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Abstract—Fuzzy connectives provide a simple and yet a very 
flexible way to carry out multicriteria aggregation. Often in 
complex problems, the aggregation needs to be carried out at 
different hierarchical levels. Multilayer networks provide a 
natural and intuitive way for modeling such hierarchical 
decision making systems. In this paper we propose a novel, 
guided heuristic for learning the parameters of a multilayer 
network using particle swarm optimization. We also investigate 
the possibility of having multiple ways of aggregating the same 
information based on training data. Experiments are run by 
selecting several different topologies for the multilayer 
network. Also, a comparison is made between our method and 
another approach that uses back propagation for training. 
 

Keywords-Fuzzy connectives, multicriteria aggregation, 
particle swarm optimization, decision making.  

I. INTRODUCTION 
UMANS are good at making decisions because we 
inherently learn how to associate a degree of 

importance with each criterion and combine them in non 
linear ways. But to get a computer to learn this task is quite 
a complex problem. Aggregating multiple criteria for the 
purpose of decision making has been a topic of great interest 
for several researchers, since it has applications in various 
fields including engineering, finance, medicine, etc. Several 
fuzzy connectives have been suggested for multicriteria 
aggregation [1]. The choice of the connective used is often 
application dependent. Generally, the connectives available 
are the union, intersection and mean operators. Besides 
these, other operators have also been suggested in 
literature[2][3]. These include the multiplicative hybrid 
operator (γ model) by Zimmermann and Zysno [4] and the 
OWA operator by Yager [5]. The Zimmermann’s operators 
have been further studied in [6]. 

For simple decision making problems, information can be 
fused using one level fuzzy connectives. However for more 
complex problems it becomes necessary to carry out this 
information fusion at different hierarchical levels. We can 
find examples of several such problems in literature [7][8]. 
Multilayer networks provide a natural and intuitive way for 
representing such hierarchical levels.  
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There are several methods in literature for representing 
and aggregating information through such networks. These 
methods can be based on probability theory [9], Dempster-
Shafer belief theory [7][10] or on fuzzy set theory [11]. In 
[11], Krishnapuram and Lee proposed a training algorithm 
to train their ‘hierarchical aggregation network’. This 
algorithm was a variation of the back propagation algorithm 
and was used to arrive at the aggregation functions. 

In this paper we propose a swarm intelligence approach 
for learning the parameters of a multilayer network 
containing hybrid operator activation functions. We also 
substantiate the possibility that alternative linguistic 
interpretations can result when training a network with 
input/output pairs only. 

Sec. II gives some background information about the 
techniques that we have used in this paper. In Sec. III we 
explain our approach and the algorithm associated with it. 
Sec. IV presents the experimental results and a comparison 
with Krishnapuram and Lee’s results [11]. Finally, in Sec. 
V, we summarize and discuss our findings and the 
advantages that our method has to offer.  

II. BACKGROUND 

A. Zimmermann’s multiplicative hybrid operator 
In [4], Zimmermann and Zysno proposed a hybrid 

operator for multicriteria aggregation that was modeled after 
the compensatory nature of human aggregation. This hybrid 
operator (γ model) can be given by the following equation:  

                  (2.1) γδγδ ))a1(1())a((Y
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where, ai ∈[0,1]are the criteria to be aggregated,  
0 ≤ γ ≤ 1 is known as the mixing coefficient and it controls 
the degree of compensation between the union and 

intersection parts of the operator, and where δn
n
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the weight associated with each criteria ai and n is the 
number of criteria being aggregated 
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Fig. 1.  Different values of γ dictate the operator being selected. The line 
represents values of γ going from 0 to 1. 
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 The advantage of using this operator is that it can be 
operated over the entire range [0, 1]. The relation between γ 
and the working of the operator can be explained using 
Figure 1. By picking suitable values for γ we can make the 
Zimmerman’s operator behave as an Intersection operator (γ 
close to 0), a Union operator (γ close to 1) or a mean 
operator (0 < γ < 1). In addition, it allows us to associate a 
weight with each criteria which is often a useful feature.  

B. Particle Swarm Optimization (PSO) 
The particle swarm optimization algorithm was proposed 

by Kennedy and Eberhart in [12]. It is a population based 
search algorithm that is modeled on the social behavior of 
birds within a flock. A swarm consists of a set of individuals 
(referred to as particles) that are ‘flown’ through high 
dimensional search space. Each particle represents a 
possible solution to the optimization problem. The position 
of each particle is influenced by its own experience and the 
experience or knowledge, of its neighbors. Each particle 
tries to emulate the success of other particles.  

The PSO is driven by the social interaction between the 
particles. Individuals (particles) within the swarm learn from 
each other, and based on the knowledge obtained, move 
towards more ‘promising’ regions in the search space. The 
manner in which the particles interact is determined by the 
formation of neighborhoods. Different kinds of 
neighborhoods have been defined and studied [13][14]. In 
this paper, we use a star neighborhood. In the star-type 
neighborhood, each particle can communicate with every 
other particle. Hence, the best particle influences the 
movement of the entire swarm. Each particle tries to imitate 
the overall best particle and improves its own performance 
in the process. 

The exchange of social information between particles is 
modeled with a velocity equation. In our case, we use the 
global best (gbest) algorithm and the velocity equation can 
be given as follows: 

 
))t(xx())t(xx()1t(v)t(v kgbest2kpbest1kk

rrrrrr
−+−+−= ρρ

                                                                                         (2.2) 
where, ρ1 = r1c1; ρ2 = r2c2; 
           r1, r2 ~ U(0,1); c1 + c2 ≤ 4 
           t is the iteration number and k is the particle index. 

Here, ρ1 can be thought of as the weight a particle 
associates with its previous experience and the knowledge it 
has acquired thus far and ρ2 can be viewed as the weight a 
particle associates with the knowledge the entire swarm has 
acquired thus far. 

The position of a particle in the swarm is modified by 
adding velocity to its current position. The equation is given 
by: 

             )t(v)1t(x)t(x kkk
rrr

+−=                              (2.3)  

III. METHODOLOGY 
In this paper, we use Zimmermann’s multiplicative hybrid 

operator for aggregating information at every node in a 
decision making network. Given a set of training data (here, 
input criteria satisfaction and ultimate desired output), our 
goal is to use PSO to learn the weights and the mixing 
coefficients for each of the hybrid operators in the network.  
Thus, every particle contains all of the weights and mixing 
coefficients for all nodes. The sum of squared errors (SSE) 
is used as the fitness function. For a fixed network 
architecture and a training set { }),(),( 11 NN YaYaT

r
L

r
= , 

the algorithm that we used to train the multilayer network 
can be given as follows: 

 
1. Initialize a swarm of 50 particles (number of 

particles was selected arbitrarily). The number of 
parameters in each particle, i.e., the complexity of 
the search space, depends on the structure of the 
multilayer network. 

2. During initialization make sure that the restrictions 

0 ≤ γ ≤ 1 and are met. n
n

1i
i =∑

=
δ

3. Set iteration count t = 0. 
While (No convergence)  

4. Evaluate the fitness of each particle. 
4.1  Compute the outputs for the nodes in the 

middle layer using equation (2.1). The values 
of the leaf nodes act as inputs. 

4.2  Once we have the values for nodes in the 
middle layer we can view the final node as a 
hypothesis and the nodes in the middle layer as 
sub-hypothesis that need to be aggregated to 
get the support for the hypothesis. Again, we 
use equation (2.1) to fuse the various sources 
of information. 

4.3  On obtaining the final output Y’ we compute 
the Sum of Squared Errors (SSE) for each 
particle. SSE is computed over the entire data 
set and for any particle can be given as: 

∑ ′−=
=

N

1k

2
kk )YY(SSE  

N is the number of data points. 
Our goal is to minimize the SSE. 

5. Compare the performance of each particle to its 
personal best (pbest) performance so far: 
5.1 If fitness(current position) < fitness(pbest)  then 

5.1.1 fitness (pbest) = fitness (current position) 
5.1.2 position (pbest) = current position 

6. Compare the performance of each particle to global 
best particle (gbest) so far: 
6.1 If fitness(current position) < fitness(gbest)  then 

6.1.1 fitness (gbest) = fitness (current position) 
6.1.2 position (gbest) = current position 

7. Compute the new velocity for each particle in every 
dimension using equation (2.2). 
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8. Control the maximum speed with which a particle 
can move in any direction by setting a Vmax. This is 
done to ensure that the particles don’t simply fly 
over the ‘promising’ regions of the search space. 
(We set Vmax = 0.2). 

9. Update the position of each particle using equation 
(2.3). 

10. Make sure that the restrictions 0 ≤ γ ≤ 1 and 

 are met. n
n

1i
i =∑

=
δ

11. Increment the iteration count: t = t + 1. 
End While 
 
Convergence: We conclude that the algorithm has 
converged when any one of the following criteria are 
satisfied: 

(1.) The gbest solution does not change for a large 
number of iterations. 

(2.) The maximum iteration count tmax is reached. 
 
We use the following scheme to ensure that the restriction 

is met: n
n

1i
i =∑

=
δ

Let there be n criteria at a certain node that need to be 
aggregated. Then it is required that  

nn =+++ δδδ ...21
 

However, after updating the positions of the particles it is 
possible that we have:  

Δ=+++ nδδδ ...21
 

We take care of the restriction by multiplying both sides by 
n/Δ: 

Δ×
Δ

=×
Δ

++×
Δ

+×
Δ

nnnn
nδδδ ...21

 

n
n

i
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i
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Δ

 

IV. EXPERIMENTS AND RESULTS 
To test our method and evaluate its performance we ran 

several experiments using synthetically generated training 
and test data. We used several different topologies for the 
multilayer network and the results obtained from these 
experiments are given in Tables 1-8 under experiment 1.  

For experiments 2 and 3 we used the original data of 
Zimmermann et al. in [15] and the stool/vision data from 
[11]. Krishnapuram and Lee used these data sets as test 
cases for their hierarchical aggregation network [11]. In that 
approach, a variation of the back propagation algorithm was 
used to train the network. The results obtained from their 
method as well as ours are shown in Tables 9-12 for 
comparison purposes.  

 
Experiment 1. The general structure of the multilayer 

network employed for this experiment is shown in Figure 2. 

The structure was set by providing the number of nodes in 
the middle layer and the number of leaf nodes. No restriction 
was placed on these numbers except that they had to be 
greater than 0. Parameters for the multiplicative hybrid 
operators were randomly generated and assigned to each 
node.  Then, a table of 1000 input values was randomly 
generated and corresponding outputs were calculated from 
successive applications of equation (2.1). The training data 
consisted of 800 data points and the test data had 200 data 
points. The results obtained are shown in Tables 1-8. 

Node 1 Node n 

Final Node 

a1 an a1 an

δn δnδ1 δ1

δnδ1

γ γ

γ

 ….

 ….   ….. 

  …… 

…….…..…

 ……… 

Y 

Fig. 2.  General structure of the Multilayer Network used for experiment 1. 
 
    In Tables (1, 3, 5, 7) the values shown are representative 
samples of the training and test data sets. But the sum of 
squared errors (SSE) shown was that obtained over the 
entire training data set.  From the tables it is clear that the 
outputs obtained after training (Y’) are quite close to the 
target output (Y). The low SSE in training and test cases 
further establishes that this is true for the entire data. 

 In Tables (2, 4, 6, 8) we display the randomly generated 
parameters that we installed in each node for this experiment 
along with the recovered values of these parameters after 
training by PSO. As is evident from the results, the learned 
parameters are very close to the actual parameters. Table 8 
provides an interesting inconsistency in the results. For node 
1, the values that the PSO learned for δ3, and δ4 correspond 
to the values for δ4, and δ3 in the actual data. Also, 
interestingly the learned γ for that node dictates that the node 
act as a union-like operator whereas while generating the 
data the node acted as intersection-like operator, and yet the 
SSE on both training and test data is very low. 

 
Experiment 2. For this experiment we use the original 

data that was used by Zimmermann and Zysno in [15]. In 
this data the aggregation of two criteria is carried out using a 
single node. Hence there are only three parameters to be 
learned namely (δ1, δ2 and γ) and there are 24 data points 
available. However the nature of the data is such that it is 
not possible to obtain a perfect match between the actual and 
target outputs. Thus the question is how close can we get to 
the target outputs. The results obtained using our method are 
placed side by side with the results obtained by 
Krishnapuram and Lee [11] (denoted as K-L method) in 
Tables 11 and 12. As we can see the results are almost 
identical.  
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Experiment 3. For this experiment we used the 
stool/vision data that Krishnapuram and Lee had used as a 
test case for their hierarchical aggregation network. The 
structure of the network is shown in Figure 3.  
    The four nodes going into the ‘legs’ criteria represent the 
four legs of a stool. The top of a stool can be either circular 
or square. Hence the two nodes going into the ‘top’ 
aggregation are actually two hypotheses, one being that the 
top of the stool is a parallelogram and the other being the top 
is an ellipse. The evidence for the stool is obtained by 
aggregating the ‘legs’ and ‘top’ criteria. Similarly the 
evidence for the ‘legs’ criterion is obtained by aggregating 
the evidence for the four separate legs and the evidence for 
the top is obtained by the presence of either a parallelogram 
or an ellipse.  

    Fig. 3.  Structure of the Multilayer Network for stool/vision data used for 
experiment 3. 
 
    Now based on intuition we can say, probably the best way 
to aggregate this data would be to model the ‘legs’ node as a 
mean operator, the ‘top’ node as a union operator, and the 
stool node as mean operator. This is because, based on the 
viewing perspective all the four legs might not be visible to 
the camera. Hence, we wish to model ‘at least a few are 
visible’ for the ‘legs’ node which can be effectively done by 
using a mean operator. The ‘top’ node can either be a 
parallelogram or an ellipse, therefore we need an ‘OR’ kind 
of operator i.e. a union operator. Now, if we choose the stool 
node to operate as an intersection operator then the support 
that we would get for a stool would be low if the legs were 
not fully seen in a view. Hence a mean connective makes a 
more sensible choice.  These were the assumptions in [11].  
However, the small amount of simulated data in Table 9 
may or may not support those hypotheses. 

We ran this experiment and made a few interesting 
observations. 

(1.) If we look at the parameters that were learned by 
the PSO in Table 10 we find that for the ‘top’ node 
the value for δ1 is 0 whereas the value for δ2 is 
almost 2. Since the weight associated with it is 0, 
we can conclude that the criteria a1 plays no role in 
the decision making process and can be totally 
neglected for that node. If we look at the data itself 
in Table 9, we find that the value for this criterion 
(a1) always remains constant at 0.1. Hence the 

output for the ‘top’ node is solely dictated by 
whether a2 is high or low. Also, since the criterion 
a1 corresponds to a parallelogram we can also 
conclude that none of the stools that were seen had 
a square or a rectangular top.  

(2.) Also from Table 10, we can see that contrary to our 
intuition the ‘legs’ node acts as a union operator 
instead of a mean operator. Also instead of 
associating equal weights with all the four legs the 
parameters that the PSO learned associate more 
weight with leg 1.  

(3.) Also the γ that was found for the stool node using 
Krishnapuram and Lee’s method was 0.728, which 
suggests a union-mean like operator. Whereas, the 
γ found by our method for that node is 0.365 which 
suggests an intersection-mean like operator.  

From the above observations as well as the results in 
Tables 7 and 8 we get the impression that may be the 
parameters that can be recovered for a multilayer network 
are not unique and if we let the data drive the optimization 
process then the results obtained by the learning process 
may be very different than what we might expect based on 
our intuition. In other words, it leads us into believing that 
there may be multiple ways for arriving at the same 
conclusion. 
 

legs top 

Stool 

a2 a3 a1 a2

δ3 δ2δ2 δ1

δ2δ1

γ γ

γ

Y 

δ1 δ4

a4a1

 
TABLE 1. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 

WHERE  EACH NODE HAS 2 INPUTS

Sample of Training Data 
Node 1 Node 2 

a1 a2 a1 a2 
Y Y' SSE 

0.425 0.590 0.655 0.861 0.364 0.363 
0.768 0.452 0.629 0.668 0.209 0.211 
0.532 0.053 0.521 0.548 0.018 0.018 
0.235 0.868 0.722 0.892 0.490 0.492 
0.673 0.925 0.428 0.829 0.542 0.541 

0.00175 

Sample of Test Data 
0.467 0.538 0.518 0.990 0.423 0.420 
0.771 0.678 0.617 0.999 0.621 0.622 
0.810 0.344 0.392 0.109 0.005 0.005 
0.997 0.644 0.235 0.630 0.242 0.244 
0.272 0.032 0.821 0.528 0.009 0.008 

0.00052 

 
 

TABLE 2. THE ACTUAL AND RECOVERED PARAMETERS 
CORRESPONDING TO TABLE 1. 
Parameter Actual Recovered 

δ1 0.440 0.446 
δ2 1.559 1.553 

Node 1 

γ 0.255 0.341 
δ1 0.161 0.163 
δ2 1.838 1.836 Node 2 
γ 0.180 0.198 
δ1 0.786 0.816 
δ2 1.213 1.183 Final 

Node 
γ 0.0846 0.028 
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TABLE 3. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE 
THE MIDDLE LAYER HAS 3 NODES, EACH WITH 2 LEAF NODES

Sample of Training Data 
Node 1 Node 2 Node 3 

a1 a2 a1 a2 a1 a2 
Y Y' SSE 

0.639 0.497 0.772 0.864 0.074 0.819 0.812 0.810 
0.069 0.985 0.341 0.527 0.465 0.980 0.708 0.706 
0.618 0.240 0.999 0.344 0.274 0.785 0.531 0.528 
0.325 0.189 0.962 0.829 0.842 0.094 0.488 0.489 
0.820 0.004 0.537 0.581 0.007 0.940 0.463 0.459 

0.007383 

Sample of Test Data 
0.428 0.463 0.616 0.456 0.902 0.791 0.621 0.621 
0.280 0.669 0.344 0.738 0.230 0.476 0.647 0.642 
0.667 0.625 0.045 0.163 0.905 0.061 0.281 0.284 
0.057 0.847 0.657 0.218 0.941 0.720 0.459 0.458 
0.710 0.457 0.158 0.717 0.221 0.424 0.625 0.624 

0.002147 

 
TABLE 5. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE 

THE MIDDLE LAYER HAS 2 NODES, EACH WITH 3 LEAF NODES

Sample of Training Data 
Node 1 Node 2 

a1 a2 a3 a1 a2 a3 
Y Y' SSE 

0.709 0.897 0.832 0.223 0.990 0.228 0.637 0.638 
0.901 0.467 0.771 0.492 0.470 0.599 0.668 0.668 
0.392 0.794 0.713 0.402 0.791 0.618 0.374 0.374 
0.325 0.643 0.955 0.497 0.272 0.729 0.329 0.328 
0.538 0.787 0.884 0.453 0.169 0.339 0.400 0.398 

0.000693 

Sample of Test Data 
0.586 0.992 0.687 0.945 0.704 0.361 0.568 0.567 
0.963 0.245 0.999 0.487 0.636 0.652 0.685 0.685 
0.653 0.290 0.051 0.576 0.311 0.831 0.263 0.263 
0.859 0.340 0.137 0.849 0.292 0.290 0.401 0.401 
0.638 0.121 0.231 0.363 0.280 0.593 0.266 0.266 

0.000195 

 
TABLE 7 SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE THE MIDDLE LAYER 
HAS 2 NODES, ONE OF THEM HAS 4 LEAF NODES AND THE OTHER HAS 3 LEAF NODES.

Sample of Training Data 
Node 1 Node 2 

a1 a2 a3 a4 a1 a2 a3 
Y Y' SSE 

0.981 0.375 0.713 0.239 0.496 0.742 0.375 0.514 0.521 
0.237 0.420 0.114 0.494 0.462 0.430 0.784 0.282 0.280 
0.906 0.702 0.665 0.863 0.612 0.961 0.408 0.745 0.743 
0.066 0.402 0.070 0.021 0.119 0.731 0.437 0.226 0.224 
0.847 0.182 0.674 0.408 0.865 0.938 0.177 0.801 0.808 

0.0311 

Sample of Test Data 
0.942 0.523 0.371 0.356 0.326 0.862 0.347 0.488 0.488 
0.402 0.003 0.273 0.880 0.074 0.469 0.696 0.104 0.103 
0.391 0.628 0.822 0.374 0.846 0.201 0.331 0.247 0.244 
0.265 0.609 0.044 0.276 0.019 0.221 0.820 0.017 0.017 
0.657 0.712 0.154 0.906 0.892 0.139 0.308 0.200 0.190 

0.0095 

 
TABLE 9. THE  OUTPUTS FOR STOOL/VISION DATA USING 
OUR METHOD AND KRISHNAPURAM AND  LEE’S METHOD. 

Node 1 Node 2 
a1 a2 a3 a4 a1 a2 

Target 
(Y) 

Our Method 
(Y') 

K-L Method
(Y') SSE 

0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.081 0.058 
0.1 0.1 0.1 0.1 0.1 0.9 0.3 0.274 0.267 
0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.127 0.109 
0.1 0.1 0.1 0.9 0.1 0.9 0.4 0.388 0.396 
0.1 0.1 0.9 0.9 0.1 0.1 0.2 0.181 0.173 
0.1 0.1 0.9 0.9 0.1 0.9 0.5 0.508 0.499 
0.1 0.9 0.9 0.9 0.1 0.1 0.3 0.241 0.29 
0.1 0.9 0.9 0.9 0.1 0.9 0.6 0.63 0.638 
0.9 0.9 0.9 0.9 0.1 0.1 0.4 0.423 0.516 
0.9 0.9 0.9 0.9 0.1 0.9 0.99 0.972 0.99 

Our Method
= 0.0125 

K-L Method
= 0.073 

 

TABLE 4. THE ACTUAL AND RECOVERED PARAMETERS   
                          CORRESPONDING TO TABLE 3. 

Parameter Actual Recovered 
δ1 0.863 0.887 
δ2 1.136 1.112 

Node 1 

γ 0.789 0.791 
δ1 0.219 0.213 
δ2 1.780 1.786 Node 2 
γ 0.263 0.208 
δ1 0.189 0.202 
δ2 1.810 1.797 Node 3 
γ 0.067 0.082 
δ1 1.096 1.094 
δ2 1.255 1.235 
δ3 0.648 0.669 

Final 
Node 

γ 0.856 0.861 
 
 
TABLE 6. THE ACTUAL AND RECOVERED PARAMETERS   
                          CORRESPONDING TO TABLE 5. 

Parameter Actual Recovered 
δ1 1.971 1.974 
δ2 0.462 0.461 
δ3 0.565 0.563 

Node 1 

γ 0.325 0.270 
δ1 1.028 1.019 
δ2 0.613 0.618 
δ3 1.357 1.362 

Node 2 

γ 0.966 0.966 
δ1 0.994 0.974 
δ2 1.005 1.025 Final 

Node 
γ 0.403 0.433 

 
 
TABLE 8. THE ACTUAL AND RECOVERED PARAMETERS   
                          CORRESPONDING TO TABLE 7. 

Parameter Actual Recovered 
δ1 0.544 0.549 
δ2 0.759 0.877 
δ3 0.998 1.694 
δ4 1.697 0.879 

Node 1 

γ 0.343 0.801 
δ1 1.132 1.127 
δ2 1.769 1.774 
δ3 0.098 0.098 

Node 2 

γ 0.788 0.758 
δ1 0.022 0.067 
δ2 1.977 1.932 Final 

Node 
γ 0.067 0.162 

 
TABLE 10. THE  PARAMETERS RECOVERED USING OUR 
METHOD AND KRISHNAPURAM AND LEE’S METHOD FOR 

STOOL/VISION DATA. 

Parameter Recovered 
Our Method 

Recovered 
K-L Method 

δ1 2.999 1 
δ2 0.548 1 
δ3 0.285 1 
δ4 0.166 1 

‘legs’ 
Node 

γ 0.925 0.692 
δ1 0.000 Not reported 
δ2 1.999 Not reported ‘top’ 

Node 
γ 1 0.885 
δ1 1.210 0.998 
δ2 0.789 1.002 Stool 

Node 
γ 0.365 0.728 
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TABLE 11. THE  OUTPUTS FOR ZIMMERMANN DATA USING 
OUR METHOD AND KRISHNAPURAM AND LEE’S METHOD. 

Zimmermann Data 
Node 1 

a1 a2 

Target 
Output 

(Y) 

Our  
Method 

(Y') 

K-L  
Method 

(Y') 
0.426 0.241 0.215 0.268 0.269 
0.352 0.662 0.427 0.494 0.494 
0.109 0.352 0.221 0.170 0.171 
0.63 0.052 0.212 0.162 0.163 
0.484 0.496 0.486 0.466 0.466 

0 0 0 0 0 
0.27 0.403 0.274 0.294 0.3 
0.156 0.13 0.119 0.091 0.091 
0.79 0.284 0.407 0.460 0.462 
0.725 0.193 0.261 0.352 0.354 

1 1 1 1 1 
0.33 0.912 0.632 0.621 0.621 
0.949 0.02 0.247 0.156 0.157 
0.202 0.826 0.5 0.474 0.474 
0.744 0.551 0.555 0.632 0.633 
0.572 0.691 0.585 0.635 0.635 
0.041 0.975 0.355 0.305 0.304 
0.534 0.873 0.661 0.724 0.724 
0.674 0.587 0.57 0.621 0.622 
0.44 0.45 0.418 0.413 0.433 
0.909 0.75 0.789 0.833 0.834 
0.856 0.091 0.303 0.283 0.285 
0.974 0.164 0.515 0.423 0.425 
0.073 0.788 0.324 0.310 0.309 

SSE Our Method = 
 0.0628 

SSE K-L Method = 
0.064 

 
TABLE 12. THE  PARAMETERS RECOVERED USING 

OUR METHOD AND KRISHNAPURAM AND LEE’S METHOD 
FOR ZIMMERMANN DATA. 

Parameter Recovered 
Our Method 

Recovered 
K-L Method 

δ1 0.886 0.889 
δ2 1.114 1.111 

Node 
1 

γ 0.587 0.589 
 

V. CONCLUSIONS 
In this paper we proposed a novel method for learning the 

fuzzy connectives of a multilayer network using particle 
swarms. The method proposed by us provides several 
advantages: 

1) Since the γ model is used there is no switching 
required between union, intersection and mean 
operators.  

2) The particle swarms are driven by simple velocity 
and position equations hence there is no complex 
differentiation involved.  

3) It provides a simpler and better guided heuristic for 
learning the fuzzy connectives than Krishnapuram 
and Lee’s hierarchical aggregation network that used 
a variation of the back propagation algorithm by 
overcoming all the drawbacks, namely:  

a. The connective type could change during the 
iterative process (they too used the γ model 
to overcome this drawback). 

b. Since the method was based on back 
propagation algorithm with multiplicative 
hybrid operator activation functions, it 
involved the computation of complex 
derivatives.  

c. There was a high convergence time. 
d. The aggregation functions were highly 

nonlinear and sometimes involved clipping. 
 
Also, we showed that based on the data it is possible to 

find multiple ways of arriving at the same output from given 
inputs. Hence the parameters of a multilayer network are not 
always unique. Sometimes the solution found by the 
optimization process may be totally contrary to our intuition 
and more often than not, such solutions provide us with a 
better performance than what we initially hoped. 
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