
Rule Selection in Fuzzy Systems using
Heuristics and Branch Prediction

Keerthi Laal Kala
Center for VLSI & Embedded System Technologies
International Institute of Information Technology

Hyderabad, India
klkala@research.iiit.ac.in

M. B. Srinivas
Center for VLSI & Embedded System Technologies
International Institute of Information Technology

Hyderabad, India
srinivas@iiit.ac.in

Abstract—Rule bases, providing complete information about
the system at hand in a Fuzzy Logic Controller, tend to be huge.
Selecting rules that should be applied to the current inputs of the
system becomes an increasingly complex task, as the rule base
size increases. Techniques have been developed to provide the
relevant rules for inference to improve the speed of operation of
fuzzy systems. This paper proposes an approach using a simple
heuristic to identify a most probable set of rules and then predict
the rule that will be used for the current system inputs. A
prediction strategy, used for branch prediction in processors, is
employed in predicting the rule to be used. The proposed
approach has been compared with few approaches for rule
selection and results are provided.

Keywords—fuzzy logic controllers, rule selection, branch
prediction, fuzzy reasoning, rule extraction, rule weighting

I. INTRODUCTION
Fuzzy Logic Controllers (FLC) use a rule base, composed

of rules derived from expert knowledge, to infer the control
actions needed for the current state of system inputs. The rule
base is essentially an exhaustive set of ‘if …, then…’ conditions
that direct the actions to be taken by the system. This set of
rules is considered representative of all the possible situations
the system will encounter during its normal course of
operation. While encompassing the whole range of possible
scenarios, the size of the rule base grows prohibitively large
and picking a suitable set of rules that should be applied for any
given inputs will be a complex task. The complete rule base has
to be searched and relevant rules selected for inference. This
process is time consuming and might compromise the speed of
operation or reaction of the system. To improve response time
two approaches have been addressed in literature:

• condensing the rule base to minimize the number
of rules, yet store the information needed

• improving the process of selecting the rule to be
applied for given system inputs

[1] describes one such condensing approach using rule base
refraction. [2] – [4] highlight the use of rule weighting to
improve the efficiency in rule selection.

In the current work we focus only on rule selection.
Section II provides summary of the rule base condensing
approach used to reduce the size of the rule base. In addition,

brief summaries of few rule selection approaches proposed in
literature are also provided. This section is dedicated to
providing brief summaries of existing techniques for handling
large rule bases and shows the motivation behind the current
work. Section III provides a discussion of branch prediction in
modern day processors and gives details of some of the
techniques used thereof.

TABLE I. RULE TABLE AFTER ENCODING [1]

Code Word Tag

0101

0001

1001

1101

1000

1000

0100

0100

0100

0000

1000

1100

1000

0100

0100

0010

0110

0010

1010

1110

0100

0010

0010

0001

0111

0011

1011

1111

0010

0010

0001

0001

Section IV gives details of the proposed approach
highlighting the heuristic strategy employed and the adaptation
of a branch prediction strategy for rule selection in an FLC.

603

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

1-4244-0703-6/07/$20.00 ©2007 IEEE

Section V provides an analysis of the proposed approach and
gives comparative results of experiments with a few data sets.

II. BACKGROUND
This section provides summaries of:

• rule base condensing using refraction
• rule weighting

A. Rule base condensing using Refraction [1]
This approach aims at exploiting the consistency and rule

neighboring shown in a rule base. This approach is explained
here as an example to show the effectiveness of reducing the
rule base into an encoded subset, which can lead to faster
inference and also to showcase previous work which has been
done in order to improve the efficiency of inference in a fuzzy
system. The proposed approach in Section IV, was tested on
rule bases condensed using this method.

In rule base condensing approach, first the rule base is
encoded and then prime-implicants are derived out of the
encoded rule base. The prime-implicants are identified as
follows:

• Scan the rule table for code words with a
Hamming distance of 1 and mark the different bit
as a “don’t-care” using a ‘-‘. The encoding
mechanism involves using 2-bit sequences to
represent each possible state and a 4-bit tag to
indicate the leading implicant in the code.

• Add these new codes to the new list and check off
both original codes (Table I & II). The data
presented gives only the main steps in the
approach. Interested readers are requested to refer
[1] for details.

• Setup a cover table in which the rows are all
prime-implicants and the columns are min-terms

• Enter an ‘x’ at the intersection of row i and
column j if the ith prime-implicant Pi covers the jth
min-term mj

• Identify all essential rows and select them for
inclusion in the potential solution ser T = {S1, S2,
S3, ….., Sq}, where S1~Sq are inference rules

• Delete all columns covered by these rows and the
essential rows themselves. Delete any rows
without an ‘x’

• Reduce T by removing all columns that dominate
a retained column and continue applying this
procedure until no further reduction is possible

Once the prime-implicants are reduced to dominant
implicants that cover all cases, the implicant table is decoded to
generate a fresh rule base that will be a reduced version of the
original one.

B. Rule Weighting
Weighted linguistic models make use of expert knowledge

and a deductive process. The weights applied to a particular

rule are used to modulate the firing strength of the rule, in other
words a degree of importance is associated with each rule. In
addition, complex multidimensional problems have redundant,
inconsistent & conflicting rules and the size of the rule base
may also be large. The use of weights in such cases can be seen
as a local tuning of rules enhancing the robustness, flexibility
and control compatibility of such systems [2].

Weight assignment of rules can be achieved in different
ways. [2] suggests using genetic algorithms (GA) to select a
subset of rules showing good co-operation & deriving the
weights associated with these rules. A GA based on the steady-
state approach is used, where the fitness function considers
objective weighting.

TABLE II. RULE TABLE AFTER REDUCTION [1]

Group Code Word Tag

0 -000 0100

1 0-01

010-

100-

-010

001-

1000

1000

0100

0010

0010

2 1-01

0-11

0100

0010

3 111-

1-11

0001

0001

Figure 1. Flowchart of the GA Process

604

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

The selection scheme used in the GA is based on Baker’s
stochastic universal sampling together with elitist selection.
Fig. 1 shows a flowchart of this method.

A gene is coded as C = C1 + C2, where C1 is a binary
vector representing the subset of rules obtained from expert
knowledge and C2 is a real-coded string corresponding to the
weight used for each rule in C1. The fitness function used
decrements the importance of each individual fitness value
when it reaches its goal and penalizes each objective whenever
its value worsens with respect to the initial solution. The
crossover operator for C1 is the standard two-point crossover
while for C2 a hybrid between a BLX-α and an arithmetical
crossover is used [5]. The restart block prevents getting trapped
in local minima. When the population converges to similar
results on multiple iterations, the best individual is kept and the
rest of the population is generated again.

[3] on the other hand suggests heuristic rule weight
specifications based on the concepts of confidence and support
used in data mining. Assume that a set of antecedent fuzzy sets
is given for each attribute. The antecedent part for each rule
(Aq) is computed by combining the fuzzy sets for all n
attributes. The consequent Cq for the fuzzy rule Aq => Cq is
determined by the class with maximum confidence for the
antecedent Aq

() (){ }MhClasshAcCAc qqq ,...2,1|max =⇒=⇒ (1)

where c is the measure of the confidence in an M-class
classification problem. Hence, there are M consequent classes
and each rule attributes the result to one of these classes with a
certain confidence. The rule weight is now defined as the
certainty grade CFq given by

 ()qqq CAcCF ⇒= (2)

Another definition for the rule weight in [3] is

 () ndqqq cCAcCF 2−⇒= (3)

where c2nd is the second largest confidence for the antecedent
Aq defined by the following equation

(){ }qqnd ChMhClasshAcc ≠=⇒= ;,....2,1|max2

 (4)

Both the approaches discussed here provide rule weights to
the antecedent rules and thereby make the process of inference
efficient. The purpose of discussing these approaches here was
to throw light on some of the methods used for rule weighting
as described in literature. This section acts as a prelude to the
concept of rule weighting. These methods, though not used in
the proposed approach, are shown here to qualify the need for
effective rule base handling. The results obtained by using one
of these methods are used for comparison with the proposed
approach.

Our proposed rule weighting method (Section IV) uses a
heuristic method to come up with a set of probable rules and
then predicts which rule to use from them. The approach we
propose is suitable for single winner classification problems.

III. BRANCH PREDICTION [6]
As mentioned earlier, we use a prediction strategy

borrowed from branch prediction methods used in current day
processors. This section therefore presents a brief overview of
branch prediction and strategies used.

The goal of branch prediction is to allow the processor to
resolve the outcome of a branch early, thus preventing control
dependencies from causing stalls and to aid pipelining of
operations. The effectiveness of a branch prediction scheme
depends not only on the accuracy, but also on the cost of a
branch when the prediction is correct or incorrect. The type of
the predictor used plays a major role in deciding the branch
penalties involved. The simplest dynamic branch-prediction
scheme is a branch-prediction buffer or branch history table. It
is a small memory indexed by the lower portion of the address
of the branch instruction that contains a bit which says whether
the branch was recently taken or not. This buffer is effectively
a cache whose performance depends on both how often the
prediction is for the branch of interest and how accurate the
prediction is when it matches. Branch predictors that use the
behavior of other branches to make a prediction are called
correlating predictors or two-level predictors.

TABLE III. COMBINATIONS AND MEANING OF TAKEN/NOT TAKEN
PREDICTION BITS

Prediction Bits Prediction if last
branch not taken

Prediction if last
branch taken

NT/NT NT NT

NT/T NT T

T/NT T NT

T/T T T

To illustrate the working of a correlating prediction scheme
consider the following code fragment:

if (d==0)

d=1;

if (d==1)

A typical instruction sequence generated for the code
fragment for execution on the processor would look like:

BNEZ R1, L1 ; branch b1 (d! =0)

DADDIU R1, R0, #1 ; d=0, so d=1

L1: DADDIU R3, R1, #-1

 BNEZ R3, L2 ; branch b2 (d! =1)

……………..

L2:

BNEZ instruction stands for ‘branch on not equal to zero’
and the DADDIU instruction stands for ‘data addition’. The
value of d is assumed to be stored in register R1 initially and

605

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

R0 & R3 are registers used by the processor for execution of
instructions. L1 & L2 are the branch labels. For ease of
understanding, the branches corresponding to the two if
statements are labeled b1 and b2. In the current example we
use two-bit prediction scheme, where the first bit predicts
assuming that the last branch executed in the pipeline was not
taken (misprediction) and another prediction that is used if the
last branch executed was taken. Table III shows all the possible
combinations, where T stands for branch taken and NT stands
for not taken. Assuming d has values 0, 1 and 2, the possible
sequences for execution of the code fragment are shown in
Table IV. To illustrate how a correlating predictor works,
assume the sequence above is executed repeatedly. In general,
the last branch executed is not the same instruction as the
branch being predicted.

The action of the correlating predictor when initialized to
NT/NT is shown in Table V. In this case, the only misprediction
is on the first iteration, when d=2. The correct prediction of b1
is because of the choice of values for d, since b1 is obviously
not correlated with b2. The correct prediction for b2, however,
shows the advantage of correlating predictors. Even if different
values for d were chosen, the predictor would correctly predict
b2 when b1 is not taken on every execution of b2 after one
initial incorrect prediction.

TABLE IV. POSSIBLE EXECUTION SEQUENCES FOR CODE FRAGMENT

d d = 0? b1 d D = 1? b2

0 Yes NT 1 yes NT

1 No T 1 yes NT

2 No T 2 No T

TABLE V. ACTION OF CORRELATING PREDICTOR INITIALIZED TO NT/NT

d b1 pred b1
action

New b1
pred

b2 pred b2
action

New b2
pred

2 NT/NT T T/NT NT/NT T NT/T

0 T/NT NT T/NT NT/T NT NT/T

2 T/NT T T/NT NT/T T NT/T

0 T/NT NT T/NT NT/T NT NT/T

The prediction scheme described above has been tested on
various benchmarks and on an average the misprediction of the
scheme is 5-9% [6].

IV. PROPOSED APPROACH
The approach we propose in this paper uses a heuristic

credit allocation scheme to select a set of probable rules that
can be applied to current state of the antecedents. The approach
is closely related to assigning rule weights and the selection of
rules thereof, as will be shown.

Each time a condition is to be evaluated, an auction is held
where all the rules in the rule base bid for their solutions to be
accepted. Each rule is allowed only a single bid, which is a
certain percentage of its current bank balance, known as its
strength. This value is analogous to the rule weights discussed
in previous sections. So, strong rules are more likely to be
successful in their quest to buy the right to put forward their
action. All rules are initialized to the same strength and hence
have equal probability for being chosen. The rule base adapts
itself to the working environment after a few cycles and the
efficiency of the system increases.

Once the auction is complete, instead of looking for the
strongest bidder and use it to make an inference as intuition
would suggest, we take the top four bidders and form a small
secondary rule base called the rule cache. The size of the cache
is a variable in the system and needs to be chosen keeping in
mind the size of the rule base and the average number of rules
active for given set of inputs. Experiments have shown that a
large rule cache does not guarantee better performance.
Currently the choice of the size of the rule cache is limited to
Monte Carlo experiments with varying sizes.

This rule cache is now subjected to the correlating
prediction strategy described in Section III. The predictor is
initialized to NT/NT as described earlier.

Once a rule has been predicted and if it is indeed evaluated
to be the correct solution, the rule is paid a reward reinforcing
its strength and making it stronger. This update makes the rule
more probable for the next set of antecedents. Thus, the system
is adapting to the environment in which it is working by giving
more importance to relevant rules at a particular instant in time.

The reinforcement update is driven as:

 rSSnew += (5)

where S is the strength of the rule and r is the reward value.
The failing bidding rules are penalized and their strength is
reduced by applying a penalty tax, thus reducing its probability
for bidding in the next iteration. This operation if performed as:

 SpSnew *)1(−= (6)

where p is the percentage of penalty being used. To prevent
unpopular rules from maintaining high strength values, an
existence tax is levied on all non-bidding rules. This strength
update is affected as follows:

 SeSnew *)1(−= (6)

where e is the percentage of existence tax being used.

To enable the usage of both the heuristic and prediction
strategies, each rule has an associated strength value and a two
bit prediction. All the rules are initialized to equal strength
values and values for r, p and e are user-defined. The
predictions are initialized to NT/NT and are updated upon every
inference for all rules in the rule cache. The whole process is
repeated again for the next antecedent inputs.

The proposed approach makes rule selection a two-level
process. The first level involves sorting the rule base and

606

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

TABLE VII. RESULTS ON GLASS DATASET ascertaining four highest bidders. The second level involves
predicting which of the rules is to be used. Using the proposed
approach, the strengths of the rules in the database are
constantly updated. Thus the rule base is constantly adapting
itself to provide suitable classifiers very efficiently for a given
state of the antecedents. The rule strength adoption mechanism
can be summarized as:

()
()⎪

⎩

⎪
⎨

⎧

−
−
+

=
existence

bidwrong
foundrulecorrect

Se
Sp

rS
Snew

;
;

;

*1
*1 (7)

Number
of rules

No rule
weights

(2) based (3) based GA
based

Proposed

3 91.79 91.95 91.95 91.34 92.13

6 89.91 90.22 90.94 90.51 91.18

9 92.57 92.98 92.98 92.56 93.04

12 86.73 87.11 87.35 86.59 87.03

20 85.28 85.54 86.27 85.93 86.31

V. PERFORMANCE EVALUATION

The results on the glass dataset are shown in Table VII.
From the results it can be seen that the proposed approach
outperforms the GA based rule weight scheme and also both
the heuristic based weight updated discussed.

A. Results
The performance of the system was evaluated against the

heuristic rule weighting and GA based rule weighting schemes
described in Section II. The data sets used were the wine data
and glass data available from the UC Irvine ML database.

The Wine dataset has 13 variables with 178 samples from
three classes of wines. The glass dataset has nine variables with
214 samples from six classes. For the purpose of our
experiment, we chose four random variables in each set as
antecedents. The datasets were chosen for comparison with the
results on the same data sets used in [3]. The rule base in each
of the experiments was hand-written by analyzing the data.

The results on the wine dataset are shown in Table VI.
From the results it is evident that the proposed approach
performs better than the GA based rule weight scheme and
outperforms one of the heuristic based weight update schemes
presented in Section II.

The simulations were performed using four variables as
antecedents for both the datasets. The strengths for each system
were initialized to 10, the reward value was 1, the penalty was
3% and the existence tax was 1%.

B. Conclusion
In this work, we propose a rule selection approach which

uses heuristics and branch prediction strategies. The efficiency
of the approach has been tested on two datasets and the results
were compared with three other approaches detailed in
literature. The results show that the performance of the
proposed approach is better than the rest of the approaches in
certain cases and close to best in others.

REFERENCES

TABLE VI. RESULTS ON WINE DATASET

Number
of rules

No rule
weights

(2) based (3) based GA
based

Proposed

3 92.63 93.55 93.51 91.86 93.53

6 91.84 92.13 92.87 92.14 92.56

9 92.48 93.89 94.17 92.27 93.94

12 94.26 94.71 94.96 94.19 94.92

20 95.62 96.18 96.35 95.23 96.37

[1] Kao-Shing Hwang and Ming-Yi Lu, “Rulebase Refractoring Design for
Fuzzy Logic Controllers,” International Journal of Intelligent
Automation and Soft Computing.

[2] Rafael Alcala, Jorge Casillas, Oscar Cordon, Antonio Gonzalez and
Fransisco Herrera, “A Genetic Rule Weighting and Selection Process for
Fuzzy Control of Heating, Ventilating and Air Conditioning Systems.”

[3] Hisao Ishibuchi and Takashi Yamamoto, “Rule Weight Specification in
Fuzzy Rule-based Classification Systems,” IEEE Trans. on Fuzzy
Systems, vol. 13, no. 4, pp. 428-435, August 2005.

[4] Hisao Ishibuchi and Tomoharu Nakashima, “Effect of Rule Weights in
Fuzzy Rule-Based Classification Systems,” IEEE Trans. on Fuzzy
Systems, vol. 9, no. 4, pp. 506-515, August 2001.

[5] L. J. Eshelman and J. D. Schaffer, “Foundations of Genetic Algorithms,”
Morgan Kaufmann Publishers, USA, 1993

[6] John L. Hennessy and David K. Patterson, “Computer Architecture: A
Quantitative Approach,” Morgan Kaufmann Publishers, USA, 2003.

607

Proceedings of the 2007 IEEE Symposium on
Foundations of Computational Intelligence (FOCI 2007)

