

L5,5 0 a b c 1

v1 1 2 3 4 5
v2 5 4 3 2 1
v3 0 2 1 0 0
v4 0 0 1 2 0

Fig. 5. All five-element lattices (up to isomorphism) and their characteristic vectors written in tables.

listed in the lexical order 6lex. For instance, characteristic vec-
tor of L5,2 is given by concatenation of v(0), v(c), v(a), v(b),
and v(1), i.e. 〈1, 5, 2, 0, 2, 2, 0, 0, 2, 3, 1, 0, 3, 2, 0, 1, 5, 1, 0, 2〉.

The problem of determining the characteristic vector of
a given n-element lattice is tractable. In fact, there is an
algorithm with asymptotic complexity O(n3) that can do
the job. Hint: traversing trough the binary vector is done in
O(n2) steps, each step requires computation of infima and
suprema, which can be done in O(n) steps; finally, an efficient
sorting algorithm like heap-sort can be used to sort vectors
with respect to 6lex in O(n log n) steps. We postpone full
description of the algorithm to a full version of this paper.

C. Heuristic tests of non-isomorphism

A direct procedure to test whether two n-element lattices
are isomorphic, which is given by the definition of an isomor-
phism, leads to an algorithm with asymptotic time complexity
O(2n), because in worst case, it is necessary to generate
n! bijective mappings between two n-element lattices and to
check whether some of them is an isomorphism. In this section
we propose a procedure which can quickly disqualify most
of non-isomorphic lattices, avoiding thus going through all
n! bijections. The proposed procedure heuristically tests non-
isomorphism of lattices. In general, it cannot be used to decide
whether two lattices are isomorphic. In the latter case, the
brute force checking of bijections between lattices must occur.
However, the advantage of our procedure is that even if we
are compelled to the checking of bijections, we can restrict
ourselves only to “isomorphism candidates” which can be
read of the characteristic vectors. The number of isomorphism
candidates is in most cases much smaller than n!. We begin
with the following

Theorem 7: Let L1 and L2 be lattices, h : L1 → L2 be a
lattice isomorphism. Then, for each a ∈ L1, we have

vL1(a) = vL2(h(a)). (12)

As a consequence, two isomorphic finite lattices have the same
characteristic vectors.

Proof: The claim can be proved by checking (7)–(10).
The proof is omitted due to a limited scope of this paper.

An immediate consequence of Theorem 7 is that two
finite lattices having different characteristic vectors cannot
be isomorphic. Thus, a quick non-isomorphism test can be
done by checking the inequality of characteristic vectors. If
the characteristic vectors of L1 and L2 are equal, in general
we cannot tell whether L1

∼= L2 or not. Nevertheless, in the
next section we will see that for lattices up to 11 elements it
is highly unlikely to have the same characteristic vectors for
non-isomorphic lattices.

Suppose the characteristic vectors of L1 and L2 are equal
and both L1 and L2 are defined on the same universe set
L linearly ordered with a fixed 4. In order to confirm/deny
the isomorphism of L1 and L2, it is not necessary to go
through all permutations of L (bijections h : L → L) because
Theorem 7 says that the elements corresponding under any
isomorphism of L1 and L2 must have the same values of
v(· · ·), see (12). Thus, it suffices to generate and check
only permutations satisfying (12). We call such permutations
isomorphism candidates: a permutation h : L → L is called
an isomorphism candidate if (12) is satisfied for each a ∈ L1.

Example 8: (i) Consider the lattice from Fig. 2 and the table
containing values of its characteristic vector from Example 5.
All columns of the table in Example 5 are pairwise distinct.
Therefore, in case we would arrive at a lattice with the same
characteristic vector as the lattice from Fig. 2, then, in order to
decide their isomorphism, it suffices to check just one bijection
(just one isomorphism candidate).

(ii) In case of lattice L5,3 from Fig. 5 we would have to
check two isomorphism candidates, because two columns in
the corresponding table are equal. In case of L5,1, we would
have to check 3! = 6 candidates, because three columns of the
table are equal, etc. Of course, in case of five-element lattices,
we can see that the non-isomorphic lattices have pairwise
different characteristic vectors. Hence, strictly speaking, no
checking of candidates is necessary. However, for lattices with
|L| ≥ 8, there are situations when the heuristic test can fail as
we will see later (i.e., checking all isomorphism candidates is
necessary if |L| ≥ 8).

The heuristic test of non-isomorphism takes two lattices
L1 = 〈L,≤1〉 and L2 = 〈L,≤2〉 as its input, and produces an
answer “true” (may or may not be isomorphic) or “false” (not

560

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

0

c

e
d

b
a

f

1

0

c

d

b

e

a

f

1

Fig. 6. Eight element lattices that fail the heuristic non-isomorphism test.

Fig. 7. Nine element lattices that fail the heuristic non-isomorphism test.

isomorphic). The test can be summarized as follows:

(i) Count 1’s in the binary vector encoding L1 and in the
binary vector encoding L2. If the numbers of 1’s in both
the vectors are different, then return “false” immediately.
Otherwise go to step (ii).

(ii) Determine characteristic vectors of L1 and L2. Return
“true” if the vectors coincide; return “false” otherwise.

Denote the output of the heuristic test for L1 and L2 by
IsoH(L1,L2). Clearly, if IsoH(L1,L2) equals “false” then,
due to our previous observations, we know that L1 and L2 are
not isomorphic. If IsoH(L1,L2) equals “true”, we employ the
exact test of isomorphism. The exact test accepts as its input
the lattices together with their characteristic vector (which
was computed by the previous use of the heuristic test). The
output of the exact test is “false” (not isomorphic) “true”
(isomorphic). The exact test goes as follows:

(i) Initialize the generator of isomorphism candidates given
by the characteristic vector. Proceed with step (ii).

(ii) If there are no more isomorphism candidates left to
check, return “false”. Otherwise, take first isomorphism
candidate h and go to step (iii).

(iii) For each a, b ∈ L1, check condition (3). If the condition
is true for each a, b ∈ L1, return “true”. Otherwise go
to step (ii).

Now, we will be interested in situations when the heuristic
test fails. By a failure of the heuristic test we mean a situation,
when IsoH(L1,L2) is “true” for lattices L1 and L2 which are
not isomorphic. In a situation like this, the heuristic test alone
is not sufficient to decide isomorphism of lattices. We will be
interested in the frequency of these “pathological situations”.
First, let us show that such situations really do occur.

Example 9: (i) Consider eight-element lattices from Fig. 6
(denote the left-hand side lattice by L1 and the right-hand
side one by L2). Both the lattices have the same characteristic

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 2 5 15 53 220 1049 5682 34502

2 0 0 0 0 0 0 0 1 13 125 1159

3 0 0 0 0 0 0 0 0 1 18 212

4 0 0 0 0 0 0 0 0 0 2 28

5 0 0 0 0 0 0 0 0 0 0 6

6 0 0 0 0 0 0 0 0 0 0 4

Fig. 8. Numbers of characteristic vectors of given orders.

vector. Namely, the following table contains entries of the
characteristic vector:

L1 0 a b c d e f 1

L2 0 a b c d f e 1

v1 1 2 2 2 3 3 4 8

v2 8 3 3 4 2 2 2 1

v3 10 1 1 3 0 0 0 0

v4 0 0 0 0 1 1 4 10

As we can see, two pairs of elements have the same columns,
i.e. the exact test of isomorphism would go through 2! ·2! = 4
isomorphism candidates. Each of the four candidates will be a
mapping h : L1 → L2 where h(0) = 0, {h(a), h(b)} = {a, b},
h(c) = c, {h(d), h(e)} = {d, f}, h(f) = e, and h(1) = 1.
Thus, we either have h(a) = a and h(b) = b, or h(a) = b and
h(b) = a. In either case, h cannot be an isomorphism: (i) if
h(a) = a, then we get a ≤1 f and h(a) = a �2 e = h(f),
which violates (3); (ii) if h(a) = b, then h(b) = a, i.e. we get
b ≤1 f and h(b) = a �2 e = h(f), which again violates (3).
Hence, L1 and L2 are not isomorphic while having the same
characteristic vector. Let us note that L1 and L2 are the
only eight-element lattices (up to isomorphism) that fail the
heuristic test and, at the same time, are the least lattices (with
respect to the numbers of their elements) that fail the test.

(ii) Fig. 7 shows three non-isomorphic nine-element lattices
which share the same characteristic vector. Hence, any two
distinct lattices from the three depicted in Fig. 7 would fail
the heuristic test.

A question is, whether or not it is rare that two lattices
fail the heuristic test. We have investigated this problem for
the generated lattices with up to 11 elements. Suppose we
have a characteristic vector c of some finite lattice. By an
order of c, denoted ||c||, we mean the number of pairwise non-
isomorphic lattices whose characteristic vector is exactly c.
For instance, we have ||c|| = 2 for the characteristic vector c
from Example 9 (i), and ||c|| = 3 for c from Example 9 (ii).
If ||c|| = 1, there is just one finite lattice (up to isomorphism)
with c in which case the heuristic test never fails.

For small sizes of lattices, we have that ||c|| = 1 for each
characteristic vector, i.e. the isomorphism can be decided by
the heuristic test. The table in Fig. 8 shows the numbers of
characteristic vectors of given orders. The columns of the
table correspond to sizes of lattices, rows correspond to orders
of characteristic vectors, and table entries show how many
characteristic vectors (of orders given by rows and sizes given
by columns) there are. We can see that for n ≤ 7, there are
only vectors of order 1.

561

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

size of L 8 9 10 11

probability 4.06 · 10−5 2.75 · 10−5 1.06 · 10−5 2.94 · 10−6

Fig. 9. Probability of failure of the heuristic test.

To sum up, for |L| ≤ 7 the heuristic test never fails. For
8 ≤ |L| ≤ 11 the heuristic test can fail, but the probability of
failure (see the probability values in table in Fig. 9) is almost
negligible and seems to be going down with the increasing
size of L (at least this is true for 8 ≤ |L| ≤ 11).

D. Generation of finite lattices: main algorithm

Non-isomorphic finite lattices of a given size are generated
in the following way. First, we create an initial lattice which
is encoded by a binary vector (see Section III-A) containing
all 0s and add it to a list of generated lattices. A partially
ordered set given by this binary vector is indeed a lattice
which, for |L| = n, contains an antichain of n − 2 elements
(i.e., n − 2 elements of the lattice are incomparable). For
|L| = 6, the initial lattice is the lattice in the upper-left corner
of Fig. 2. Then we go through all possible binary vectors of a
given length. For each of the vectors we check if it represents
a lattice which has not yet been generated. If so, we add the
lattice to the set of generated lattices and continue with next
binary vector. The procedure goes on until we generate a final
lattice, which is the lattice encoded by the binary vector full
of 1s. Such a vector encodes an n-element chain. For instance,
in case of |L| = 6, it is the lattice in the lower-right corner of
Fig. 2. During the lattice generation, we use the isomorphism
tests described in Section III-C.

Our method of generation of lattices can be described by the
following recursive procedure:

1) Set binary vector for the initial n-element lattice.
2) Check if the current binary vector represents a lattice. If it

represents a lattice order ≤, go to step 3). Otherwise, go
to step 4).

3) Check if ≤ (lattice order represented by the current binary
vector) is isomorphic to a lattice which has already been
generated—use the heuristic and exact tests described
in Section III-C.
– If ≤ is not isomorphic to any of the generated lattices,

add ≤ to the set of generated lattices and go to step 4).
– If ≤ is isomorphic to some previously generated ≤′ and

if in addition ≤ equals ≤′ (i.e., ≤ has already been
found), then end this branch of recursion.

– Otherwise (i.e., ≤ is isomorphic to some previously
generated ≤′ but ≤ differs from ≤′), go to step 4).

4) Loop over all bits of the binary vector ≤ which equal 0:
a) Make a copy ≤′ of ≤ (copy of binary vectors).
b) Set to 1 the current bit in ≤′ which equals 0.
c) Make transitive closure of ≤′.
d) Recursively call 2) for ≤′.

The numbers of the generated non-isomorphic lattices are in
the table in Fig. 10 (row denoted “all lattices”). These results

1 2 3 4 5 6 7 8 9 10 11

all lattices 1 1 1 2 5 15 53 222 1078 5994 37622

modular 1 1 1 2 4 8 16 34 72 157 343

distributive 1 1 1 2 3 5 8 15 26 47 82

complemented 1 1 0 1 2 6 18 71 307 1594 9446

boolean 1 1 0 1 0 0 0 1 0 0 0

relat. compl. 1 1 0 1 1 1 1 2 2 4 6

pseudo-compl. 1 1 1 2 4 10 29 99 391 1775 9214

rel. ps. compl. 1 1 1 2 3 5 8 15 26 47 82

Fig. 10. Numbers of non-isomorphic lattices with selected properties.

agree with observations concerning the numbers of lattices
from [7].

Remark 10: (i) Our test of isomorphism which is based on
the heuristic and exact tests seems to be very efficient (at lest
for lattices up to 11 elements). For instance, generation of
9-element lattices using our isomorphism tests takes under 2
minutes while the same algorithm which uses only the exact
test needs over 8 hours to do the same job.

(ii) An interesting thing to note is the average number of
isomorphism candidates that are used during each isomor-
phism test. Recall that when the heuristic test is positive,
we must decide the isomorphism by finding an appropriate
bijection between lattices (this is a part of the exact test).
Using characteristic vectors, we can restrict ourselves only to
certain bijections, so-called isomorphism candidates described
in Section III-C. The average number of tested isomorphism
candidates is surprisingly low: during generation of 9-element
lattices, we check approximately 9 isomorphism candidates
per each of the 10 isomorphism tests. That means less than
one isomorphism candidate per one isomorphism test.

(iii) Not each binary vector encoding ≤ represents a lattice
order. Nevertheless, in case of |L| ≤ 5 it happens that each
partial order encoded by a binary vector of the appropriate
length is a lattice order. The shortest binary vector encoding a
partial order on |L| = 6 which is not a lattice order is 011110.

IV. SELECTED PROPERTIES OF THE GENERATED LATTICES

In this section we briefly present summary of properties
of the generated lattices we focused on. The first type of
properties which may be of interest and which can be seen
directly from Hasse diagrams of lattices are their heights and
widths. By a height (or width) of a lattice we mean the length
of the longest maximal chain (or antichain) contained in that
lattice. From the generated lattices we have observed that the
numbers of lattices with a given width and height follows a
normal distribution. The situation for |L| = 11 is depicted in
Fig. 11. From Fig. 11 we can read that there is exactly one
lattice with height 11 (an 11-element chain), and exactly one
lattice with width 9 (initial 11-element lattice, see Section III-
D). The table in Fig. 12 shows average characteristics of the
generated lattices. Rows of the table correspond to properties
(see the legend in Fig. 12, for the notions involved we refer
to [2], [5]), columns of the table correspond to sizes of lattices.
Table entries are the average values. An interesting observation
is that the average number of irreducible elements increases

562

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1 2 3 4 5 6 7 8 9

3 0 0 0 0 0 0 0 0 1

4 0 0 0 0 123 159 72 15 0

5 0 0 83 2212 3294 1138 126 0 0

6 0 0 2295 8464 4387 518 0 0 0

7 0 164 4413 5339 973 0 0 0 0

8 0 374 2133 805 0 0 0 0 0

9 0 217 280 0 0 0 0 0 0

10 0 36 0 0 0 0 0 0 0

11 1 0 0 0 0 0 0 0 0

Fig. 11. Numbers of 11-element lattices of given height(row) and width(col.).

1 2 3 4 5 6 7 8 9 10 11

ht 1.00 2.00 3.00 3.50 4.00 4.47 4.91 5.30 5.67 6.00 6.31

wd 1.00 1.00 1.00 1.50 2.00 2.40 2.75 3.09 3.41 3.74 4.06

at 0.00 1.00 1.00 1.50 1.80 2.00 2.15 2.28 2.40 2.51 2.61

ir 1.00 2.00 3.00 3.50 4.20 4.93 5.60 6.25 6.88 7.51 8.12

pr 1.00 2.00 3.00 3.50 3.40 3.27 3.15 2.97 2.78 2.60 2.43

mc 1.00 1.00 1.00 1.50 2.00 2.47 3.00 3.58 4.22 4.91 5.66

ma 1.00 2.00 3.00 3.50 4.00 4.67 5.43 6.36 7.46 8.77 10.32

Fig. 12. Average characteristics of lattices (legend: ht = avg. height of
lattices, wd = avg. width of lattices, at = avg. number of (co)atoms, ir =
avg. number of meet/join irreducible elements, pr = avg. number of meet/join
prime elements, mc/ma = avg. number of maximal chains/antichains.

with the increasing size of L while the average number of
prime elements drops down (this may be surprising because
both the notions are defined in a similar way, see [5]).

The table in Fig. 10 gives a summary of the numbers
of non-isomorphic lattices satisfying additional conditions:
modularity, distributivity, existence of complements, Boolean
property (distributivity and existence of complements), ex-
istence of relative complements, pseudo-complements, and
relative pseudo-complements. These properties are of interest,
e.g., when lattices are considered as structures of truth values
in multiple-valued logics and fuzzy logics.

The table in Fig. 10 shows the numbers of lattices having
each property but does not show, e.g., how many modular
lattices are pseudo-complemented. Such information can be
found in the table in Fig. 13. Here, columns denote properties
considered in Fig. 10, the left-most column contains numbers
of lattices with a given combination of properties. Each row of
the table represents one combination of properties (properties
which are present are marked by ×). From table in Fig. 13 we
can see that some combinations of properties are relatively

cnt. MOD DIS COM BOO REL PCO RPC

4 × × × × × × ×
8 × × ×
8 × ×

187 × × × ×
204 ×
236 × ×
447 × ×

10653 ×
10980 ×
22267

Fig. 13. Groups of properties shared by lattices.

Fig. 14. Least lattices that have a specific group of properties.

rare. In addition to that, some combinations of properties
are not shared by “small” lattices (up to certain number
of elements). For instance, the least lattice which is only
relatively complemented and (in consequence) complemented
has 9 elements and it is depicted in Fig. 14 (left). The least
lattice which does not satisfy any of the properties MOD–RPC
(see Fig. 13) has 7 elements and is depicted in Fig. 14 (middle).
The lattice in Fig. 14 (right) is the least lattice which is only
modular, complemented, and relatively complemented.

V. CONCLUSION AND FUTURE RESEARCH

We have presented a method for generation of finite lattices
up to a given size. The generated lattices were used for a
preliminary exploration of their quantitative properties (their
average heights, widths, numbers of atoms, etc.). Our database
can be used to find finite lattices satisfying certain conditions
which can be further used in applied and theoretical research.
In our future work we will focus of the following topics:

• incremental algorithms that use (n − 1)-element lattices
to generate n-element lattices;

• exploration of further properties of the generated lattices;
• improvements of heuristic tests of non-isomorphism;
• combination of our approach with other methods, see [7];
• generation of lattices extended by additional operations

(e.g., residuated lattices, see [1], [6]).
A database of generated lattices is available at:
http://vychodil.inf.upol.cz/res/devel/finlat/

ACKNOWLEDGMENT

Supported by grant No. 1ET101370417 of GA AV ČR, by
grant No. 201/05/0079 of the Czech Science Foundation, and
by institutional support, research plan MSM 6198959214.

REFERENCES

[1] Belohlavek R.: Fuzzy Relational Systems: Foundations and Principles.
Kluwer, Academic/Plenum Publishers, New York, 2002.

[2] Birkhoff G.: Lattice Theory. Publ. AMS, Providence, RI (1967).
[3] Carpineto C., Romano G.: Concept Data Analysis. Theory and Appli-

cations. J. Wiley, 2004.
[4] Ganter B., Wille R.: Formal Concept Analysis. Mathematical Founda-

tions. Springer, Berlin, 1999.
[5] Gratzer G. A.: General Lattice Theory. Birkhauser (1998, 2nd ed.).
[6] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.
[7] Heitzig J., Reinhold J.: Counting Finite Lattices. Algebra Universalis

48(1)2002, 43–53.
[8] Kramosil I.: Probabilistic Analysis of Belief Functions. Springer, New

York, 2001.
[9] Kure M.: Computer-aided study of finite posets. UP Olomouc (MSc.

thesis, in Czech), 2004.
[10] Miller G. T.: The magical number seven, plus or minus two: some limits

on our capacity for processing information. The Psychological Review
63(1956), 81–97.

563

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

