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Abstract

In this paper, we try to combine conventional competitive
learning with information-theoretic methods to improve
competitive performance. We have so far proposed a new
type of information-theoretic method to simulate compet-
itive processes. Though the information-theoretic method
solves the dead neuron problem and shows the soft-type
competition, the method is sometime slow in convergence.
To solve this problem, we combine standard learning with
information-theoretic learning. By this combination, we
can shorten a learning process considerably.

1 Introduction

We have so far introduced information-theoretic com-
petitive learning that realizes the very soft-type com-
petition [Kamimura, 2003a], [Kamimura, 2003b],
[Kamimura, 2006]. The method has also been pro-
posed to solve the fundamental problems of com-
petitive learning such the dead neuron problem
[Rumelhart and McClelland, 1986], [Grossberg, 1987],
[DeSieno, 1988], [Ahalt et al., 1990], [Xu, 1993],
[Luk and Lien, 2000], [Hulle, 1997]. Compared with
the rigid type of competition of the winner-take-all, better
performance can be expected in many problems. In
addition, in information processing in living systems, the
soft-type competition seems to be a fundamental mecha-
nism. The method is suitable for simulating information
processing in living systems.

However, one of the main problems of the
information-theoretic method is slow convergence for
complex problems. Information is slowly increased,
because the method must take into account all connection
weights. In this context, we combine conventional com-
petitive learning with our information-theoretic method.
Because the standard method is computationally light,
we use it as much as possible. However, when the
standard method becomes ineffective in learning, the
information-theoretic method should be applied.
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Figure 1. A concept of combining competitive learning
and information-theoretic learning.

2 Theory and Computational Methods

2.1 Competitive Learning as a Process of In-
formation Maximization

Figure 1 shows a concept of our combination. In conven-
tional competitive learning, the winner-all-take algorithm,
that is, hard competition is used. On the other hand, in
information-theoretic learning, all neurons must be updated
to simulate competition, meaning that soft competition is
realized. Because all neurons must be taken into account,
more sophisticated competition can be realized. However,
as already mentioned, learning is slow due to soft compe-
tition. Conventional competitive learning directly choose
just one winner and updates connection weights to the win-
ner. This means that the method is computationally light.
We have had so far many applications. For example, self-
organizing map is one of most successful application of
competitive learning. Thus, considering the effectiveness
of conventional competitive learning, we try to use the con-
ventional method as much as possible. When information
cannot be increased by the standard learning, information
maximization is applied.

In competitive learning, the winner-take-all algorithm
is used to detect a winner, and to update connection weights
into the winner. Update rules can be formulated as follows:

∆wjk = βQs
j(x

s
k − wjk), (1)

where β is a learning parameter, and Qs
j is set to one
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Figure 2. A network architecture for competitive learning.

only if the jth unit is a winner in competition. From
an information-theoretical point of view, this is a method
where information is supposed to be already maximized.
Thus, the probability of the winner is set to one. Then,
connection weights into the winner are updated. This is the
so-called psudo-maximized information learning.

2.2 Information Maximization

We have defined information content as mutual infor-
mation between input patterns and competitive units
[Kamimura, 2003b]. As shown in Figure 2, a network is
composed of input units xs

k and competitive units vs
j . We

used as the output function the inverse of the Euclidean
distance between connection weights and input patterns.
Thus, an output from the jth competitive unit can be com-
puted by

vs
j =

1∑L
k=1(x

s
k − wjk)2

, (2)

where L is the number of input units, and wjk denote con-
nections from the kth input unit to the jth competitive unit.
The output is increased as connection weights are closer to
input patterns.

The conditional probability of firing of the jth unit,
given the sth input pattern p(j | s) is computed by

p(j | s) =
vs

j∑M
m=1 vs

m

, (3)

where M denotes the number of competitive units. Since
input patterns are supposed to be uniformly given to net-
works, the probability of the jth competitive unit is com-
puted by

p(j) =
1
S

S∑
s=1

p(j | s). (4)

By using these probabilities, information I is computed by

I = −
M∑

j=1

p(j) log p(j)

+
1
S

S∑
s=1

M∑
j=1

p(j | s) log p(j | s), (5)

where S is the number of input patterns. Differentiating
information with respect to input-competitive connections
wjk, we have final update rules to increase information
([Kamimura, 2003b]).

Differentiating information with respect to input-
competitive connections wjk, we have

∆wjk = βUs
j (xs

k − wjk), (6)

where

Us
j = −

S∑
s=1

(
log p(j) −

M∑
m=1

p(m | s) log p(m)

)

×p(j|s)vs
j

+
S∑

s=1

(
log p(j | s) −

M∑
m=1

p(m | s) log p(m | s)

)

×p(j|s)vs
j (7)

2.3 Combining Two Methods

We can easily combine two methods in one framework. In
the first stage of learning, supposed maximized information
learning should be used, because the method is computa-
tionally light. In the equation

∆wjk = βRs
j(x

s
k − wjk), (8)

Rs
j should be changed according to a method taken.

3 Results and Discussion

In this experiment, we try to show that the hybrid method
enhances the performance of competition. The artificial
data was composed of patterns drawn from two normal
distributions with three different variances. The number
of input and competitive units are two, respectively. Fig-
ure 3(a) shows information as a function of the number of
epochs by competitive learning and information-theoretic
competitive learning. In this data(a), two groups are clearly
separated with smaller variance. Information is increased
by competitive learning until the number of epoch is 313,
and then though information max is applied, information is
not increased. Figure 4(a) shows data with the variance=1.
As shown in Figure 4(b), information is increased until the
number of epoch is 382, and then when information max
is applied, information is further increased. However, as
shown in Figure 4(c) and (d), training and generalization
errors are not significantly decreased. Figure 5(a) shows
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data with the variance=1. As shown in Figure 5(b), infor-
mation is increased until the number of epoch is 384, and
then when information max is applied, information is fur-
ther increased. Then, as shown in Figure 5(c) and (d), train-
ing and generalization errors are visibly decreased. These
results show that the hybrid method has a possibility of im-
proved performance when applied to complex problems.
Figure 6 shows connection weights by competitive learn-
ing and information-theoretic learning. As can be seen
in the figure, similar connection weights are obtained by
both methods. The main difference is the magnitude of the
connection weights. Thus, we can say that information-
theoretic learning enhances connection weights by compet-
itive learning.

4 Conclusion

In this paper, we have tried to combine standard com-
petitive learning and information-theoretic methods in one
framework. To our point of view, standard competitive
learning is a special case in which information is supposed
to be maximized before learning (winner-take-all). Due to
this supposition, the algorithm is greatly simplified with ap-
propriate performance ever reported. Thus, we should use
this conventional method so long as the method is effective
in learning. When the method becomes ineffective in learn-
ing, new information-theoretic methods should be used for
the practical problems. We have applied the method to an
artificial data with different variances. We have found that
as the variance is larger or the problem become more com-
plex, the information-theoretic method is more effective in
increasing information. For further study, we should apply
this hybrid method to more complex and practical problem
to see whether the main result obtained in this paper is valid
for larger problems.
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Figure 3. Data (a), information (b), training (c) and testing errors (d) for the variance=0.5.
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Figure 4. Data (a), information (b), training (c) and testing errors (d) for the variance=1.0.
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Figure 5. Data (a), information (b), training (c) and testing errors (d) for the variance=1.5.
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Figure 6. Connection weights by competitive learning and information-theoretic learning.
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