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Abstract. An online gradient method is presented and discussed for
Pi-Sigma neural networks with stochastic inputs. The error function is
proved to be monotone in the training process, and the gradient of the
error function tends to zero if the weights sequence is uniformly bounded.
Furthermore, after adding a moderate condition, the weights sequence
itself is also proved to be convergent.
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1 Introduction

Pi-Sigma Network (PSN) [4] is a class of higher order feedforward polynomial
neural network and is known to provide inherently more powerful mapping abil-
ities than traditional feedforward neural networks. The neural networks consist-
ing of the PSN modules are widely used for classification and approximation
problems [2, 5]. The online gradient method is usually used to trained PSN. A
convergence analysis of the online gradient method (OGM for short) with fixed
order inputs (OGM-F) for PSN is presented in [6]. The aim of this paper is to
generalize the result in [6] to the online gradient method with special stochastic
inputs (OGM-SS) for PSN. The motivation for us to make such an extension is
the following. Apart from the computational efficiency, another reason for people
to choose OGM rather than the ordinary gradient method is that OGM helps
for the iteration procedure to jump off from local minima due to its stochastic
nature (see for instance ([1])). But in OGM-F, the stochastic nature is somehow
lost, since its iteration procedure is completely determined as long as the order
of the input samples is fixed. OGM-SS recovers the stochastic nature and hence
is an important improvement of OGM-F.
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2 PSN and OGM-SS

Let the numbers of neurons for the input, summation and product layers of the
PSN be P , N and 1, respectively. We denote by wk = (wk1, wk2, · · · , wkP )T

(1 ≤ k ≤ N) the weight vector connecting the summation node k and the
input nodes, and write w = (wT

1 , wT
2 , · · · , wT

N )T ∈ RNP . The weights on the
connections between the product node and the summation nodes are fixed to 1.
We have included a special input unit ξP , corresponding to the biases wkP , with
fixed value −1. The topological structure of PSN is shown in Fig. 1.
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Fig. 1. PSN structure with a single output.

Supply the network with a training example set {ξj , Oj}J
j=1 ⊂ R

P × R,
where ξj = (ξj

1, · · · , ξj
P−1, ξ

j
P ) ∈ R

P and ξj
P ≡ −1. Assume g : R → R is a given

activation function. For an input x ∈ R
P , the output of the network is

y = g(
N∏

i=1

(wi · x)) (1)

For simplicity, we write gj(t) = 1
2 (Oj − g(t))2. Define the error function as

E(w) =
1
2

J∑
j=1

(Oj − yj)2 =
1
2

J∑
j=1

(
Oj − g

( N∏
i=1

(wi · ξj)
))2

=
J∑

j=1

gj

( N∏
i=1

(wi · ξj)
)

(2)
Its gradient with respect to the weight vector wk (k = 1, 2, · · · , N) is

Ek(w) =
J∑

j=1

g′j
( N∏

i=1

(wi · ξj)
)( N∏

i=1
i�=k

(wi · ξj)
)
ξj (3)

In each epoch m of iteration, the set of samples is re-arranged in a stochastic
order m1, m2, · · · , mJ , which is a permutation of the index set 1, 2, · · · , J . For
any initial w0, OGM-SS for PSN modifies the weights in the following manner:

wmJ+j
k = wmJ+j−1

k + �mj w
mJ+j−1
k , 1 ≤ j ≤ J, 1 ≤ k ≤ N, m = 0, 1, · · · (4)

2

565

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



�lw
m
k = −ηmg′l

( N∏
i=1

(wm
i · ξl)

)( N∏
i=1
i�=k

(wm
i · ξl)

)
ξl (5)

Here, ηm is a learning rate and β is a positive constant, satisfying

1/ηm+1 = 1/ηm + β, m = 0, 1, · · · (6)

Obviously, there exists a constant γ > 0 such that γ/m < ηm < 1/mβ.

3 The Main Theorem

The following conditions will be used in this paper (C0 is a positive constant):
(A1) |gj(t)|, |g′j(t)|, |g′′j (t)| ≤ C0, ∀t ∈ R, 1 ≤ j ≤ J

(A2) ‖ξj‖ ≤ C0, |wi
k · ξj | ≤ C0, ∀1 ≤ j ≤ J, 1 ≤ k ≤ N, i = 0, 1, · · ·

(A3) {wi}∞i=0 are contained in bounded closed region D ⊂ R
NP , and there

are finite points in set D0 = {w ∈ D|Ew{w} = 0}.
Theorem 1. If (A1) and (A2) is valid and {wi} is generated by (4), then

E(w(m+1)J ) ≤ E(wmJ ), m = 0, 1, · · · (7)

lim
i→∞

‖Ek(wi)‖ = 0, 1 ≤ k ≤ N (8)

Additionally, if (A3) is also valid, there exists a w∗ ∈ D0 such that

lim
i→∞

wi = w∗ (9)

4 Proof of Theorem 1

First, we present a few lemmas as preparation to prove Theorem 1. Lemmas 2
amd 3 is can be found in [3]. And the proofs of Lemmas 4 and 5 are similar,
though not identical, to the corresponding results in [6]. So the proofs to Lemmas
2-5 below are omitted to save the space.

Lemma 1. Suppose that the sequence
∞∑

n=1

a2
n

n < ∞, that an > 0 for n = 1, 2, · · · ,

and that there exists a constant µ > 0 satisfying |an+1−an| < µ
n . Then, we have

limn→∞ an = 0.

Lemma 2. Suppose that h : R
K −→ R is continuous and differentiable on a

compact set D ⊂ R
K , and that Ω = {x ∈ D|∇h(x) = 0} has only finite number

of points. If a sequence {zi}∞i=1 ⊂ D satisfies limi→∞ ‖zi+1 − zi‖ = 0 and
limi→∞ ‖∇h(zi)‖ = 0, there exists a point z∗ ∈ Ω such that limi→∞ zi = z∗.

First, we define

rj,m
k = ∆mj w

mJ+j−1
k − ∆mj w

mJ+j
k , 1 ≤ j ≤ J, 1 ≤ k ≤ N, m = 0, 1, · · · (10)

The next lemmas estimate rj,m
k and the change of error.

3
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Lemma 3. Suppose that (A1) and (A2)are satisfied. Then, there exist constants
C1, C2, C3 > 0, such that for any m = 0, 1, · · · ,

j∑
t=1

‖rt,m
k ‖ ≤ C1ηm

N∑
i=1

j∑
t=1

‖�mtw
mJ
i ‖, 1 ≤ j ≤ J, 1 ≤ k ≤ N (11)

‖wmJ+j
k − wmJ

k ‖ ≤ C2

N∑
i=1

j∑
t=1

‖�mtw
mJ
i ‖, 1 ≤ j ≤ J, 1 ≤ k ≤ N (12)

∣∣ N∏
i=1
i�=k

(wmJ+j
i ·ξl)−

N∏
i=1
i�=k

(wmJ
i ·ξl)

∣∣ ≤ C3(
N∑

i=1

j∑
t=1

‖�mtw
mJ
i ‖+

N∑
i=1

j∑
t=1

‖rt,m
i ‖) (13)

Lemma 4. Suppose that (A1) and (A2) are valid. Then, there exists a constant
α such that for any m = 0, 1, · · · ,

E(w(m+1)J ) ≤ E(wmJ )− 1
ηm

N∑
i=1

‖
J∑

j=1

�mj w
mJ
i ‖2+α

N∑
i=1

J∑
j=1

‖�mjw
mJ
i ‖2 (14)

Now, we are ready to prove Theorem 1.
Proof to Theorem 1. By Lemma 4, we have for any integer M

E(w(M+1)J ) ≤ E(wJ ) +
M∑

m=1

N∑
i=1

( 1
ηm

‖
J∑

j=1

�mj w
mJ
i ‖2 − α

J∑
j=1

‖�mjw
mJ
i ‖2

)
(15)

Note E(w(M+1)J ) ≥ 0 and set M → ∞. Then, using (5) and (7) we get

∞∑
m=1

N∑
i=1

(
1

ηm
‖

J∑
j=1

�mj w
mJ
i ‖2) ≤

∞∑
m=1

N∑
i=1

(α
J∑

j=1

‖�mj w
J
i ‖2) + E(wJ )

<

∞∑
m=1

(
αJNC2(N+1)

m2β2
) + E(wJ ) < C4

∞∑
m=1

1
m2

+ E(wJ ) < ∞ (16)

where C4 = αC2(N+1)JN
β2 . Since {m1, m2, · · · , mJ} is a permutation of {1, 2, · · · , J},

(16) is also valid for mi = i, i = 1, 2, · · · , J . Using (5) and (6), we obtain

∞∑
m=1

1
m
‖Ek(wmJ )‖2 <

1
γ

∞∑
m=1

(
1

ηm
‖

J∑
j=1

�jw
mJ
i ‖2) < ∞ (17)

From (3), (5), (A1) and (A2), we conclude that

‖�lw
mJ+j
i ‖ = ηm‖g′l

( N∏
i=1

(wmJ+j
i ·ξl)

) N∏
i=1
i�=k

(wmJ+j
i ·ξl)ξl‖ ≤ CN+1ηm <

C5

m
(18)
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where C5 = Cn+1/β. By the mean value theorem we can easily get that

g′l(
N∏

i=1

(wmJ+j
i · ξl)) − g′l

( N∏
i=1

(wmJ
i · ξl)

)

= g′′(tj,m,l)
N∑

k=1

( N∏
i=1
i�=k

(t̃i,m,j,l)(w
mJ+j
k − wmJ

k ) · ξl
)

(19)

where tj,m,l and t̃i,m,j,l are suitable constants. Let e ∈ R
P be an arbitrary unit

vector. (3) and (19) lead to

Ek(wmJ+j) · e − Ek(wmJ ) · e

=
J∑

l=1

(
g′l

( N∏
i=1

(wmJ
i · ξl)

)( N∏
i=1
i�=k

(wmJ+j
i · ξl) −

N∏
i=1
i�=k

(wmJ
i · ξl)

)
+

g′′l (tj,m,l)
N∏

i=1
i�=k

(wmJ+j
i · ξl)

N∑
k1=1

(
(

N∏
i=1
i�=k1

t̃i,m,j,l)(w
mJ+j
k1

− wmJ
k1

) · ξl
)
(ξl · e)

)
(20)

So from (A1), (11), (12), (13), (18) and Cauchy-Schwartz inequality, we have

∣∣|Ek(wmJ+j) · e| − |Ek(wmJ ) · e|∣∣ ≤ CN
J∑

l=1

(( N∑
i=1

j∑
t=1

‖�mtw
mJ
i ‖ +

N∑
i=1

j∑
t=1

‖rt,m
i ‖)|ξl · e|

)
+ C2N−1

J∑
l=1

(|ξl · e|
N∑

k1=1

|(wmJ+j
k1

− wmJ
k1

) · ξl|)

<
(
CN+1J(1 + C3Nη0) + C2N+1JNC4

)
NJ(

C5

m
) =

C6

m
(21)

where C6 = (CN+1J(1+C3Nη0)+C2N+1JNC4)NJC5. Using (17) and Cauchy-
Schwartz inequality, we obtain that

∞∑
m=1

1
m
|Ek(wmJ ) · e|2 ≤

∞∑
m=1

1
m
‖Ek(wmJ )‖2 < ∞, 1 ≤ k ≤ N (22)

Then by (21), (22) and Lemma 1, we conclude that

lim
m→∞ |Ek(wmJ ) · e| = 0, 1 ≤ k ≤ N (23)

It follows from (21) that for 1 ≤ k ≤ N, 1 ≤ j ≤ J, m = 1, 2, · · ·

|Ek(wmJ+j)e| ≤ |Ek(wmJ+j)e − Ek(wmJ )e| + |Ek(wmJ )e| ≤ C6

m
+ |Ek(wmJ )e|

(24)
By (23), we can easily get

lim
m→∞ |Ek(wmJ+j) · e| = 0, 1 ≤ k ≤ N, 1 ≤ j ≤ J (25)
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Because e is an arbitrary unit vector in R
P , the weak convergence is obtained.

From (4) and (18), we have that for 1 ≤ k ≤ N, 1 ≤ j ≤ J ,

lim
m→∞ ‖wmJ+j

k − wmJ+j−1
k ‖ = lim

m→∞ ‖�jw
mJ+j−1
k ‖ ≤ lim

m→∞
C5

m
= 0 (26)

Thus

lim
i→∞

‖wi+1 − wi‖ = lim
i→∞

‖((wi+1
1 − wi

1)
T , · · · , (wi+1

N − wi
N )T

)T ‖ = 0 (27)

So, this together with (A3) and Lemma 2 leads to the strong convergence result
lim

i→∞
wi = w∗ and completes the proof.
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