

Learning the Fuzzy Connectives of a Multilayer Network Using
Particle Swarm Optimization

Gaurav Parekh, Student Member, IEEE, and James M. Keller, Fellow, IEEE

Abstract—Fuzzy connectives provide a simple and yet a very
flexible way to carry out multicriteria aggregation. Often in
complex problems, the aggregation needs to be carried out at
different hierarchical levels. Multilayer networks provide a
natural and intuitive way for modeling such hierarchical
decision making systems. In this paper we propose a novel,
guided heuristic for learning the parameters of a multilayer
network using particle swarm optimization. We also investigate
the possibility of having multiple ways of aggregating the same
information based on training data. Experiments are run by
selecting several different topologies for the multilayer
network. Also, a comparison is made between our method and
another approach that uses back propagation for training.

Keywords-Fuzzy connectives, multicriteria aggregation,
particle swarm optimization, decision making.

I. INTRODUCTION
UMANS are good at making decisions because we
inherently learn how to associate a degree of

importance with each criterion and combine them in non
linear ways. But to get a computer to learn this task is quite
a complex problem. Aggregating multiple criteria for the
purpose of decision making has been a topic of great interest
for several researchers, since it has applications in various
fields including engineering, finance, medicine, etc. Several
fuzzy connectives have been suggested for multicriteria
aggregation [1]. The choice of the connective used is often
application dependent. Generally, the connectives available
are the union, intersection and mean operators. Besides
these, other operators have also been suggested in
literature[2][3]. These include the multiplicative hybrid
operator (γ model) by Zimmermann and Zysno [4] and the
OWA operator by Yager [5]. The Zimmermann’s operators
have been further studied in [6].

For simple decision making problems, information can be
fused using one level fuzzy connectives. However for more
complex problems it becomes necessary to carry out this
information fusion at different hierarchical levels. We can
find examples of several such problems in literature [7][8].
Multilayer networks provide a natural and intuitive way for
representing such hierarchical levels.

G. Parekh is with the Electrical and Computer Engineering Department,

University of Missouri, Columbia, MO 65211. (e-mail:
gmppx5@mizzou.edu; phone: 480-627-9802)

J. Keller is with the Electrical and Computer Engineering Department,
University of Missouri, Columbia, MO 65211. (e-mail:
kellerj@missouri.edu)

There are several methods in literature for representing
and aggregating information through such networks. These
methods can be based on probability theory [9], Dempster-
Shafer belief theory [7][10] or on fuzzy set theory [11]. In
[11], Krishnapuram and Lee proposed a training algorithm
to train their ‘hierarchical aggregation network’. This
algorithm was a variation of the back propagation algorithm
and was used to arrive at the aggregation functions.

In this paper we propose a swarm intelligence approach
for learning the parameters of a multilayer network
containing hybrid operator activation functions. We also
substantiate the possibility that alternative linguistic
interpretations can result when training a network with
input/output pairs only.

Sec. II gives some background information about the
techniques that we have used in this paper. In Sec. III we
explain our approach and the algorithm associated with it.
Sec. IV presents the experimental results and a comparison
with Krishnapuram and Lee’s results [11]. Finally, in Sec.
V, we summarize and discuss our findings and the
advantages that our method has to offer.

II. BACKGROUND

A. Zimmermann’s multiplicative hybrid operator
In [4], Zimmermann and Zysno proposed a hybrid

operator for multicriteria aggregation that was modeled after
the compensatory nature of human aggregation. This hybrid
operator (γ model) can be given by the following equation:

 (2.1) γδγδ))a1(1())a((Y
n

1i
ii

1n

1i
ii ∏ −−∏=

=

−

=
where, ai ∈[0,1]are the criteria to be aggregated,
0 ≤ γ ≤ 1 is known as the mixing coefficient and it controls
the degree of compensation between the union and

intersection parts of the operator, and where δn
n

1i
i =∑

=
δ i is

the weight associated with each criteria ai and n is the
number of criteria being aggregated

 0 a ^ b a v b 1

Fig. 1. Different values of γ dictate the operator being selected. The line
represents values of γ going from 0 to 1.

H

Intersection Mean Union

591

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

 The advantage of using this operator is that it can be
operated over the entire range [0, 1]. The relation between γ
and the working of the operator can be explained using
Figure 1. By picking suitable values for γ we can make the
Zimmerman’s operator behave as an Intersection operator (γ
close to 0), a Union operator (γ close to 1) or a mean
operator (0 < γ < 1). In addition, it allows us to associate a
weight with each criteria which is often a useful feature.

B. Particle Swarm Optimization (PSO)
The particle swarm optimization algorithm was proposed

by Kennedy and Eberhart in [12]. It is a population based
search algorithm that is modeled on the social behavior of
birds within a flock. A swarm consists of a set of individuals
(referred to as particles) that are ‘flown’ through high
dimensional search space. Each particle represents a
possible solution to the optimization problem. The position
of each particle is influenced by its own experience and the
experience or knowledge, of its neighbors. Each particle
tries to emulate the success of other particles.

The PSO is driven by the social interaction between the
particles. Individuals (particles) within the swarm learn from
each other, and based on the knowledge obtained, move
towards more ‘promising’ regions in the search space. The
manner in which the particles interact is determined by the
formation of neighborhoods. Different kinds of
neighborhoods have been defined and studied [13][14]. In
this paper, we use a star neighborhood. In the star-type
neighborhood, each particle can communicate with every
other particle. Hence, the best particle influences the
movement of the entire swarm. Each particle tries to imitate
the overall best particle and improves its own performance
in the process.

The exchange of social information between particles is
modeled with a velocity equation. In our case, we use the
global best (gbest) algorithm and the velocity equation can
be given as follows:

))t(xx())t(xx()1t(v)t(v kgbest2kpbest1kk

rrrrrr
−+−+−= ρρ

 (2.2)
where, ρ1 = r1c1; ρ2 = r2c2;
 r1, r2 ~ U(0,1); c1 + c2 ≤ 4
 t is the iteration number and k is the particle index.

Here, ρ1 can be thought of as the weight a particle
associates with its previous experience and the knowledge it
has acquired thus far and ρ2 can be viewed as the weight a
particle associates with the knowledge the entire swarm has
acquired thus far.

The position of a particle in the swarm is modified by
adding velocity to its current position. The equation is given
by:

)t(v)1t(x)t(x kkk
rrr

+−= (2.3)

III. METHODOLOGY
In this paper, we use Zimmermann’s multiplicative hybrid

operator for aggregating information at every node in a
decision making network. Given a set of training data (here,
input criteria satisfaction and ultimate desired output), our
goal is to use PSO to learn the weights and the mixing
coefficients for each of the hybrid operators in the network.
Thus, every particle contains all of the weights and mixing
coefficients for all nodes. The sum of squared errors (SSE)
is used as the fitness function. For a fixed network
architecture and a training set { }),(),(11 NN YaYaT

r
L

r
= ,

the algorithm that we used to train the multilayer network
can be given as follows:

1. Initialize a swarm of 50 particles (number of

particles was selected arbitrarily). The number of
parameters in each particle, i.e., the complexity of
the search space, depends on the structure of the
multilayer network.

2. During initialization make sure that the restrictions

0 ≤ γ ≤ 1 and are met. n
n

1i
i =∑

=
δ

3. Set iteration count t = 0.
While (No convergence)

4. Evaluate the fitness of each particle.
4.1 Compute the outputs for the nodes in the

middle layer using equation (2.1). The values
of the leaf nodes act as inputs.

4.2 Once we have the values for nodes in the
middle layer we can view the final node as a
hypothesis and the nodes in the middle layer as
sub-hypothesis that need to be aggregated to
get the support for the hypothesis. Again, we
use equation (2.1) to fuse the various sources
of information.

4.3 On obtaining the final output Y’ we compute
the Sum of Squared Errors (SSE) for each
particle. SSE is computed over the entire data
set and for any particle can be given as:

∑ ′−=
=

N

1k

2
kk)YY(SSE

N is the number of data points.
Our goal is to minimize the SSE.

5. Compare the performance of each particle to its
personal best (pbest) performance so far:
5.1 If fitness(current position) < fitness(pbest) then

5.1.1 fitness (pbest) = fitness (current position)
5.1.2 position (pbest) = current position

6. Compare the performance of each particle to global
best particle (gbest) so far:
6.1 If fitness(current position) < fitness(gbest) then

6.1.1 fitness (gbest) = fitness (current position)
6.1.2 position (gbest) = current position

7. Compute the new velocity for each particle in every
dimension using equation (2.2).

592

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

8. Control the maximum speed with which a particle
can move in any direction by setting a Vmax. This is
done to ensure that the particles don’t simply fly
over the ‘promising’ regions of the search space.
(We set Vmax = 0.2).

9. Update the position of each particle using equation
(2.3).

10. Make sure that the restrictions 0 ≤ γ ≤ 1 and

 are met. n
n

1i
i =∑

=
δ

11. Increment the iteration count: t = t + 1.
End While

Convergence: We conclude that the algorithm has
converged when any one of the following criteria are
satisfied:

(1.) The gbest solution does not change for a large
number of iterations.

(2.) The maximum iteration count tmax is reached.

We use the following scheme to ensure that the restriction

is met: n
n

1i
i =∑

=
δ

Let there be n criteria at a certain node that need to be
aggregated. Then it is required that

nn =+++ δδδ ...21

However, after updating the positions of the particles it is
possible that we have:

Δ=+++ nδδδ ...21

We take care of the restriction by multiplying both sides by
n/Δ:

Δ×
Δ

=×
Δ

++×
Δ

+×
Δ

nnnn
nδδδ ...21

n
n

i
i =∑∴

=1
'δ

where =
iδ ′

i
n δ×
Δ

IV. EXPERIMENTS AND RESULTS
To test our method and evaluate its performance we ran

several experiments using synthetically generated training
and test data. We used several different topologies for the
multilayer network and the results obtained from these
experiments are given in Tables 1-8 under experiment 1.

For experiments 2 and 3 we used the original data of
Zimmermann et al. in [15] and the stool/vision data from
[11]. Krishnapuram and Lee used these data sets as test
cases for their hierarchical aggregation network [11]. In that
approach, a variation of the back propagation algorithm was
used to train the network. The results obtained from their
method as well as ours are shown in Tables 9-12 for
comparison purposes.

Experiment 1. The general structure of the multilayer

network employed for this experiment is shown in Figure 2.

The structure was set by providing the number of nodes in
the middle layer and the number of leaf nodes. No restriction
was placed on these numbers except that they had to be
greater than 0. Parameters for the multiplicative hybrid
operators were randomly generated and assigned to each
node. Then, a table of 1000 input values was randomly
generated and corresponding outputs were calculated from
successive applications of equation (2.1). The training data
consisted of 800 data points and the test data had 200 data
points. The results obtained are shown in Tables 1-8.

Node 1 Node n

Final Node

a1 an a1 an

δn δnδ1 δ1

δnδ1

γ γ

γ

 ….

 …. …..

 ……

…….…..…

 ………

Y

Fig. 2. General structure of the Multilayer Network used for experiment 1.

 In Tables (1, 3, 5, 7) the values shown are representative
samples of the training and test data sets. But the sum of
squared errors (SSE) shown was that obtained over the
entire training data set. From the tables it is clear that the
outputs obtained after training (Y’) are quite close to the
target output (Y). The low SSE in training and test cases
further establishes that this is true for the entire data.

 In Tables (2, 4, 6, 8) we display the randomly generated
parameters that we installed in each node for this experiment
along with the recovered values of these parameters after
training by PSO. As is evident from the results, the learned
parameters are very close to the actual parameters. Table 8
provides an interesting inconsistency in the results. For node
1, the values that the PSO learned for δ3, and δ4 correspond
to the values for δ4, and δ3 in the actual data. Also,
interestingly the learned γ for that node dictates that the node
act as a union-like operator whereas while generating the
data the node acted as intersection-like operator, and yet the
SSE on both training and test data is very low.

Experiment 2. For this experiment we use the original

data that was used by Zimmermann and Zysno in [15]. In
this data the aggregation of two criteria is carried out using a
single node. Hence there are only three parameters to be
learned namely (δ1, δ2 and γ) and there are 24 data points
available. However the nature of the data is such that it is
not possible to obtain a perfect match between the actual and
target outputs. Thus the question is how close can we get to
the target outputs. The results obtained using our method are
placed side by side with the results obtained by
Krishnapuram and Lee [11] (denoted as K-L method) in
Tables 11 and 12. As we can see the results are almost
identical.

593

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

Experiment 3. For this experiment we used the
stool/vision data that Krishnapuram and Lee had used as a
test case for their hierarchical aggregation network. The
structure of the network is shown in Figure 3.
 The four nodes going into the ‘legs’ criteria represent the
four legs of a stool. The top of a stool can be either circular
or square. Hence the two nodes going into the ‘top’
aggregation are actually two hypotheses, one being that the
top of the stool is a parallelogram and the other being the top
is an ellipse. The evidence for the stool is obtained by
aggregating the ‘legs’ and ‘top’ criteria. Similarly the
evidence for the ‘legs’ criterion is obtained by aggregating
the evidence for the four separate legs and the evidence for
the top is obtained by the presence of either a parallelogram
or an ellipse.

 Fig. 3. Structure of the Multilayer Network for stool/vision data used for
experiment 3.

 Now based on intuition we can say, probably the best way
to aggregate this data would be to model the ‘legs’ node as a
mean operator, the ‘top’ node as a union operator, and the
stool node as mean operator. This is because, based on the
viewing perspective all the four legs might not be visible to
the camera. Hence, we wish to model ‘at least a few are
visible’ for the ‘legs’ node which can be effectively done by
using a mean operator. The ‘top’ node can either be a
parallelogram or an ellipse, therefore we need an ‘OR’ kind
of operator i.e. a union operator. Now, if we choose the stool
node to operate as an intersection operator then the support
that we would get for a stool would be low if the legs were
not fully seen in a view. Hence a mean connective makes a
more sensible choice. These were the assumptions in [11].
However, the small amount of simulated data in Table 9
may or may not support those hypotheses.

We ran this experiment and made a few interesting
observations.

(1.) If we look at the parameters that were learned by
the PSO in Table 10 we find that for the ‘top’ node
the value for δ1 is 0 whereas the value for δ2 is
almost 2. Since the weight associated with it is 0,
we can conclude that the criteria a1 plays no role in
the decision making process and can be totally
neglected for that node. If we look at the data itself
in Table 9, we find that the value for this criterion
(a1) always remains constant at 0.1. Hence the

output for the ‘top’ node is solely dictated by
whether a2 is high or low. Also, since the criterion
a1 corresponds to a parallelogram we can also
conclude that none of the stools that were seen had
a square or a rectangular top.

(2.) Also from Table 10, we can see that contrary to our
intuition the ‘legs’ node acts as a union operator
instead of a mean operator. Also instead of
associating equal weights with all the four legs the
parameters that the PSO learned associate more
weight with leg 1.

(3.) Also the γ that was found for the stool node using
Krishnapuram and Lee’s method was 0.728, which
suggests a union-mean like operator. Whereas, the
γ found by our method for that node is 0.365 which
suggests an intersection-mean like operator.

From the above observations as well as the results in
Tables 7 and 8 we get the impression that may be the
parameters that can be recovered for a multilayer network
are not unique and if we let the data drive the optimization
process then the results obtained by the learning process
may be very different than what we might expect based on
our intuition. In other words, it leads us into believing that
there may be multiple ways for arriving at the same
conclusion.

legs top

Stool

a2 a3 a1 a2

δ3 δ2δ2 δ1

δ2δ1

γ γ

γ

Y

δ1 δ4

a4a1

TABLE 1. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1

WHERE EACH NODE HAS 2 INPUTS

Sample of Training Data
Node 1 Node 2

a1 a2 a1 a2
Y Y' SSE

0.425 0.590 0.655 0.861 0.364 0.363
0.768 0.452 0.629 0.668 0.209 0.211
0.532 0.053 0.521 0.548 0.018 0.018
0.235 0.868 0.722 0.892 0.490 0.492
0.673 0.925 0.428 0.829 0.542 0.541

0.00175

Sample of Test Data
0.467 0.538 0.518 0.990 0.423 0.420
0.771 0.678 0.617 0.999 0.621 0.622
0.810 0.344 0.392 0.109 0.005 0.005
0.997 0.644 0.235 0.630 0.242 0.244
0.272 0.032 0.821 0.528 0.009 0.008

0.00052

TABLE 2. THE ACTUAL AND RECOVERED PARAMETERS
CORRESPONDING TO TABLE 1.
Parameter Actual Recovered

δ1 0.440 0.446
δ2 1.559 1.553

Node 1

γ 0.255 0.341
δ1 0.161 0.163
δ2 1.838 1.836 Node 2
γ 0.180 0.198
δ1 0.786 0.816
δ2 1.213 1.183 Final

Node
γ 0.0846 0.028

594

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE 3. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE
THE MIDDLE LAYER HAS 3 NODES, EACH WITH 2 LEAF NODES

Sample of Training Data
Node 1 Node 2 Node 3

a1 a2 a1 a2 a1 a2
Y Y' SSE

0.639 0.497 0.772 0.864 0.074 0.819 0.812 0.810
0.069 0.985 0.341 0.527 0.465 0.980 0.708 0.706
0.618 0.240 0.999 0.344 0.274 0.785 0.531 0.528
0.325 0.189 0.962 0.829 0.842 0.094 0.488 0.489
0.820 0.004 0.537 0.581 0.007 0.940 0.463 0.459

0.007383

Sample of Test Data
0.428 0.463 0.616 0.456 0.902 0.791 0.621 0.621
0.280 0.669 0.344 0.738 0.230 0.476 0.647 0.642
0.667 0.625 0.045 0.163 0.905 0.061 0.281 0.284
0.057 0.847 0.657 0.218 0.941 0.720 0.459 0.458
0.710 0.457 0.158 0.717 0.221 0.424 0.625 0.624

0.002147

TABLE 5. SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE

THE MIDDLE LAYER HAS 2 NODES, EACH WITH 3 LEAF NODES

Sample of Training Data
Node 1 Node 2

a1 a2 a3 a1 a2 a3
Y Y' SSE

0.709 0.897 0.832 0.223 0.990 0.228 0.637 0.638
0.901 0.467 0.771 0.492 0.470 0.599 0.668 0.668
0.392 0.794 0.713 0.402 0.791 0.618 0.374 0.374
0.325 0.643 0.955 0.497 0.272 0.729 0.329 0.328
0.538 0.787 0.884 0.453 0.169 0.339 0.400 0.398

0.000693

Sample of Test Data
0.586 0.992 0.687 0.945 0.704 0.361 0.568 0.567
0.963 0.245 0.999 0.487 0.636 0.652 0.685 0.685
0.653 0.290 0.051 0.576 0.311 0.831 0.263 0.263
0.859 0.340 0.137 0.849 0.292 0.290 0.401 0.401
0.638 0.121 0.231 0.363 0.280 0.593 0.266 0.266

0.000195

TABLE 7 SAMPLE OF INPUT/OUTPUT DATA FOR EXPERIMENT 1 WHERE THE MIDDLE LAYER
HAS 2 NODES, ONE OF THEM HAS 4 LEAF NODES AND THE OTHER HAS 3 LEAF NODES.

Sample of Training Data
Node 1 Node 2

a1 a2 a3 a4 a1 a2 a3
Y Y' SSE

0.981 0.375 0.713 0.239 0.496 0.742 0.375 0.514 0.521
0.237 0.420 0.114 0.494 0.462 0.430 0.784 0.282 0.280
0.906 0.702 0.665 0.863 0.612 0.961 0.408 0.745 0.743
0.066 0.402 0.070 0.021 0.119 0.731 0.437 0.226 0.224
0.847 0.182 0.674 0.408 0.865 0.938 0.177 0.801 0.808

0.0311

Sample of Test Data
0.942 0.523 0.371 0.356 0.326 0.862 0.347 0.488 0.488
0.402 0.003 0.273 0.880 0.074 0.469 0.696 0.104 0.103
0.391 0.628 0.822 0.374 0.846 0.201 0.331 0.247 0.244
0.265 0.609 0.044 0.276 0.019 0.221 0.820 0.017 0.017
0.657 0.712 0.154 0.906 0.892 0.139 0.308 0.200 0.190

0.0095

TABLE 9. THE OUTPUTS FOR STOOL/VISION DATA USING
OUR METHOD AND KRISHNAPURAM AND LEE’S METHOD.

Node 1 Node 2
a1 a2 a3 a4 a1 a2

Target
(Y)

Our Method
(Y')

K-L Method
(Y') SSE

0.1 0.1 0.1 0.1 0.1 0.1 0.01 0.081 0.058
0.1 0.1 0.1 0.1 0.1 0.9 0.3 0.274 0.267
0.1 0.1 0.1 0.9 0.1 0.1 0.1 0.127 0.109
0.1 0.1 0.1 0.9 0.1 0.9 0.4 0.388 0.396
0.1 0.1 0.9 0.9 0.1 0.1 0.2 0.181 0.173
0.1 0.1 0.9 0.9 0.1 0.9 0.5 0.508 0.499
0.1 0.9 0.9 0.9 0.1 0.1 0.3 0.241 0.29
0.1 0.9 0.9 0.9 0.1 0.9 0.6 0.63 0.638
0.9 0.9 0.9 0.9 0.1 0.1 0.4 0.423 0.516
0.9 0.9 0.9 0.9 0.1 0.9 0.99 0.972 0.99

Our Method
= 0.0125

K-L Method
= 0.073

TABLE 4. THE ACTUAL AND RECOVERED PARAMETERS
 CORRESPONDING TO TABLE 3.

Parameter Actual Recovered
δ1 0.863 0.887
δ2 1.136 1.112

Node 1

γ 0.789 0.791
δ1 0.219 0.213
δ2 1.780 1.786 Node 2
γ 0.263 0.208
δ1 0.189 0.202
δ2 1.810 1.797 Node 3
γ 0.067 0.082
δ1 1.096 1.094
δ2 1.255 1.235
δ3 0.648 0.669

Final
Node

γ 0.856 0.861

TABLE 6. THE ACTUAL AND RECOVERED PARAMETERS
 CORRESPONDING TO TABLE 5.

Parameter Actual Recovered
δ1 1.971 1.974
δ2 0.462 0.461
δ3 0.565 0.563

Node 1

γ 0.325 0.270
δ1 1.028 1.019
δ2 0.613 0.618
δ3 1.357 1.362

Node 2

γ 0.966 0.966
δ1 0.994 0.974
δ2 1.005 1.025 Final

Node
γ 0.403 0.433

TABLE 8. THE ACTUAL AND RECOVERED PARAMETERS
 CORRESPONDING TO TABLE 7.

Parameter Actual Recovered
δ1 0.544 0.549
δ2 0.759 0.877
δ3 0.998 1.694
δ4 1.697 0.879

Node 1

γ 0.343 0.801
δ1 1.132 1.127
δ2 1.769 1.774
δ3 0.098 0.098

Node 2

γ 0.788 0.758
δ1 0.022 0.067
δ2 1.977 1.932 Final

Node
γ 0.067 0.162

TABLE 10. THE PARAMETERS RECOVERED USING OUR
METHOD AND KRISHNAPURAM AND LEE’S METHOD FOR

STOOL/VISION DATA.

Parameter Recovered
Our Method

Recovered
K-L Method

δ1 2.999 1
δ2 0.548 1
δ3 0.285 1
δ4 0.166 1

‘legs’
Node

γ 0.925 0.692
δ1 0.000 Not reported
δ2 1.999 Not reported ‘top’

Node
γ 1 0.885
δ1 1.210 0.998
δ2 0.789 1.002 Stool

Node
γ 0.365 0.728

595

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE 11. THE OUTPUTS FOR ZIMMERMANN DATA USING
OUR METHOD AND KRISHNAPURAM AND LEE’S METHOD.

Zimmermann Data
Node 1

a1 a2

Target
Output

(Y)

Our
Method

(Y')

K-L
Method

(Y')
0.426 0.241 0.215 0.268 0.269
0.352 0.662 0.427 0.494 0.494
0.109 0.352 0.221 0.170 0.171
0.63 0.052 0.212 0.162 0.163
0.484 0.496 0.486 0.466 0.466

0 0 0 0 0
0.27 0.403 0.274 0.294 0.3
0.156 0.13 0.119 0.091 0.091
0.79 0.284 0.407 0.460 0.462
0.725 0.193 0.261 0.352 0.354

1 1 1 1 1
0.33 0.912 0.632 0.621 0.621
0.949 0.02 0.247 0.156 0.157
0.202 0.826 0.5 0.474 0.474
0.744 0.551 0.555 0.632 0.633
0.572 0.691 0.585 0.635 0.635
0.041 0.975 0.355 0.305 0.304
0.534 0.873 0.661 0.724 0.724
0.674 0.587 0.57 0.621 0.622
0.44 0.45 0.418 0.413 0.433
0.909 0.75 0.789 0.833 0.834
0.856 0.091 0.303 0.283 0.285
0.974 0.164 0.515 0.423 0.425
0.073 0.788 0.324 0.310 0.309

SSE Our Method =
 0.0628

SSE K-L Method =
0.064

TABLE 12. THE PARAMETERS RECOVERED USING

OUR METHOD AND KRISHNAPURAM AND LEE’S METHOD
FOR ZIMMERMANN DATA.

Parameter Recovered
Our Method

Recovered
K-L Method

δ1 0.886 0.889
δ2 1.114 1.111

Node
1

γ 0.587 0.589

V. CONCLUSIONS
In this paper we proposed a novel method for learning the

fuzzy connectives of a multilayer network using particle
swarms. The method proposed by us provides several
advantages:

1) Since the γ model is used there is no switching
required between union, intersection and mean
operators.

2) The particle swarms are driven by simple velocity
and position equations hence there is no complex
differentiation involved.

3) It provides a simpler and better guided heuristic for
learning the fuzzy connectives than Krishnapuram
and Lee’s hierarchical aggregation network that used
a variation of the back propagation algorithm by
overcoming all the drawbacks, namely:

a. The connective type could change during the
iterative process (they too used the γ model
to overcome this drawback).

b. Since the method was based on back
propagation algorithm with multiplicative
hybrid operator activation functions, it
involved the computation of complex
derivatives.

c. There was a high convergence time.
d. The aggregation functions were highly

nonlinear and sometimes involved clipping.

Also, we showed that based on the data it is possible to

find multiple ways of arriving at the same output from given
inputs. Hence the parameters of a multilayer network are not
always unique. Sometimes the solution found by the
optimization process may be totally contrary to our intuition
and more often than not, such solutions provide us with a
better performance than what we initially hoped.

REFERENCES
[1] D. Dubois and H. Prade, “A review of fuzzy set aggregation

connectives,” Inform. Sci., vol. 36, pp. 85–121, 1985.
[2] B. Bouchon-Meunier, “Aggregation and Fusion of Imperfect

Information,” Studies in Fuzziness and Soft Computing, vol. 12,
Physica Verlag, Springer, 1998.

[3] T. Calvo, A. Kolesarova, M. Komornikova, and R. Mesiar,
“Aggregation operators: properties, classes and construction
methods,” Aggregation Operators New Trends and Applications, pp.
3--104. Physica-Verlag, Heidelberg, New York, 2002.

[4] H. J. Zimmermann and P. Zysno, “Decision and evaluations by
hierarchical aggregation of information,” Fuzzy Sets and Systems, vol.
10, pp. 243–260, 1983.

[5] R. Yager, “On ordered weighted averaging aggregation operators in
multicriteria decision making,” IEEE Trans. Systems Man Cybernet.,
vol. 18, pp. 183–190, 1988.

[6] A. Pradera, E. Trillas, and T. Calvo, “A general class of triangular
norm-based aggregation operators: quasi-linear T-S operators,”
Internat. J. Approx. Reason., vol. 30 (1), pp. 57--72, 2002.

[7] J. Gordan and E. J. Shortliffe, “A method for managing identical
reasoning in a hierarchical hypothesis space,” Artificial Intelligence,
vol. 26, pp. 323–357, 1985.

[8] Z. Li, “Uncertainty management in a pyramid vision system,” Internat.
J. Approx. Reason., vol. 3, pp. 59–85, 1989.

[9] J. Pearl, “Fusion, propagation and structuring in belief networks”
Artificial Intelligence, vol. 29, pp. 241–288, 1986.

[10] R. J. Krishnapuram, “A belief maintenance scheme for hierarchical
knowledge-based image analysis systems,” Proc. 3rd IFSA Congress,
Seattle, pp. 333–336, 1989.

[11] R. J. Krishnapuram and J. Lee, “Fuzzy-connective based hierarchical
aggregation networks for decision making,” Fuzzy Sets and Systems,
vol. 46, pp. 11–27, 1992.

[12] J. Kennedy, R. Eberhart, “Particle Swarm Optimization,” IEEE Int’l
Conf. On Neural Networks, vol. 4, pp. 1942-1948, 1995.

[13] J. Kennedy, “Small Worlds and Mega Minds: Effect of neighborhood
topology on particle swarm performance,” IEEE Congress on
Evolutionary Computation, vol. 3, pp. 1931–1938, 1999.

[14] J. Kennedy, R. Eberhart, “The particle swarm: social adaptation in
information-processing systems,” New Ideas in Optimization,
McGraw-Hill, pp. 379–387, 1999.

[15] H. J. Zimmermann and P. Zysno, “Latent connectives in human
decision making,” Fuzzy Sets and Systems, vol. 4, pp. 37–51, 1980.

596

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

