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Abstract: 

This paper presents a conceptual system in which concepts are defined by binary associations 

between properties. Properties are measurable membership functions, defined on sets equipped 

with a measure that are the disjoint domains of representation.  Instances of concepts 

(observations) are sets of points from these domains. Requiring properties to be measurable 

enables their overlap to be precisely described.  Similarity between concepts, and between 

observations and concepts, is naturally defined using fuzzy subsethood, and similarity and 

overlap are used to set attention in categorization tasks. This formulation therefore follows 

Gardenförs in recognizing the importance of property associations and of similarity in 

conceptual systems.   

 

1 Introduction 
Ordered sets of alphanumeric values are often used to describe physical objects, conditions, 

events, or examples of abstract concepts.  This representational form is familiar as relational 

databases. The ordered sets can be thought of as points in a multidimensional feature space. A 

similarity measure imposed on such a space allows observations of like phenomena to be 

compared, or compared with groups of similar observations that define real world concepts, or to 

be compared with concepts that are defined theoretically, such as “below freezing level”. 

The importance of similarity as an element in human cognition was recognized by Gardenförs 

(2000) who noted that similarity was not naturally modeled in the associationist (neural net) and 

symbolic logic representation schemes which had played such a large role in artificial 

intelligence. He introduced the term conceptual spaces to describe a representation scheme based 

on domains equipped with geometrical properties that enable similarity to be modeled and 

computed in a natural way.    Gardenförs saw conceptual spaces as lying midway between the 

symbolic and associationist approaches, and, because their points (entities) have measurable 

qualities, they supply grounding for symbols (Aisbett and Gibbon, 2001, Roy and Reiter, 2005). 
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Recent applications of conceptual spaces include scene interpretation and robotic learning 

(Macaluso et al, 2005), geographical similarity (Schwering and Rabaul, 2005; Ahlquist, 2005), 

support for conversational agents (Agostero et al, 2005) and data mining (Lee, 2005).  

Aisbett and Gibbon (2001) re-formulated Gardenförs’ theory of conceptual spaces in the 

mathematical framework of metric spaces, where similarities are defined via distance. To 

interface a conceptual space both to symbolic and subconceptual representations, Aisbett and 

Gibbon divided conceptual space into symbol and concept subspaces, and provided dynamics by 

defining interactions between these subspaces. The dynamics were guided by an attention-setting 

mechanism, and the trajectories of states within the space were interpreted as solutions to 

reasoning tasks such as identification and categorization.  Representation of composite concepts 

(for example, “a dark haired woman in a black dress”) was accommodated via multiple copies of 

this basic notion of a conceptual space.   

Rickard (2006) represented concepts by attributed graphs whose vertices correspond to 

properties and whose weighted edge strength matrix captured the correlations between 

properties, with the salience weight of each property as a node attribute. The similarity of two 

concepts was a fuzzy set theoretic measure based on the pairwise joint similarities of the 

correlations. This formulation followed Gardenförs in defining concepts in terms of properties 

and their correlations.  Complex concepts could be represented directly because the graphs could 

involve multiple properties on the same domain. Rickard also described how individual 

observations might be represented in an analogous matrix format, and used this to describe the 

similarity of an observation to a concept in terms of its membership to the closest property on 

each domain used in defining the concept. 

This paper unifies Aisbett and Gibbon’s and Rickard’s extensions of conceptual spaces by 

defining domains as sets equipped with a measure, properties as measurable membership 

functions on a domain, and concepts as sets of associations between properties.   

2 Reformulation of Conceptual Spaces 

2.1 Domains and Properties 

Gardenförs’ starting point for a conceptual space was a set of dimensions capable of describing 

the attributes of the information to be represented.  Dimensions were organized into 

incommensurate domains. A natural property was a convex region in some domain, where, to 

extend the notion of convexity beyond real valued domains, Gardenförs stipulated that each 

domain i∆  be equipped with a trivariate logical relationship he called “betweenness”.   

In redefining the elements of conceptual space, we use membership functions that can be thought 

of as embodying the symbols which are the property labels.   

Definition 1. 

(a) A domain i∆  is a set equipped with a measure im .  A property is a member of an index 

set iJ  (the property label) together with a measurable membership function 

[ ]: 0,1 ,i j i ip j J∆ → ∈ .   
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(b) The intersection of two properties i jp  and i kp  defined on the same domain i∆  is the 

fuzzy set by the membership function ( ): min ( ), ( )i j i k i j i kp p p p∩ →x x x .   

The assumption of measurability does not imply any topological structure on X  itself, but allows 

us to talk about the extent of a property i jp , defined as the Lebesgue integral ( )i j ip dm∫ x , and the 

relative extent of overlap i
j kB of property k  with respect to property j  on the same domain,  

                     
( ) ( )( )

( )

min ,i j i k ii
j k

i j i

p p dm
B

p dm
=
∫

∫

x x

x
. (1) 

This definition provides for a fuzzy notion of property membership, in which, for example, a 

particular person might have a high degree of membership for both “criminal” and “virtuous” 

properties, even though these properties may have little overlap.  Combinations of properties to 

form new properties can be accomplished by functions on the basic property membership 

functions, such as conjunction or ordered weighted averaging (Yager and Kacprzyk, 1997).  

Hence, the membership function associated with a property is the fundamental descriptor of that 

property, rather than simply a region of space as in earlier works on conceptual spaces, including 

our own. 

2.2 Concepts 

We follow Gardenförs in recognizing that concepts are determined not only by their 

representative properties, but more importantly are determined through co-occurrences or 

associations between properties.  Associations may be learned through experience, or may be 

theoretically determined, for example by defining a world in which all squares are red and 90% 

of circles are yellow.  In Gardenförs’ formulation, there was a tacit assumption that the 

properties defining a concept were disjoint, except possibly along shared boundaries.  However, 

Rickard (2006) allowed that the set of properties that define a concept may contain multiple 

properties on any one domain, and we also allow this. In keeping with our fuzzy approach to 

property membership, we also allow that property self-associations need not be crisp.  If a 

property is learned from experience, this reflects the fact that the average membership of the 

training set in the property may be less than unity. 

Definition 2. 

(a) A concept C  is a named function [ ]1,0)()(: →× CICIC  where ( )I C is a finite subset of 

iJ∪  containing the properties of C  and where for all ( )CIba ∈, , ( , ) 0C a a >  and C(a, b) = 0 

whenever C(b, a) =0.   

The name of C is called the concept label.  To reflect Rickard’s notation, and standard matrix 

notation, we write ),( baC  as abC  and call it the association between the pair of properties 

, ( )a b I C∈ .   

(b) A concept C ′  is smaller than C if ( ) ( )CICI ⊂′  and ( ),ab abC C a b I C′ ′= ∀ ∈ . We write 

CC ⊂′ .   
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The usual terminology of subconcepts and superconcepts has been avoided in (b) because a 

smaller property set may result in specialization, generalization or a combination. For example if 

C has mutually exclusive properties, say red or blue on the color domain, but C ′ only has the red 

property then C ′ is a specialization.  If C has properties red and Arial on the color and font 

domains respectively, but C ′ only has the property red, then C ′  is a generalization.     

It is well known that similarity judgments are dependent on context: thus, a cherry is more like 

an apple than a grape when the context is shape, but more like a grape than an apple when the 

context is size. Context can be defined by specifying domains, or properties within domains. In 

either case a context G can be considered to be a set of properties.  

Allowance must be made for overlapping properties because, for example, one concept might be 

defined using properties “red” and “oval” and another as “dark red” and “circular”. The second 

concept is really a subset of the first, yet if no allowance is made for the relationship between the 

properties, they might be taken to have zero similarity.  

Definition 3 

A context G is a set of properties.  

The similarity 1 2( , )s C C  of two concepts 1 2 and C C  in the context G is given by  

( )
( )

( )

1 2

,1 2

1 2

,

min ,

,
max ,

ab ab

a b

ab ab

a b

C C

s C C
C C

=

∑

∑
 (2) 

where the sum is over all pairs of elements in ( ) ( ) ( ) GCICIGCCI ∩∪≡ )(;, 2121 .  

If a  is a property in domain r∆  involved in concept 1C  but not in concept 2C , and b  is a 

property in domain s∆  involved in concept 2C  but not in concept 1C , then the associations 1
abC  

and 2
abC  are not defined.  In this case, we specify 1

abC  to be 

 1 1
* * * *

r s
ab aa bb a bC B B C=   (3) 

where a* and b* are chosen so that if where r

xyB  is defined as in (1) then *  r r
aa aaB B ′≥ for all 

( )1
ra I I C′∈ ∩ , *

s s
bb bbB B ′≥ for all ( )1 sb I I C′∈ ∩ , and likewise for 2

abC . 

In other words, when the association between two properties a and b in I(C
1
, C

2
) is not defined 

for the concepts being compared, we specify it as the associations between properties which 

maximally overlap a and b in their respective domains.  

2.3 Observations 

Observations are conventionally described as points in a feature space, that is, as ordered sets of 

attribute values. The following definition allows an observation to have an arbitrary number of 

values in any one domain, and hence to have multiple disjoint properties. 
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Definition 4. 

(a) An observation o  is a collection of sets of points io  from domains { }i i K∈
∆ , where the 

set io  is called the values of the observation in the thi  domain.    

(b) The membership ( )i jp o of an observation o  in a property i jp  is defined as 

{ }max ( ) :i j ip y y∈o . 

As noted, properties may be defined using functions of basic property membership functions, 

such as conjunctions. The membership of an observation o  in a conjunction of properties such as 

“red and blue” is defined as { }min ( ), ( )i j i kp po o .  Exclusive properties such as “blue only” are 

defined as { }min ( ),min 1 ( )i j i k
k

p p − o o  where, for example, j  indexes the color “blue” and the 

indices k  run over a set of color properties that are disjoint from “blue”.  A property 

membership function corresponding to “blue only” would map to zero any observation that 

possesses any of the colors other than “blue” to a full degree. Likewise a property membership 

function requiring “blue and yellow” would map an observation possessing only yellow to zero.   

Next, we need a way of identifying observations as being instances of concepts, or at least being 

“like” a concept. A distinguishing characteristic of Rickard’s (2006) definition was that it 

attempted to allow an observation to have full similarity to a concept as long as it fitted a subtype 

of that concept, no matter how unusual that subtype was as an exemplar of the concept.  

Rickards’s definition was problematic when concepts had subtypes defined using different 

domains.  For example, if a concept includes all red objects, and all square objects, and no red 

objects are square, then an observation of a red object (that was therefore not square) would only 

have similarity 1/2 to the concept. The definition below explicitly decomposes a concept into 

subtypes before comparing it with an observation.  

Definition 5 

The subtypes of a concept C are the maximal concepts smaller than C that have no zero 

associations. That is, if C ′  is a subtype, then ( )0 ,abC a b I C′ ′> ∀ ∈  and if C ′′ is any 

concept that is smaller than C then either  0or  =′′′′⊄′
abCCC   somefor  ( ). , CIba ′′∈  

The similarity of an observation o  to a concept C in the context G is: 

 ( )
( )

( )

( )

,

 a subtype of 

,

min ,

, max

ab ab

a b I C G

C C
ab

a b I C G

C o

s C
C

′∈ ∩

′

′∈ ∩

 ′
 

=  
′ 

 
 

∑

∑
o  (4) 

where for ( )ra J I C∈ ∩  and ( )sb J I C∈ ∩  

 ( ) ( )
( ) ( )

min max , max
r s

ab rj sj
j I I C j I I C

o p p
∈ ∩ ∈ ∩

 =  
 

o o . (5) 

When a domain n∆  is used in defining a property of C but the observation does not 

include a value for this domain, it is given membership value 0 for all properties on n∆ . 
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In order to compare the observation with a subtype, it is treated as a concept involving each of 

the properties of that subtype. The association function for this new concept allocates the same 

association to each pair of properties from a given pair of domains, and this association is based 

on the highest membership value that o  has for a subtype property on each of the domains.  

The set of subtypes is defined iteratively by identifying an association 0=abC
�

 in the concept C
�

 

then replacing  it by the smaller concepts defined on }{)( aCI −
�

and }{)( bCI −
�

. The process ends 

when all associations are non-zero.   

The subtypes allow “criss-cross” categories to be separated, in a way analogous to nearest 

neighbor formulations of similarity (which depend on a distance measure on the domains). Criss-

cross categories, however, confuse classifiers based on prototypes or which take mean values in 

a domain. A “criss-cross” situation occurs, for example, when one type of class or category is 

composed of instances having property a on domain r∆ and property c on domain s∆ ,  and also 

of instances having property b on r∆ and property d on s∆ ; and a second class or category  is 

composed of instances having property b on r∆ and property c on s∆ ,  and also of instances 

having property a on r∆ and property d on s∆ . The two properties on each domain are assumed 

to be mutually exclusive.  

3 Categorization and attention setting  
The tasks of interest to us are identification or categorization of an observation. Suppose 

therefore the task is to find the concept amongst the set of alternatives },...,{ 21 gCCC which the 

observation best represents, in the sense of equation (4).   An observation o  can simply be 

compared with each of the concepts in },...,{ 21 gCCC using the similarity measure proposed in 

(4), which compares observations with subtypes of each concept in the current context.  Should 

the highest resulting similarity exceed an a priori threshold, then the observation is said to be an 

instance of the corresponding concept or category. 

The subsethood calculation in (4) could be weighted according to the importance of the 

properties in discriminating the concepts, as computed in the attention setting phase, or through a 

priori knowledge. 

However, it is well known that classification performance is improved when only attributes 

which carry discriminatory information are used in assessing the similarity of an observation to a 

target class. This is because noise on observations in non-discriminatory domains can distort the 

similarity rating (Holte, 1993).  So to improve performance, the context should be domains or 

properties which are likely to be helpful to the task at hand.  

Attention is used to prioritize the properties of a concept iC  according to how different they are 

from properties in the alternative concepts, or how different their associations with other 

properties of iC  are from corresponding associations in the alternative concepts. Essentially, we 

are only interested in properties which have little overlap with properties of other concepts, or 

else are part of property pairs with very different associations yet high overlap. To identify 

properties with little overlap, we look for properties j for which the best match overlap i

njjB )( is 

small. To identify different associations between the property pairs we look for very small ratios 
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( )
( )n

nsnj

m

js

n

nsnj

m

js

CC

CC

)()(

)()(

,max

,min
, which we want to occur in conjunction with high overlap on the property s  

or, equivalently, with small value of ( ) 1

)(

−r

nssB  for s  defined on r∆ .  

We are now in a position to construct a fuzzy ambiguity measure ( , )j mζ  of property j  with 

respect to concept mC  for the task of discriminating mC  from other { }, 1 ,nC n g n m∈ ≠… .  A 

small value of this measure will indicate that property j  has high discriminating power (i.e., low 

ambiguity) due to its low overlap with properties involved in other concepts in the same domain 

and/or its distinctly different association with properties in other domains with respect to other 

concepts.  An appropriate expression for this measure is 

 
( )

( )
( )

( ) ( )

( )

( ) ( ) ( )

min ,
( , ) min min , min

max ,m

m n
j s j n s ni

j j n r m nn s I C
s s n j s j n s n

C C
j m B

B C C
ζ

∈

   
   =
       

,  (6) 

where the outer minimum is over 1 2n { , , g} \ {j}∈ … . 

The innermost parenthetical expression in (6) measures the ambiguity between the associations 

of property j  to property s  in concept mC  and of property ( )j n  to property ( )s n  in concept nC , 

inversely weighted by the overlap between properties s  and ( )s n .  Thus a small value of the 

association ratio combined with a large value of the overlap ( )
r
s s nB  indicates that property j  has 

low ambiguity with respect to property s , notwithstanding a high overlap between s  and ( )s n .   

A property may be shared by multiple concepts. So finally, we rank a property by its minimum 

ambiguity over all concepts in the set, that is, by min ( , )
m

j mζ , which yields the overall efficacy of 

property j  relative to the set },...,{ 21 gCCC . Ideally we would only need to consider properties 

for which min ( , ) 0
m

j mζ = . These include properties of a concept which have no overlap with any 

property on a domain that is used in defining at least one other concept (in which case an 

observation having this property cannot represent the second concept, but may represent the 

first). The properties for which min ( , ) 0
m

j mζ =  also include any property involved in a zero 

association for which there is a non-zero association between the best matching properties in 

some other concept. In this case, an observation exhibiting both properties cannot represent the 

first concept but may represent the second.    

Having ranked properties, the cutoff for attention is dependent in part on the time available for 

processing. In the absence of time constraints, such a cutoff would only be used to remove 

properties on domains from the task context which are not involved with any other concept in 

},...,{ 21 gCCC , or which have similar associations in all the concepts and so are not useful in 

discriminating between them.  

4 Conclusion 
This paper combined two independently developed extensions of Gardenförs’ original 

formulation of conceptual spaces into a single, more capable knowledge representation and 
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inferencing framework. The new theory was less restrictive than the metric space formulation of 

Aisbett and Gibbon (2001) yet enhanced Rickard’s (2006) formulation by explicitly describing 

properties.  The domains underlying the representation were simply sets equipped with a 

measure, which allowed for notions of extent and overlap of properties which were defined as 

measurable membership functions on the domains.  Additional elements, including subtypes, 

were introduced to handle reasoning difficulties identified in our earlier formulations.  We also 

introduced the notion of the ambiguity of properties in a given categorization task, which 

enabled attention to be focused upon properties having the greatest discrimination power.   

Research underway is evaluating the comparative performance of the new theory in 

categorization. Future research will examine learning aspects, since this is a critical requirement 

of all useful reasoning systems.   

References 
Aisbett J.and Gibbon, G. (2001) A general formulation of conceptual spaces as a meso level 

representation, Artificial Intelligence, 133, 189-232. 

Agostaro R., Augello A., Pilato G., Vassallo G., Gaglio S. (2005) A conversational agent based 

on a conceptual interpretation of a data driven semantic space, in Advances In Artificial 

Intelligence, Lecture Notes In Artificial Intelligence 3673, 381-392. 

Ahlqvist O. (2005) Using uncertain conceptual spaces to translate between land cover categories 

International Journal Of Geographical Information Science 19, 7,  831-857.  

Gardenförs, P. (2000) Conceptual Spaces: the Geometry of Thought, Cambridge, MA: MIT 

Press. 

Holte, R. (1993) Very simple classification rules perform well on most commonly used datasets 

Machine Learning, 3, 11, 63-91. 

Lee I. (2005) Data mining coupled conceptual spaces for intelligent agents in data-rich 

environments, in Knowledge-Based Intelligent Information And Engineering Systems, Pt 4, ,  

Lecture Notes In Artificial Intelligence 3684, 42-48. 

Macaluso I., Ardizzone E., Chella A., Cossentino M., Gentile A., Gradino R., Infantino I., Liotta 

M., Rizzo R., Scardino G. (2005) Experiences with CiceRobot, a museum guide cognitive robot, 

in Advances In Artificial Intelligence, Lecture Notes In Artificial Intelligence 3673, 474-482. 

Rickard J. (2006) A concept geometry for conceptual spaces, Journal of Fuzzy Optimization and 

Decision Making, vol. 5, 311-329. 

Rickard J. and Yager R. (2006) Hypercube graph representations and fuzzy measures of graph 

properties, to appear in IEEE Trans. Fuzzy Systems. 

Roy D. and Reiter E. (2005) Connecting language to the world, Artificial Intelligence 167, 1-2, 

1-12  

Schwering A. and Raubal M. (2005) Spatial relations for semantic similarity measurement, in 

Perspectives In Conceptual Modeling,  Lecture Notes In Computer Science 3770, 259-269. 

Yager, R. and J. Kacprzyk (1997) The Ordered Weighted Averaging Operators: Theory and 

Applications, Boston: Kluwer Academic Publishers. 

590

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)


