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Abstract—Rule bases, providing complete information about 
the system at hand in a Fuzzy Logic Controller, tend to be huge. 
Selecting rules that should be applied to the current inputs of the 
system becomes an increasingly complex task, as the rule base 
size increases. Techniques have been developed to provide the 
relevant rules for inference to improve the speed of operation of 
fuzzy systems.  This paper proposes an approach using a simple 
heuristic to identify a most probable set of rules and then predict 
the rule that will be used for the current system inputs. A 
prediction strategy, used for branch prediction in processors, is 
employed in predicting the rule to be used. The proposed 
approach has been compared with few approaches for rule 
selection and results are provided. 

Keywords—fuzzy logic controllers, rule selection, branch 
prediction, fuzzy reasoning, rule extraction, rule weighting 

I.  INTRODUCTION 
Fuzzy Logic Controllers (FLC) use a rule base, composed 

of rules derived from expert knowledge, to infer the control 
actions needed for the current state of system inputs. The rule 
base is essentially an exhaustive set of ‘if …, then…’ conditions 
that direct the actions to be taken by the system. This set of 
rules is considered representative of all the possible situations 
the system will encounter during its normal course of 
operation. While encompassing the whole range of possible 
scenarios, the size of the rule base grows prohibitively large 
and picking a suitable set of rules that should be applied for any 
given inputs will be a complex task. The complete rule base has 
to be searched and relevant rules selected for inference. This 
process is time consuming and might compromise the speed of 
operation or reaction of the system. To improve response time 
two approaches have been addressed in literature: 

• condensing the rule base to minimize the number 
of rules, yet store the information needed 

• improving the process of selecting the rule to be 
applied for given system inputs  

[1] describes one such condensing approach using rule base 
refraction. [2] – [4] highlight the use of rule weighting to 
improve the efficiency in rule selection. 

In the current work we focus only on rule selection.  
Section II provides summary of the rule base condensing 
approach used to reduce the size of the rule base. In addition, 

brief summaries of few rule selection approaches proposed in 
literature are also provided. This section is dedicated to 
providing brief summaries of existing techniques for handling 
large rule bases and shows the motivation behind the current 
work. Section III provides a discussion of branch prediction in 
modern day processors and gives details of some of the 
techniques used thereof.  

TABLE I.  RULE TABLE AFTER ENCODING [1] 

Code Word Tag 

0101 

0001 

1001 

1101 

1000 

1000 

0100 

0100 

0100 

0000 

1000 

1100 

1000 

0100 

0100 

0010 

0110 

0010 

1010 

1110 

0100 

0010 

0010 

0001 

0111 

0011 

1011 

1111 

0010 

0010 

0001 

0001 

 

Section IV gives details of the proposed approach 
highlighting the heuristic strategy employed and the adaptation 
of a branch prediction strategy for rule selection in an FLC. 
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Section V provides an analysis of the proposed approach and 
gives comparative results of experiments with a few data sets. 

II. BACKGROUND 
This section provides summaries of: 

• rule base condensing using refraction 
• rule weighting 

A. Rule base condensing using Refraction [1] 
This approach aims at exploiting the consistency and rule 

neighboring shown in a rule base. This approach is explained 
here as an example to show the effectiveness of reducing the 
rule base into an encoded subset, which can lead to faster 
inference and also to showcase previous work which has been 
done in order to improve the efficiency of inference in a fuzzy 
system. The proposed approach in Section IV, was tested on 
rule bases condensed using this method.  

In rule base condensing approach, first the rule base is 
encoded and then prime-implicants are derived out of the 
encoded rule base. The prime-implicants are identified as 
follows: 

• Scan the rule table for code words with a 
Hamming distance of 1 and mark the different bit 
as a “don’t-care” using a ‘-‘. The encoding 
mechanism involves using 2-bit sequences to 
represent each possible state and a 4-bit tag to 
indicate the leading implicant in the code. 

• Add these new codes to the new list and check off 
both original codes (Table I & II). The data 
presented gives only the main steps in the 
approach. Interested readers are requested to refer 
[1] for details. 

• Setup a cover table in which the rows are all 
prime-implicants and the columns are min-terms 

• Enter an ‘x’ at the intersection of row i and 
column j if the ith prime-implicant Pi covers the jth 
min-term mj 

• Identify all essential rows and select them for 
inclusion in the potential solution ser T = {S1, S2, 
S3, ….., Sq}, where S1~Sq are inference rules 

• Delete all columns covered by these rows and the 
essential rows themselves. Delete any rows 
without an ‘x’ 

• Reduce T by removing all columns that dominate 
a retained column and continue applying this 
procedure until no further reduction is possible 

Once the prime-implicants are reduced to dominant 
implicants that cover all cases, the implicant table is decoded to 
generate a fresh rule base that will be a reduced version of the 
original one. 

B. Rule Weighting 
Weighted linguistic models make use of expert knowledge 

and a deductive process. The weights applied to a particular 

rule are used to modulate the firing strength of the rule, in other 
words a degree of importance is associated with each rule. In 
addition, complex multidimensional problems have redundant, 
inconsistent & conflicting rules and the size of the rule base 
may also be large. The use of weights in such cases can be seen 
as a local tuning of rules enhancing the robustness, flexibility 
and control compatibility of such systems [2].  

Weight assignment of rules can be achieved in different 
ways. [2] suggests using genetic algorithms (GA) to select a 
subset of rules showing good co-operation & deriving the 
weights associated with these rules. A GA based on the steady-
state approach is used, where the fitness function considers 
objective weighting.   

TABLE II.  RULE TABLE AFTER REDUCTION [1] 

Group Code Word Tag 

0 -000 0100 

1 0-01 

010- 

100- 

-010 

001- 

1000 

1000 

0100 

0010 

0010 

2 1-01 

0-11 

0100 

0010 

3 111- 

1-11 

0001 

0001 

 

Figure 1.  Flowchart of the GA Process 
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The selection scheme used in the GA is based on Baker’s 
stochastic universal sampling together with elitist selection. 
Fig. 1 shows a flowchart of this method. 

A gene is coded as C = C1 + C2, where C1 is a binary 
vector representing the subset of rules obtained from expert 
knowledge and C2 is a real-coded string corresponding to the 
weight used for each rule in C1. The fitness function used 
decrements the importance of each individual fitness value 
when it reaches its goal and penalizes each objective whenever 
its value worsens with respect to the initial solution. The 
crossover operator for C1 is the standard two-point crossover 
while for C2 a hybrid between a BLX-α and an arithmetical 
crossover is used [5]. The restart block prevents getting trapped 
in local minima. When the population converges to similar 
results on multiple iterations, the best individual is kept and the 
rest of the population is generated again.  

[3] on the other hand suggests heuristic rule weight 
specifications based on the concepts of confidence and support 
used in data mining.  Assume that a set of antecedent fuzzy sets 
is given for each attribute. The antecedent part for each rule 
(Aq) is computed by combining the fuzzy sets for all n 
attributes. The consequent Cq for the fuzzy rule Aq => Cq is 
determined by the class with maximum confidence for the 
antecedent Aq

( ) ( ){ }MhClasshAcCAc qqq ,...2,1|max =⇒=⇒   (1) 

where c is the measure of the confidence in an M-class 
classification problem. Hence, there are M consequent classes 
and each rule attributes the result to one of these classes with a 
certain confidence. The rule weight is now defined as the 
certainty grade CFq given by 

                               ( )qqq CAcCF ⇒=                              (2) 

Another definition for the rule weight in [3] is 

                           ( ) ndqqq cCAcCF 2−⇒=                      (3) 

where c2nd is the second largest confidence for the antecedent 
Aq defined by the following equation 

( ){ }qqnd ChMhClasshAcc ≠=⇒= ;,....2,1|max2  

          (4) 

Both the approaches discussed here provide rule weights to 
the antecedent rules and thereby make the process of inference 
efficient. The purpose of discussing these approaches here was 
to throw light on some of the methods used for rule weighting 
as described in literature. This section acts as a prelude to the 
concept of rule weighting. These methods, though not used in 
the proposed approach, are shown here to qualify the need for 
effective rule base handling.  The results obtained by using one 
of these methods are used for comparison with the proposed 
approach. 

Our proposed rule weighting method (Section IV) uses a 
heuristic method to come up with a set of probable rules and 
then predicts which rule to use from them. The approach we 
propose is suitable for single winner classification problems.  

III. BRANCH PREDICTION [6] 
As mentioned earlier, we use a prediction strategy 

borrowed from branch prediction methods used in current day 
processors. This section therefore presents a brief overview of 
branch prediction and strategies used.  

The goal of branch prediction is to allow the processor to 
resolve the outcome of a branch early, thus preventing control 
dependencies from causing stalls and to aid pipelining of 
operations. The effectiveness of a branch prediction scheme 
depends not only on the accuracy, but also on the cost of a 
branch when the prediction is correct or incorrect. The type of 
the predictor used plays a major role in deciding the branch 
penalties involved. The simplest dynamic branch-prediction 
scheme is a branch-prediction buffer or branch history table. It 
is a small memory indexed by the lower portion of the address 
of the branch instruction that contains a bit which says whether 
the branch was recently taken or not. This buffer is effectively 
a cache whose performance depends on both how often the 
prediction is for the branch of interest and how accurate the 
prediction is when it matches. Branch predictors that use the 
behavior of other branches to make a prediction are called 
correlating predictors or two-level predictors. 

TABLE III.  COMBINATIONS AND MEANING OF TAKEN/NOT TAKEN 
PREDICTION BITS 

Prediction Bits Prediction if last 
branch not taken 

Prediction if last 
branch taken 

NT/NT NT NT 

NT/T NT T 

T/NT T NT 

T/T T T 

 

To illustrate the working of a correlating prediction scheme 
consider the following code fragment: 

if (d==0) 

d=1; 

if (d==1) 

A typical instruction sequence generated for the code 
fragment for execution on the processor would look like: 

BNEZ  R1, L1         ; branch b1 (d! =0) 

DADDIU R1, R0, #1     ; d=0, so d=1 

L1: DADDIU R3, R1, #-1  

 BNEZ  R3, L2          ; branch b2 (d! =1) 

…………….. 

L2: 

BNEZ instruction stands for ‘branch on not equal to zero’ 
and the DADDIU instruction stands for ‘data addition’. The 
value of d is assumed to be stored in register R1 initially and 
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R0 & R3 are registers used by the processor for execution of 
instructions. L1 & L2 are the branch labels. For ease of 
understanding, the branches corresponding to the two if 
statements are labeled b1 and b2.  In the current example we 
use two-bit prediction scheme, where the first bit predicts 
assuming that the last branch executed in the pipeline was not 
taken (misprediction) and another prediction that is used if the 
last branch executed was taken. Table III shows all the possible 
combinations, where T stands for branch taken and NT stands 
for not taken. Assuming d has values 0, 1 and 2, the possible 
sequences for execution of the code fragment are shown in 
Table IV. To illustrate how a correlating predictor works, 
assume the sequence above is executed repeatedly. In general, 
the last branch executed is not the same instruction as the 
branch being predicted.  

The action of the correlating predictor when initialized to 
NT/NT is shown in Table V. In this case, the only misprediction 
is on the first iteration, when d=2. The correct prediction of b1 
is because of the choice of values for d, since b1 is obviously 
not correlated with b2. The correct prediction for b2, however, 
shows the advantage of correlating predictors. Even if different 
values for d were chosen, the predictor would correctly predict 
b2 when b1 is not taken on every execution of b2 after one 
initial incorrect prediction. 

TABLE IV.  POSSIBLE EXECUTION SEQUENCES FOR CODE FRAGMENT 

d d = 0? b1 d D = 1? b2 

0 Yes NT 1 yes NT 

1 No T 1 yes NT 

2 No T 2 No T 

TABLE V.  ACTION OF CORRELATING PREDICTOR INITIALIZED TO NT/NT 

d b1 pred b1 
action 

New b1 
pred 

b2 pred b2 
action 

New b2 
pred 

2 NT/NT T T/NT NT/NT T NT/T 

0 T/NT NT T/NT NT/T NT NT/T 

2 T/NT T T/NT NT/T T NT/T 

0 T/NT NT T/NT NT/T NT NT/T 

 

The prediction scheme described above has been tested on 
various benchmarks and on an average the misprediction of the 
scheme is 5-9% [6].   

IV. PROPOSED APPROACH 
The approach we propose in this paper uses a heuristic 

credit allocation scheme to select a set of probable rules that 
can be applied to current state of the antecedents. The approach 
is closely related to assigning rule weights and the selection of 
rules thereof, as will be shown.  

Each time a condition is to be evaluated, an auction is held 
where all the rules in the rule base bid for their solutions to be 
accepted. Each rule is allowed only a single bid, which is a 
certain percentage of its current bank balance, known as its 
strength. This value is analogous to the rule weights discussed 
in previous sections. So, strong rules are more likely to be 
successful in their quest to buy the right to put forward their 
action.  All rules are initialized to the same strength and hence 
have equal probability for being chosen. The rule base adapts 
itself to the working environment after a few cycles and the 
efficiency of the system increases.  

Once the auction is complete, instead of looking for the 
strongest bidder and use it to make an inference as intuition 
would suggest, we take the top four bidders and form a small 
secondary rule base called the rule cache. The size of the cache 
is a variable in the system and needs to be chosen keeping in 
mind the size of the rule base and the average number of rules 
active for given set of inputs. Experiments have shown that a 
large rule cache does not guarantee better performance. 
Currently the choice of the size of the rule cache is limited to 
Monte Carlo experiments with varying sizes. 

This rule cache is now subjected to the correlating 
prediction strategy described in Section III. The predictor is 
initialized to NT/NT as described earlier.  

Once a rule has been predicted and if it is indeed evaluated 
to be the correct solution, the rule is paid a reward reinforcing 
its strength and making it stronger. This update makes the rule 
more probable for the next set of antecedents. Thus, the system 
is adapting to the environment in which it is working by giving 
more importance to relevant rules at a particular instant in time.  

The reinforcement update is driven as: 

                             rSSnew +=                                       (5) 

where S is the strength of the rule and r is the reward value. 
The failing bidding rules are penalized and their strength is 
reduced by applying a penalty tax, thus reducing its probability 
for bidding in the next iteration. This operation if performed as: 

                          SpSnew *)1( −=                                 (6) 

where p is the percentage of penalty being used. To prevent 
unpopular rules from maintaining high strength values, an 
existence tax is levied on all non-bidding rules. This strength 
update is affected as follows: 

                  SeSnew *)1( −=                                     (6) 

where e is the percentage of existence tax being used.  

To enable the usage of both the heuristic and prediction 
strategies, each rule has an associated strength value and a two 
bit prediction. All the rules are initialized to equal strength 
values and values for r, p and e are user-defined. The 
predictions are initialized to NT/NT and are updated upon every 
inference for all rules in the rule cache. The whole process is 
repeated again for the next antecedent inputs.  

The proposed approach makes rule selection a two-level 
process. The first level involves sorting the rule base and 
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TABLE VII.  RESULTS ON GLASS DATASET ascertaining four highest bidders. The second level involves 
predicting which of the rules is to be used. Using the proposed 
approach, the strengths of the rules in the database are 
constantly updated. Thus the rule base is constantly adapting 
itself to provide suitable classifiers very efficiently for a given 
state of the antecedents. The rule strength adoption mechanism 
can be summarized as: 

( )
( )⎪

⎩

⎪
⎨

⎧

−
−
+

=
existence

bidwrong
foundrulecorrect

Se
Sp

rS
Snew

;
;

;

*1
*1      (7) 

Number 
of rules 

No rule 
weights 

(2) based (3) based GA 
based 

Proposed 

3 91.79 91.95 91.95 91.34 92.13 

6 89.91 90.22 90.94 90.51 91.18 

9 92.57 92.98 92.98 92.56 93.04 

12 86.73 87.11 87.35 86.59 87.03 

20 85.28 85.54 86.27 85.93 86.31 

 
V. PERFORMANCE EVALUATION 

The results on the glass dataset are shown in Table VII. 
From the results it can be seen that the proposed approach 
outperforms the GA based rule weight scheme and also both 
the heuristic based weight updated discussed. 

A. Results 
The performance of the system was evaluated against the 

heuristic rule weighting and GA based rule weighting schemes 
described in Section II. The data sets used were the wine data 
and glass data available from the UC Irvine ML database.  

The Wine dataset has 13 variables with 178 samples from 
three classes of wines. The glass dataset has nine variables with 
214 samples from six classes. For the purpose of our 
experiment, we chose four random variables in each set as 
antecedents. The datasets were chosen for comparison with the 
results on the same data sets used in [3].  The rule base in each 
of the experiments was hand-written by analyzing the data. 

The results on the wine dataset are shown in Table VI. 
From the results it is evident that the proposed approach 
performs better than the GA based rule weight scheme and 
outperforms one of the heuristic based weight update schemes 
presented in Section II. 

The simulations were performed using four variables as 
antecedents for both the datasets. The strengths for each system 
were initialized to 10, the reward value was 1, the penalty was 
3% and the existence tax was 1%. 

B. Conclusion 
In this work, we propose a rule selection approach which 

uses heuristics and branch prediction strategies.  The efficiency 
of the approach has been tested on two datasets and the results 
were compared with three other approaches detailed in 
literature. The results show that the performance of the 
proposed approach is better than the rest of the approaches in 
certain cases and close to best in others.  
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