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Abstract— Backpropagation through time is a very popular
discrete-time recurrent neural network training algorithm. How-
ever, the computational time associated with the learning process
to achieve high accuracy is high. While many approaches have
been proposed that alter the learning algorithm, this paper
presents a computationally inexpensive method based on the
concept of opposite transfer functions to improve learning in
the backpropagation through time algorithm. Specifically, we
will show an improvement in the accuracy, stability as well as
an acceleration in learning time. We will utilize three common
benchmarks to provide experimental evidence of the improve-
ments.

Index Terms— Backpropagation through time, opposition-
based learning, opposite transfer functions.

I. INTRODUCTION

RECURRENT neural networks behave as a dynamic sys-

tem that evolves according to some set of nonlinear

equations. Due to their dynamic nature, recurrent neural net-

works have been applied to various time-dependant problems

in control, communication and signal processing to name a

few [1].

The Backpropagation through time (BPTT) [2], [3] algo-

rithm is a popular approach for training discrete time recurrent

neural networks. Many other gradient-based learning algo-

rithms have also been proposed to accelerate the convergence

time [4], [5]. However, the computational time required to

successfully complete training for these gradient-based algo-

rithms may take some time. Other approaches such as Real-

Time Recurrent Learning [4] and truncated backpropagation

through time [2] have also been developed (for a good review

recurrent networks see [1] or [6]).

This paper presents a computationally inexpensive method

called OBPTT (Opposition-based Backpropagation Through

Time) based on the concept of opposite transfer functions to

improve learning in the BPTT algorithm. Opposite transfer

functions are an idea based on the concept of opposition-based

learning [7]. Specifically, we will show an improvement in the

accuracy, stability as well as an acceleration in learning time.

The remainder of this paper is organized as follows: Section

II will briefly discuss the concept of opposition-based learning

and Section III will explain the notion of opposite transfer

This work has been supported in part by Natural Sciences and Engineering

Council of Canada (NSERC).

M. Ventresca is a student member of the Pattern Analysis and Machine

Intelligence (PAMI) laboratory in the Systems Design Engineering Depart-

ment, University of Waterloo, Waterloo, ONT, N2L 3G1, CANADA (email:

mventres@pami.uwaterloo.ca)

H. R. Tizhoosh is a faculty member of the Pattern Analysis and Machine

Intelligence (PAMI) laboratory in the Systems Design Engineering Depart-

ment, University of Waterloo, Waterloo, ONT, N2L 3G1, CANADA (email:

tizhoosh@uwaterloo.ca)

functions. The OBPTT algorithm is then outlined in Section

IV. In Section V we will discuss the benchmark problems

used. The experimental results will be given in Section VI

and conclusions and future work will be provided in Section

VII.

II. OPPOSITION-BASED LEARNING

Recently, the concept of opposition-based learning (OBL)

has been introduced by Tizhoosh [7]. Here we will provide

a brief introduction to the motivating principles of this idea.

Then, the next section will expand on this to include the

concept of opposite transfer functions.

Opposition-based learning is a rather simple concept that

aims to improve the convergence rate and/or accuracy of

computational intelligence algorithms. The fundamental idea

behind this concept is taken from the world around us, where

we observe particles/anti-particles, up/down, left/right, on/off,

male/female, and so on. Furthermore, opposites exist in social

contexts as well, for example via a social revolution, which

typically occurs rather rapidly. In terms of the computational

idea, this manifests itself as a pair < x, x̆ >, where the guess

x has some function determining what its opposite x̆ is.

Consider the problem of discovering the minima (or max-

ima) of some unknown function f :� → �. Initially, we can

make some guess x as to what the solution s may be. It is

possible that this guess is based on some a priori knowledge,

but is not a requirement. In either situation, we will either be

satisfied with x or not. For the latter case, we will try to further

reduce the difference between the estimate x and s whether

or not s is known. In general, we are trying to discover some

solution x∗ such that |f(x∗) − f(s)| < ε for some level of

accuracy ε ∈ �. Associated with this process is some compu-

tational complexity, which due to the curse of dimensionality,

is usually beyond permissable application limits. Additionally,

some algorithms may converge at a similar rate/time, yet yield

rather different solutions.

The concept behind OBL can be applied to this problem.

After we choose x1, we need to select some other solution

at the next iteration, say x2. However, this value may or may

not be close to s. Assuming the solution is far away from the

optimal, s, then it may take some time before the algorithm

reaches that value, if at all. Under the OBL scheme, when we

consider x2 we simultaneously consider its opposite x̆2 and

continue learning with the more desirable of the two. For a

minimization problem this would be min(f(x2), f̆(x2)), for

some evaluation function f . In order to avoid convergence to

a local optima, it is possible to probabilistically accept this

value.
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To date OBL has been utilized to improve the conver-

gence rate and/or accuracy of differential evolution (by anti-

chromosomes) [8], [9], [10], reinforcement learning (by op-

posite actions/states) [11], [12], [13] and backpropagation in

feed-forward neural networks (by opposite transfer functions)

[14]. This paper will expand on the work by Ventresca and

Tizhoosh [14] to examine opposite transfer functions for the

backpropagation-through-time algorithm for recurrent neural

networks.

III. OPPOSITE TRANSFER FUNCTIONS

In order to incorporate OBL into the BPTT algorithm,

opposite transfer functions [14] will be utilized. In this section

we will provide the idea behind opposite transfer functions and

how they can be of use for improving BPTT.

A. What is an Opposite Transfer Function

A neural network [15] is represented as a graph structure

where edges represent real-valued weights between vertices or

neurons. Each neuron utilizes a transfer function of the form

f :� → � and is typically sigmoid in shape. The logistic

function,

f(x) =
1

1 + e−x
(1)

is a very common transfer function used in backpropagation

learning. We will define the opposite of a transfer function

and utilize the logistic function to illustrate the definition.

Definition 1 (Opposite Transfer Function): Given some

transfer function f(x) its corresponding unique opposite

function is given by f̆(x) = f(−x). These functions intersect

at some point x = x∗, which defines a plane which the

functions are symmetric about.

With respect to the logistic function, we can define its

opposite as

f̆(x) =
1

1 + ex
(2)

This function is also plotted in Figure 1 against the tradi-

tional logistic function. The two curves intersect at x = 0,

which defines the point they are symmetric about. These

functions obey the constraint outlined above, that is f̆(x) =
f(−x).

B. Opposite Transfer Functions and Neural Networks

Let a recurrent neural network have L hidden layers, each

having kl hidden neurons each of which can utilize the

traditional or opposite transfer functions. Then, for any weight

and threshold initialization there exists

M =
L∏

i=1

2kl (3)

possible network configurations, each uniquely associated with

a different combination of transfer functions. Furthermore, it

can be experimentally verified that the probability Pr that any
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Fig. 1: Logistic and opposite logistic functions.

one of these M networks has the lowest error as calculated

by some error function Er:� → �, can be given by

Pr(Er(mi) < Er(mj) ∀i �= j) =
1
M

. (4)

That is, the choice of initial network with respect to its transfer

functions is independent of the initial weights and threshold

values.

However, as the learning algorithm (not limited to BPTT)

iterates it specializes the weights/thresholds for the some

network architecture. Consequently, reducing the probability

other architectures yield more favorable results at the re-

spective point in weight space. Therefore, opposite transfer

functions will prove to be more useful during the early learning

stages. The rate at which this usefulness degenerates is based

on properties of the error surface, the learning algorithm, the

training data, etc.

Before we can propose an opposition-based neural learning

algorithm, it is necessary to first define the notion of an

opposite network w.r.t. transfer functions.

Definition 2 (Opposite Transfer Function Network): Given

some network N , its opposite N̆ w.r.t. its transfer functions is

some network with any other combination of hidden neuron

transfer functions. That is, there is at least one different

transfer function between N and N̆ . In total there are M − 1
opposite networks relative to N .

IV. THE OBPTT ALGORITHM

This section will describe the opposition-based backprop-

agation through time (OBPTT) algorithm, which is based

on the concept of opposition-based learning. Specifically we

are dealing with Elman [16] recurrent topologies where only

neurons of the hidden layer exhibit recurrent connections

(although the technique is not limited to this topology). These

recurrent values are stored in a context layer which is really

a copy of the hidden layer, as shown in Figure 2.

The proposed opposition-based backpropagation through

time algorithm is presented in Algorithm 1. The decision as to
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Fig. 2: The Elman recurrent network topology.

which set of transfer functions will be utilized is based on a

probabilistic estimation procedure, where each hidden neuron

ni has an associated probability that is represented by Pr(ni).
Lines 2-6 utilize the current probability of a network using

the “normal” transfer function, or its opposite. This probability

approaches 1 or 0, representing the “normal” or opposite

functions, respectively. Therefore, as the number of epochs

→ ∞ the number of opposite networks under consideration

approaches 0. In line 9 we then choose the best network of the

Q+1 (+1 for current network) networks under consideration.

The probabilities are updated in lines 12-17. If, according

to the error function Er we have discovered a network with

a lower error, we then increase the probability of the same

network being selected by a factor of 0 < τampl < 1, where

the function trans(ni) is defined as

trans(ni) =
{

1 if neuron i uses “normal” function

0 if neuron i uses “opposite” function
.

In the event the network error was not improved, the proba-

bilities of the transfer functions in network N will be reduced

according to 0 < τdecay < 1.

This algorithm also has the inherent behavior of selected

networks similar to the best known, which arises as a result

of these probabilities. The assumption being that as learning

progresses, the probability of a similar network (where only

a small number of transfer functions differ) of achieving a

higher accuracy is higher than for very dissimilar networks

(where many transfer functions differ).

V. OBPTT TEST PROBLEMS

In order to determine the quality of the proposed algorithm,

we have chosen three common benchmark problems (em-

bedded Reber grammar, symbolic laser and Mackey-Glass).

Each of these problems represents time series data exhibiting

different degrees of difficulty.

A. Embedded Reber Grammar

A Reber grammar [17] is a deterministic finite automaton

capable of generating some language, L. An element, or string

Algorithm 1 An epoch of Opposition-based Backpropagation

Through Time

Require: current network N, and error function Er.

Ensure: τampl > 0 and τdecay > 0
Ensure: 0 < Pr(ni) < 1

1: {Examine opposite networks}
2: select Q ⊆ N̆ {Note : |Q| → 0 as epochs → ∞ }
3: backpropagate one epoch(N)

4: for all q ∈ Q do
5: backpropagate one epoch(q)

6: end for
7:

8: {Let N be the network with minimum error}
9: N=network with min(Er(N), Er(q)) ∀q ∈ Q

10:

11: {Update probabilities}
12: for all hidden neurons ni ∈ N do
13: if Er(N) − Er(Ni−1) ≤ 0 then

14: Pr(ni) =
{

τampl · Pr(ni) if trans(ni) = 1
1 − τampl · Pr(ni) if trans(ni) = 0

15: else
16: Pr(ni) =

{
τdecay · Pr(ni) if trans(ni) = 0
1 − τdecay · Pr(ni) if trans(ni) = 1

17: end if
18: end for

x ∈ L is generated according to the rules of the Reber

grammar. Furthermore, another (invalid) string can also be

generated that does not obey the grammar. Both strings can

be used to train the neural network such that it can distinguish

whether some unknown string z is an element of L or not. In

this work, we only utilize positives example during training.

Figure 3 shows a finite automaton for a Reber grammar, where

L = {B, P, T, S, X, V, E}

Fig. 3: A finite automaton representation of a Reber grammar

(Image was taken from [18]).

A more difficult task is an extension of this problem, known

as an embedded Reber grammar. These grammars are of the

form nLm|aLb, where n, m, a and b are unique strings also

in L. Thus, this task is much more difficult because the neural

network must remember the initial sequence for some number
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of previous time steps.

For the experiments in this paper we utilize a language of 6

symbols which are then converted to binary strings. The new

representation is a 6-bit binary string that contains a ’1’ at

each position which corresponds to each of the 6 symbols. In

total our training data consists of 8000, 6-bit embedded Reber

grammar strings. The goal of this learning task is to be able

to predict the next symbol in the training data.

B. Symbolic Laser Data

In this section we describe the common deterministic

chaotic benchmark known as the Laser problem [19]. The

data represents 8,000 readings from a Far-Infrared-Laser in

a chaotic state. Each reading is separated by an 81.5 micron

14NH3 laser and the intensity is recorded by an oscilloscope.

In general, deterministic chaotic dynamical systems tend

to organize themselves around attractors that contain various

levels of instability. For example, a period of unpredictable

behavior can follow a period of predictable behavior, and vice

versa. It is possible to transform raw data into a symbolic

representation of each level of instability [20]. From this

transformed data it is possible to gain insight into basic

structure of the system.

We can apply this notion to the 8,000 laser readings. We

convert the series into a 4 character symbolic stream S =
{st} where st ∈ {1, 2, 3, 4}. The four symbols correspond to

high/low negative and high/low positive laser activity changes.

An example of this process is presented in Figure 4.

Fig. 4: (Left) First 1000 laser readings, (Right) Histogram of

the differences in successive laser readings.

Each of the 4 symbols was converted to a 4-bit binary

pattern, where each symbol corresponded to a ’1’ at the

respective index position. The output pattern is also 4-bits,

and represents the next laser reading. Therefore the purpose

of the network is to predict successive levels of instability.

C. Mackey-Glass

The Mackey-Glass equation [21] is a time-delayed dif-

ferential equation that models the dynamics of white blood

cell production in the human body. The function produces

a chaotically evolving continuous dynamic system. We have

utilized equation (5) to generate the 200 training patterns:

dx

dt
= −b · x(t) +

a · x(t − τ)
1 + x(t − τ)c

(5)

In this equation we let b = 0.1, a = 0.2, c = 10 and τ = 30
with initial condition x(0) = 0.9 (see Figure 5).

Fig. 5: Phase portrait of the Mackey-Glass system given by

equation (5).

The input to the neural network is a single real-valued

variable, and the output is the next value of the time series.

So, the purpose of the network is to be able to predict the next

value in the series.

VI. RESULTS

We examine the behavior of the Elman networks on the

above benchmark problems. It has been empirically deter-

mined that values of τampl = 0.75 and τdecay = 0.1 yield best

results. Additionally, to determine sensitivity to the number of

hidden neurons we have conducted experiments that vary the

number of neurons over {3, 5, 7}. Also, varying the learning

rate and momentum values and their effect is examined. Each

of the networks use the logistic (1) and opposite logistic (2)

functions in the hidden layer. It should be noted that we also

performed experiments using the hyperbolic tangent (tanh(·))
and its opposite function (−tanh(·)) were conducted however

they did not yield significantly different results than those

presented.

Each of the network errors is gauged by the mean squared

error (MSE) error function and each of the OBPTT and BPTT

runs began at the exact initial weight/threshold conditions

so as to rule out any bias in initial weight/threshold value

generation. All networks weights were initialized according

to the Nguyen-Widrow rule [22]. We also experimented with

initial weights on the interval [0, 1] and observed similar

results, although not presented here due to space limitations.

Also, in each case the maximum number of opposite networks
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considered during a single epoch was empirically set to |Q| =
3. All of the results have been averaged over 30 runs, each

composed of 30 epochs.

A. Embedded Reber Grammar Results

Table I shows a summary of the results for the embedded

Reber experiments where α and β represent the learning rate

and momentum parameters, respectively. The table also shows

the results of varying the number of hidden layers.

The average error, μ, of the networks trained using the

OBPTT technique is lower for nearly all experiments. Further-

more, the network outputs are more reliable as the standard

deviation σ tends to be lower for all the examples as well.

In many of the cases, the standard deviation is half that of

the traditional technique. Nevertheless, these results provide

experimental evidence showing that the OBPTT trained net-

works achieve a lower, more reliable error measure.

TABLE I: Results for Embedded Reber Grammar Experiments

OBPTT BPTT

Hidden Neurons=3

α β μ σ μ σ
0.10 0.00 0.043 0.003 0.047 0.006

0.25 0.00 0.042 0.003 0.045 0.005

0.25 0.10 0.044 0.004 0.049 0.006

0.50 0.00 0.043 0.003 0.049 0.008

0.50 0.10 0.044 0.005 0.049 0.006

0.50 0.25 0.045 0.003 0.051 0.005

0.75 0.00 0.045 0.004 0.050 0.005

0.75 0.10 0.047 0.005 0.051 0.006

0.75 0.25 0.046 0.004 0.052 0.005

0.75 0.50 0.051 0.006 0.052 0.004

Hidden Neurons=5

α β μ σ μ σ
0.10 0.00 0.040 0.002 0.045 0.004

0.25 0.00 0.040 0.002 0.045 0.004

0.25 0.10 0.040 0.002 0.043 0.003

0.50 0.00 0.042 0.003 0.046 0.003

0.50 0.10 0.042 0.003 0.046 0.004

0.50 0.25 0.042 0.001 0.046 0.004

0.75 0.00 0.043 0.002 0.047 0.004

0.75 0.10 0.044 0.003 0.047 0.005

0.75 0.25 0.045 0.004 0.050 0.005

0.75 0.50 0.046 0.003 0.051 0.006

Hidden Neurons=7

α β μ σ μ σ
0.10 0.00 0.039 0.001 0.042 0.001

0.25 0.00 0.040 0.001 0.042 0.002

0.25 0.10 0.040 0.001 0.042 0.002

0.50 0.00 0.041 0.001 0.044 0.004

0.50 0.10 0.042 0.002 0.046 0.004

0.50 0.25 0.042 0.001 0.046 0.003

0.75 0.00 0.043 0.002 0.045 0.004

0.75 0.10 0.043 0.002 0.046 0.004

0.75 0.25 0.044 0.002 0.047 0.006

0.75 0.50 0.045 0.002 0.049 0.005

Figure 6 shows a characteristic plot of a 5 hidden-neuron

network trained with α = 0.1 and β = 0.0. Not only

does the OBPTT approach converge to a higher quality so-

lution relatively quickly, but it also exhibits a more stable

learning trajectory about the convergence point. While the

BPTT trained network increases in error after the 8th epoch,

the network trained by OBPTT maintains a relatively stable

nature. This is important to recurrent networks because it

indicates the ability to adequately fit the data over the length

of the time series without losing stability of the learning

trajectory.
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M
S

E

BPTT

OBPTT

Fig. 6: Sample output for the Reber Grammar problem for a

network with 5 hidden neurons. The networks were trained

using α = 0.1 and β = 0.0.

The networks trained in Figure 7 further support the above

claims regarding relatively higher quality networks, with re-

spect to final error. We can see that the OBPTT trained network

achieves a significantly lower error in the same amount of

epochs as its BPTT counterpart. These networks were trained

with α = 0.25 and β = 0.1 and had 7 hidden neurons.

5 10 15 20 25 30
0.038

0.04

0.042

0.044

0.046

0.048

0.05

0.052

Epochs

M
S

E

BPTT

OBPTT

Fig. 7: Sample output for Reber Grammar problem for a

network with 7 hidden neurons. The networks were trained

using α = 0.1 and β = 0.1.

The number of considered opposite networks |Q| is plotted

against the number of epochs in Figure 8. The average number

of these networks that improved on the network error is also

shown. Both |Q| and the number of improving networks de-

creases to nearly zero within the allotted 30 epochs indicating

that one of the networks chosen in the initial epochs (typically
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the first 2-5 epochs) was quite well suited, and the algorithm

quickly discarded the others from consideration.
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Fig. 8: Usefulness of opposite networks against number of

epochs for the Reber grammar problem. These values represent

the average over all α and β for 7 hidden neurons.

B. Symbolic Laser Results

A summary of the results for the symbolic laser experiments

is provided in Table II. Overall much of these results are very

similar, both in average error and standard deviation. However,

the OBPTT trained networks seem to be able to achieve

slightly lower error levels over most of these experiments.

Figure 9 gives an idea of the similarity of the results. The

network trained with OBPTT achieves slightly lower error

values early on, but by the 30th epoch training limit, the

networks are nearly indistinguishable, in terms of MSE. As

with the Reber grammar we observe more stable learning

trajectory, although more pronounced for this problem. These

networks both had 5 hidden neurons and α = 0.25, β = 0.0.

Figure 10 shows the degree to which opposite neurons are

considered and used versus the number of training epochs.

Unlike the Reber grammar experiments, the number of net-

works considered and utilized decreases at a slower rate,

implying that OBPTT has not yet determined which network

architecture is best for this problem. Additionally, the stability

of the learning trajectory can be attributed to this behavior.

That is, as the network becomes unstable, a more suitable set

of transfer functions is utilized.The results presented represent

averages over all α and β values for 7 hidden neurons.

C. Mackey-Glass Results

The final benchmark problem under consideration was the

Mackey-Glass data set. As Table III shows, the BPTT and

OBPTT approaches are nearly indistinguishable (values of

0.000 for standard deviations are not necessarily 0, but rather

not within the number of significant digits). This is due

to a smaller data set (200 patters), as well as the problem

difficulty. Furthermore, the low dimensionality (1 dimensional

TABLE II: Results for Symbolic Laser Experiments

OBPTT BPTT

Hidden Neurons=3

α β μ σ μ σ
0.10 0.00 0.048 0.012 0.046 0.011

0.25 0.00 0.055 0.013 0.054 0.010

0.25 0.10 0.060 0.010 0.065 0.014

0.50 0.00 0.065 0.009 0.069 0.008

0.50 0.10 0.067 0.008 0.068 0.010

0.50 0.25 0.064 0.008 0.071 0.006

0.75 0.00 0.065 0.007 0.072 0.008

0.75 0.10 0.068 0.007 0.073 0.007

0.75 0.25 0.070 0.008 0.074 0.006

0.75 0.50 0.070 0.007 0.074 0.004

Hidden Neurons=5

α β μ σ μ σ
0.10 0.00 0.036 0.006 0.039 0.005

0.25 0.00 0.044 0.010 0.050 0.019

0.25 0.10 0.046 0.009 0.050 0.014

0.50 0.00 0.052 0.011 0.060 0.011

0.50 0.10 0.060 0.015 0.062 0.016

0.50 0.25 0.058 0.013 0.065 0.011

0.75 0.00 0.059 0.014 0.065 0.013

0.75 0.10 0.060 0.016 0.066 0.010

0.75 0.25 0.062 0.010 0.073 0.006

0.75 0.50 0.063 0.009 0.070 0.009

Hidden Neurons=7

α β μ σ μ σ
0.10 0.00 0.029 0.005 0.030 0.004

0.25 0.00 0.038 0.011 0.037 0.009

0.25 0.10 0.039 0.012 0.041 0.011

0.50 0.00 0.047 0.013 0.052 0.013

0.50 0.10 0.051 0.011 0.055 0.013

0.50 0.25 0.050 0.012 0.055 0.017

0.75 0.00 0.054 0.015 0.062 0.016

0.75 0.10 0.053 0.012 0.061 0.014

0.75 0.25 0.055 0.014 0.066 0.013

0.75 0.50 0.063 0.012 0.067 0.014
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Fig. 9: Sample output for symbolic laser problem for a network

with 5 hidden neurons. The networks were trained using α =
0.25 and β = 0.0.

input, 1 dimensional output) of the problem also influences

the similarity in behavior. We have not presented any graphs

for these experiments because of the degree to which the

results are similar (i.e. the graphs are nearly identical). This

applies to both accuracy and convergence results. However,
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Fig. 10: Use of opposite neurons for a 5-hidden neuron

network, averaged over all values of α and β for the Symbolic

Laser problem.

it is important to include this information to highlight the

fact that OBPTT may not be useful for simple, very low

dimensional problems where BPTT already performs very

well.

TABLE III: Results for Mackey-Glass Experiments

OBPTT BPTT

Hidden Neurons=3

α β μ σ μ σ
0.10 0.00 0.017 0.000 0.017 0.000

0.25 0.00 0.017 0.000 0.017 0.000

0.25 0.10 0.017 0.000 0.017 0.000

0.50 0.00 0.019 0.000 0.020 0.000

0.50 0.10 0.019 0.000 0.019 0.000

0.50 0.25 0.019 0.000 0.020 0.000

0.75 0.00 0.023 0.000 0.024 0.000

0.75 0.10 0.023 0.000 0.024 0.000

0.75 0.25 0.024 0.000 0.024 0.000

0.75 0.50 0.023 0.000 0.024 0.000

Hidden Neurons=5

α β μ σ μ σ
0.10 0.00 0.017 0.000 0.017 0.000

0.25 0.00 0.017 0.000 0.018 0.000

0.25 0.10 0.017 0.000 0.018 0.000

0.50 0.00 0.019 0.000 0.020 0.000

0.50 0.10 0.019 0.000 0.020 0.000

0.50 0.25 0.020 0.000 0.020 0.000

0.75 0.00 0.023 0.000 0.024 0.000

0.75 0.10 0.023 0.000 0.024 0.000

0.75 0.25 0.024 0.000 0.024 0.000

0.75 0.50 0.024 0.000 0.024 0.000

Hidden Neurons=7

α β μ σ μ σ
0.10 0.00 0.017 0.000 0.017 0.000

0.25 0.00 0.017 0.000 0.018 0.000

0.25 0.10 0.017 0.000 0.018 0.000

0.50 0.00 0.019 0.000 0.020 0.000

0.50 0.10 0.019 0.000 0.020 0.000

0.50 0.25 0.020 0.000 0.021 0.000

0.75 0.00 0.023 0.000 0.024 0.000

0.75 0.10 0.023 0.000 0.024 0.000

0.75 0.25 0.024 0.000 0.024 0.000

0.75 0.50 0.024 0.000 0.024 0.000

D. Summary

From the results of the benchmark problems it can be

inferred that in general the results obtained by OBPTT are at

least as good as those obtained by traditional BPTT. However,

for more difficult problems like the embedded Reber grammar

the OBPTT approach yields significantly higher quality results

as is depicted in Table IV. We have also seen evidence to

indicate a more stable learning trajectory and more reliable

results.

Table IV outlines the expected behavior over all values of

α and β for both learning algorithms using 3, 5 and 7 hidden

layers from the data presented in the previous subsections. Ad-

ditionally, the significance level (1− confidence) is provided

to test the null hypothesis that the means of the OBPTT and

BPTT approaches are indistinguishable. This is especially true

for the embedded Reber grammar problem where the it can be

said with 99% confidence that the OBPTT algorithm achieves

a lower error for any given value of α, β or number of hidden

neurons.

However, the confidence that OBPTT outperforms BPTT

drops significantly for the symbolic laser and Mackey-Glass

data. Nevertheless, these results still support the claim that

OBPTT yields at least as good results as those found with

BPTT. Furthermore, as was described above the convergence

rate and stability of of the learning trajectory of OBPTT seem

to also be superior to BPTT. Stability can be a great concern

for many dynamic problems [1].

TABLE IV: Summary of Results for All Experiments

Summary

Hidden Embedded Reber Laser Mackey-Glass

OBPTT 3 0.045 0.063 0.020

5 0.042 0.054 0.020

7 0.042 0.048 0.020

BPTT 3 0.050 0.067 0.020

5 0.046 0.060 0.021

7 0.045 0.053 0.022

Significance 3 0.0007 0.3714 0.7131

5 0.0006 0.1904 0.6488

7 0.0062 0.3686 0.4930

VII. CONCLUSIONS AND FUTURE WORK

We have presented an opposition-based learning framework

for improving the BPTT algorithm. Our proposed approach

uses the concept of opposite transfer functions which are

dynamically determined during runtime to achieve more de-

sirable results. Specifically, we have experimentally shown

that the accuracy of OBPTT trained networks achieve at least

the same final error as those trained with BPTT. However,

using OBPTT leads to more reliable results and a more

stable learning trajectory which is a very important aspect

of recurrent learning. Our findings are based on experiments

conducted on the embedded Reber grammar, symbolic laser

and Mackey-Glass time series problems.

Directions for future work involve further investigation into

properties of the error surface, specifically the influence of

dynamic neuron transfer functions. The network’s stability
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and other theoretical properties are also very important to

understand as is the impact of OBPTT on the network’s gen-

eralization ability. Employing the concept of opposite transfer

functions, and OBL in general, to improving other types of

learning algorithms and types of neural networks is a very

important direction.
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