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Selecting Implications in Fuzzy Abductive Problems
Adrien Revault d’Allonnes Herman Akdag Bernadette Bouchon-Meunier

Abstract—Abductive reasoning is an explanatory process

in which potential causes of an observation are unearthed.

We have concentrated on the formal definition of fuzzy ab-

duction as an inversion of the Generalised Modus Ponens

given by Mellouli and Bouchon-Meunier. While studying

this formalism we noticed that some observations could not

be explained properly. Observations, in abductive reason-

ing, are made within the conclusion space of the considered

rule. Their potential shape is therefore highly constrained

by the implication operator used. We claim that, given a

feasible observation and a set of rules, we can categorise the

set of implications to be used. Since a given observation will

match only part of the conclusions in the rule-set, we offer a

categorisation of a rule system coherent with observed data.

Index Terms—Abductive reasoning, fuzzy inference, fuzzy

implications, Generalised Modus Ponens

I. Introduction

ABDUCTIVE reasoning is an explanatory process in
which potential causes of an observation are un-

earthed. In its classical - crisp - version it offers little lat-
titude for discovery of new knowledge. Placed in a fuzzy
context, abduction can explain observations which did not,
originally, exactly match the expected conclusions. Study-
ing the effects of slight modifications through the use of
linguistic modifiers was, therefore, of interest in order to
describe the extent to which observations can be modified
yet still explained and possibly create new knowledge.

We have concentrated on the formal definition of fuzzy
abduction given by Mellouli and Bouchon-Meunier. Their
approach of abduction [1], [2] aims at finding conditions
on premise A so that observation B′ is satisfied. To do
this, they choose to reverse the Generalised Modus Po-
nens (GMP), the fuzzy inference model, firstly because it
ensures that the conditions on A entail B′, and secondly
because it gives a mathematical expression of said condi-
tions. Obviously, due to the large number of fuzzy impli-
cation and GMP operators at hand, one cannot consider
such a task as a unique problem. Mellouli and Bouchon-
Meunier therefore considered the different classes of fuzzy
implications as described by Dubois and Prade in [3], [4].
In their works they reversed the GMP for two classes of im-
plications: s-implications and r-implications. The results
for s-implications gave an expression of fA′(u) the condi-
tionned premise’s membership function. They chose not
to delve into an in-depth study of this result, presumably
because it offered no immediate difficulty. On the other
hand, the reversal of the GMP for r-implications resulted
in the definition of a ‘maximal explanation’ AG such that
any explanation A′ should be included in AG. AG is given
by:
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∀u ∈ U, fAG
(u) = inf

v∈V
IT (IT (fA(u), fB(v)), fB′ (v)) (1)

Mellouli and Bouchon-Meunier only studied a particular
class of modifiers (viz. uncertain expansive modifiers) and
then only using Gödel’s implication. We wished to see if
we could generalise their results to other types of modifiers
and other implication/t-norm pairs.

Our aim was to generalise these results to other hedges
and implications. We have chosen to study classical power
modifiers as defined by Zadeh [5], and translation modifiers
introduced by Bouchon-Meunier and Yao [6]. We finally
considered the particular cases, defined from these trans-
lations, of reinforcement hedges which contract both sup-
ports and kernels (i.e. fB′(v) = min(fB(v + ε),fB(v − ε)))
and their inverses which dilate them. These modifiers are
semantically consistent with Zadeh’s definition, yet their
impact on the support and kernel of the original labels
implies a shift in precision, both formally and intuitively.

Our results were incompatible with established theories.
We proved, for one, that the extension of Mellouli and
Bouchon-Meunier’s formal results on abduction sometimes
generates incoherent results. This paper will introduce a
way of using this to give a semantically consistent inter-
pretation of a rule set. We will show where this incompat-
ibility comes from and derive from it a selection method of
fuzzy implication, based on observable data.

II. Classification with respect to observations

A. Origin of inconsistency

We have shown in [8] that given a gradual-rule abductive
problem,  Lukasiewicz’s implication and an observation
such that B′ ⊃ B and inf

v∈V
fB′(v) = 0 then AG = A. Our

problem is that this result is:

• Inconsistent with general results on the Generalised
Modus Ponens:

– if A′ ⊆ A then B′ = B
– if A′ ⊃ A then B′ ⊃ B

• Inconsistent with previous results on abduction
– if B′

1 ⊂ B′

2 then AG1
⊂ AG2

, here if B′

1 = B then
AG1

= A
• Inconsistent with  Lukasiewicz as an r- and s-

implication
– Any satisfactory explanation A′ is such that A′ ⊂ AG

– r-implication : AG = A
– s-implication : A′ = U

Furthermore, we claim that, given a feasible observation
and a set of rules, we can categorise the set of implica-
tions to be used. Since a given observation will match
only part of the conclusions in the rule-set, we offer a cat-
egorisation of a rule system coherent with observed data.
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Indeed, in most cases the semantic interpretation of a rule
will be given a priori, even if the rule is learnt, and an
implication operator chosen regardless of its potential in-
consistency with the data. Our approach aims at building
entailment consistent rule-subsets, interpreting these with
respect to the observed data and giving them the semantic
interpretation of the corresponding implication-subset [3],
[4].

To do this, we need to classify the shapes which may
be reached via GMP for each implication and consistent
GMP-operator. This type of study has been led in the
past, yet since their use was to be different the results are
neither sufficiently precise nor general. Classical studies
of the GMP have typically looked at what a precise ob-
servation in a given fuzzy premise will generate or at very
local modifications [7]. The problem here is that we need
to rule out, or accept, a given shape for an implication. So
we need to extend the existing results to be certain that
no unexpected case is overlooked.

B. Describing GMP conclusions

B.1 Foreword

Before we present our study of GMP conclusions with
respect to the fuzzy subsets they entail, we think it wise
to remind the reader of the general expression of the GMP
conclusion and of the expressions of the fuzzy implications
we will study, and their classification.

For a fuzzy rule of the type ‘If u is A then v is B’ and
an observation A′, the expected conclusion is given by:

fB′(v) = sup
u∈U

>(fA′(u), I(fA(u), fB(v)))

Where A and A′ are fuzzy subsets of U , B and B′ fuzzy
subsets of V , I some fuzzy implication and > an adequate
(i.e. the crisp limit cases are preserved by the joint use of
I and >) Generalised Modus Ponens operator, or t-norm.

We will study the fuzzy implications and their respective
GMP operators as given by [7] outlined in table I. The
relevant GMP operators are given in table II.

TABLE II

Fuzzy GMP operators

Operator Expression
 Lukasiewicz >(a,b) = max(0,a + b− 1)
Zadeh >(a,b) = min(a,b)
Goguen >(a,b) = a× b

B.2 Reichenbach

A rule used with Reichenbach’s implication and
 Lukasiewicz’s GMP operator will conclude on something
of the form:

fB′(v) = sup
u∈U

max(0, fA′(u) + fA(u) × (fB(v) − 1))

From which we draw the following constraints on all
conclusions B′:

• If Kernel(A′)∩Support(A) 6= ∅ then B′ = V
• If A′ ⊇ A then B′ ⊇ B and

inf
v∈V

fB′(v) > sup
u∈Support(A)

fA′(u)

• If A′ ⊂ A and Kernel(A′)∩Kernel(A) 6= ∅ then
B′ = B

• Otherwise, if A′ ⊂ A then B′ ⊂ B

B.3 Willmott

With  Lukasiewicz’s t-norm for GMP operator, the con-
clusion of a fuzzy inference given Willmott’s implication
is:

fB′(v) = max(fB(v), sup
u∈U

fA′(u)− fA(u))

Which gives us:

• fB′(v) 6 fB(v),∀v ∈ V
• fB′(v) > sup

u∈U

fA′(u)− fA(u),∀v ∈ V

– inf
v∈V

fB′(v) > sup
u∈Support(A) fA′(u)

B.4 Mamdani

We have studied the conclusions of Mamdani rules with
the min, product or  Lukasiewicz GMP operators and their
membership functions are:

With Zadeh’s min t-norm:

fB′(v) = fB(v)

With Goguen’s product t-norm:

fB′(v) = max

(

supu∈U,fA(u)6fB(v) fA′(u)× fA(u),

supu∈U,fA(u)>fB(v) fA′(u)× fB(v)

)

With  Lukasiewicz’s t-norm:

fB′(v)=max

(

0,
supu∈U,fA(u)6fB(v) fA′(u)+fA(u)−1,

supu∈U,fA(u)>fB(v) fA′(u)+fB(v)−1

)

So we have:

• B′ ≡ B for Zadeh’s GMP operator
• fB′(v) 6 fB(v),∀v ∈ V otherwise

B.5 Rescher-Gaines

Whatever the GMP operator (min, product or
 Lukasiewicz’s t-norm), the conclusion of a fuzzy inference
given Rescher-Gaines’ implication is:

fB′(v) = supu∈U,fB(v)>fA(u) fA′(u)

And our conclusion will be such that:
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TABLE I

Fuzzy implications, classes and assorted GMP operators

Implication Expression Class Compatible t-norm(s)
Reichenbach IR(a,b) = 1− a + a× b s-implication  Lukasiewicz
Willmott IW (a,b) = max(1− a,min(a,b)) Ql-implication  Lukasiewicz
Mamdani IM (a,b) = min(a,b) t-implication Zadeh,  Lukasiewicz, Goguen

Rescher-Gaines IRG(a,b) =

{

1 if a 6 b
0 otherwise

r-implication Zadeh,  Lukasiewicz, Goguen

Kleene-Dienes IKD(a,b) = max(1− a,b) s-implication  Lukasiewicz

Gödel IG(a,b) =

{

1 if a 6 b
b otherwise

r-implication Zadeh,  Lukasiewicz, Goguen

Goguen IGn(a,b) =

{

min(b/a,1) if a 6= 0
1 otherwise

r-implication  Lukasiewicz, Goguen

 Lukasiewicz I L(a,b) = min(1− a + b,1) r- & s-implication  Lukasiewicz

A BA′ B′

A

A′

B′ = B

A B

B′A′

A B

A′ B′

δ = 1 − β

β = fB (v0)

Kernel(A′) ∩ Support(A) 6= ∅ A′ ⊃ A

A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅

fA(u) × δ

Fig. 1. GMP conclusions with Reichenbach’s implication

• inf
v∈V

fB′(v) = sup
u∈Support(A) fA′(u)

• sup
v∈V

fB′(v) = sup
u∈U

fA′(u)

• If Support(A′) = Support(A) and A′ = m(A) then
B′ = m(B)

B.6 Kleene-Dienes

With  Lukasiewicz’s GMP operator conclusions are given
by:

fB′(v)=max

(

0,
supu∈U,1−fA(u)6fB(v) fA′(u)+fB(v)−1,

supu∈U,1−fA(u)>fB(v) fA′(u)−fA(u)

)

Which gives us:

• inf
v∈V

fB′(v) = sup
u∈Support(A) fA′(u)

B.7 Gödel

The conclusion of a fuzzy inference given Gödel’s impli-
cation and the min GMP operator is given by:

fB′(v) = max(supu∈U,fB(v)>fA(u) fA′(u),fB(v))

Which means:

• B′ ⊇ B
• inf

v∈V
fB′(v) = sup

u∈Support(A)
fA′(u)

With  Lukasiewicz’s t-norm we get;

fB′(v) = max

(

fB(v) + supu∈U,fA(u)>fB(v) fA′(u)− 1,

supu∈U,fA(u)6fB(v) fA′(u)

)

With Goguen’s GMP operator we have:

fB′(v) = max

(

supu∈U,fA(u)>fB(v) fA′(u)× fB(v),

supu∈U,fA(u)6fB(v) fA′(u)

)

Which means that for both t-norms we have:

• inf
v∈V

fB′(v) > sup
u∈Support(A) fA′(u)

• If Kernel(A′)∩Kernel(A) 6= ∅ then B′ ⊇ B
• Otherwise, if A′ ⊂ A and Kernel(A′)∩Kernel(A) = ∅

then sup
v∈V

fB′(v) = supu∈U fA′(u)

B.8 Goguen

Using  Lukasiewicz’s t-norm we get the following expres-
sion;

fB′(v)=max

(

supu∈U,fA(u)>fB(v),fA(u)>0 fA′(u)+ fB(v)
fA(u)−1,

supu∈U,fA(u)6fB(v) fA′(u)

)

=supu∈U,fA(u)6fB(v) fA′(u)

Which implies that:
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B′ = B

A′

A B

A′

B′

A

B′ ⊇ B

inf
v∈V

fB′ (v) = sup
u∈Support(A)

fA′ (u)

Fig. 2. Essential properties of conclusions with Gödel’s implication and Zadeh’s t-norm

• inf
v∈V

fB′(v) > sup
u∈Support(A) fA′(u)

• sup
v∈V

fB′(v) = supu∈U fA′(u)

When combined to Goguen’s operator, we have:

fB′(v)= max

(

fB(v)×supu∈U,fA(u)>fB(v),fA(u)>0
fA′ (u)
fA(u) ,

supu∈U,fA(u)6fB(v) fA′(u)

)

Which means:

• inf
v∈V

fB′(v) > sup
u∈Support(A) fA′(u)

• If Kernel(A′)∩Kernel(A) 6= ∅ then B′ ⊇ B
• Otherwise, if A′ ⊂ A and Kernel(A′)∩Kernel(A) = ∅

then sup
v∈V

fB′(v) = supu∈U fA′(u)

B.9  Lukasiewicz

The general expression of the conclusion of a fuzzy rule
given  Lukasiewicz’s implication is given by:

fB′(v)= max

(

fB(v)+supu∈U,fA(u)>fB(v) fA′(u)−fA(u),

supu∈U,fA(u)6fB(v) fA′(u)

)

From which we see that:

• inf
v∈V

fB′(v) > sup
u∈Support(A) fA′(u)

• If A′ ⊃ A then B′ ⊃ B
• If A′ ⊂ A and Kernel(A′)∩Kernel(A) 6= ∅ then

B′ = B
• If A′ ⊂ A and Kernel(A′)∩Kernel(A) = ∅ then

B′ ⊂ B

Table III reviews the properties we have put forward and
groups them with respect to the implications, in order to
suggest possible links between implications.

Now, suppose that we have built or learned a fuzzy-rule-
base on diseases and their symptoms. Generally speaking,

to make a diagnostic a physician usually has to consider
only the symptoms. Suppose also that, after the con-
struction of our rules, we observe sufficient data to build
symptom-similar cases without diagnostic. If these classes
of cases are fuzzy sets defined on the symptom’s scale, we
now have a way of selecting the fuzzy implication to apply
for each rule.

This is what we refer to as ‘data-driven’ classification of
the rules. The semantic interpretation of each rule may, of
course, still be that given by Dubois and Prade, but the
choice is coherent with the observations. We may well find
that different rules, even though they are used in the same
context, belong to different classes and should therefore be
interpreted differently. For instance, if we were to observe a
denormalised class of pain to the lower abdomen, we would
have to choose one of the implications exhibiting property
5 to encode the rule linking appendicitis to this particular
symptom. Obviously there would still be a choice of sorts,
but at least we would know that the implication was an
r-implication and thus that the rule was a gradual one.

If, however, we made an observation such that we had to
allow for error by fuzzyfying our measurement and if that
observation was normalised and included in the expected
conclusion, then the only compatible implication would be
Mamdani’s, and our interpretation of the rule would be
affected.

Appendicitis Pain

Observed pain

Fig. 4. An imprecise observation only explained by Mamdani with
Goguen or  Lukasiewicz’s t-norms
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BA

A′

B′

B

A′ B′

A

B′ = B

A′

A

A′
A B

B′

A′ ⊃ Ainf
v∈V

f
B′ (v) > sup

u∈Support(A)
f

A′ (u)

A′ ⊂ A and Kernel(A′) ∩ Kernel(A) 6= ∅ A′ ⊂ A and Kernel(A′) ∩ Kernel(A) = ∅

Fig. 3. Some properties of GMP conclusions given  Lukasiewicz’s implication

TABLE III

General properties of GMP conclusions

Property Implication t-norm(s)
1 B′ ≡ B Mamdani Zadeh
2 B′ ⊆ B Mamdani Goguen,  Lukasiewicz
3 B′ ⊇ B Gödel Zadeh

4 B′ ⊇ B if Kernel(A′)∩Kernel(A) 6= ∅
Gödel  Lukasiewicz
 Lukasiewicz  Lukasiewicz

5 Persistent denormalisation

Rescher-Gaines Zadeh, Goguen,  Lukasiewicz
Gödel  Lukasiewicz
Goguen Goguen,  Lukasiewicz
 Lukasiewicz  Lukasiewicz

6 infv∈V fB′(v) = sup
u∈Support(A) fA′(u)

Rescher-Gaines Zadeh, Goguen,  Lukasiewicz
Kleene-Dienes  Lukasiewicz
Gödel Zadeh

7 infv∈V fB′(v) > sup
u∈Support(A) fA′(u)

Gödel  Lukasiewicz
Goguen  Lukasiewicz
 Lukasiewicz  Lukasiewicz

III. Conclusion

Our ambition, in this paper as in [8], was, originally, to
extend formal fuzzy abductive results to different classes
of implications and linguistic modifiers. While working on
these results we noticed that the theory contradicted some
established results. The explanation of these incoherences
lay in the ‘impossibility’ of observing certain shapes. Yet
these shapes did not seem incoherent with the data they
were meant to represent. Tracing the incoherence of our
results back to the ‘observable’ shapes of the selected fuzzy
implications, we saw that observations were bound by the
implication operator. To allow suspected ‘data-coherent’
observations we needed to find ‘deduction-coherent’ impli-
cations. Available studies of the Generalised Modus Po-
nens offered information on possible shapes, but did not
allow us to definitely rule-out others. Therefore we had to
generalise these results to conclude. We would like to ex-
tend this type of systematic analysis to other implications
and their associated GMP operators, or t-norm.

Selecting an implication from the data meant we could
interpret our rule-based knowledge using the semantic in-
terpretation of the operators. Our classification of sub-
sets of a rule-base would benefit from interpretations at
the implication operator level. Indeed, implications of

different types may generate similar shapes. Conversely,
some implications of the same type do not accept the same
modifications. Therefore, ‘observation consistent’ implica-
tions, which we use to classify our rule-base subsets, may
have some semantic proximity and, if not, their differences
would entail as many potential interpretations. The prop-
erties we have laid out in this comparative study also seem
connected to the choice of GMP-operator. This should
be taken into account in the semantic interpretation pro-
cesses.

References
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