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Abstract— In this paper, we present an axiomatic approach
to developing the theory of type-2 (T2) fuzziness, called fuzzy
possibility theory. We first introduce some fundamental concepts
in this theory, such as fuzzy possibility measure, fuzzy possibility
space, and T2 fuzzy variable. The fuzzy possibility space includes
three parts: the universe, an ample field, and a fuzzy possibility
measure; and the fuzzy possibility measure is defined as a set
function on the ample field taking on regular fuzzy variable
(RFV) values. Then, we define a T2 fuzzy vector as a measurable
map from a fuzzy possibility space (FPS) to the space of real
vectors, and present several concepts associated with T2 fuzzy
vectors, such as secondary possibility distribution function and
T2 possibility distribution function. Finally, to characterize the
properties of T2 fuzzy vectors via possibility distributions, we
propose the marginal secondary possibility distribution function
and mutually independent T2 fuzzy variables.

I. INTRODUCTION

Zadeh [1] introduced T2 fuzzy sets as an extension of
ordinary fuzzy sets in 1975. But T2 fuzzy set didn’t became
popular immediately, it were only investigated by a few
researchers; for instance, Mizumoto and Tanaka [2] discussed
what kinds of algebraic structures the grades of T2 fuzzy sets
form under join, meet and negation, and showed that normal
convex fuzzy grades form a distributive lattace under the join
and meet; Nieminen [3] studied on the algebraic structure of
T2 fuzzy sets; Dubois and Prade [4] investigated the operations
in a fuzzy-valued logic, and Yager [5] applied the T2 fuzzy
set to decision making.

Recently, T2 fuzzy sets have been applied successfully to
T2 fuzzy logic systems to handle linguistic and numerical
uncertainties [6], [7], [8], [9], [10]. A T2 fuzzy logic system
[9] includes a fuzzifier, rule base, fuzzy inference engine, and
output processor; it is characterized by IF-THEN rules, but its
antecedent or consequent sets are T2. As described in [11], a
T2 fuzzy set represents the uncertainty in terms of secondary
membership function and footprint of uncertainty. In pattern
recognition, to enhance the hidden Markov models expressive
power for uncertainty by T2 fuzzy set, Zeng and Liu [12] have
recently presented the T2 fuzzy hidden Markov models, and
applied the models to phoneme classification and recognition
on the TIMIT speech database. To measure the similarity be-
tween two T2 fuzzy sets, Mitchell [13] introduces a similarity
measure and with it to show that T2 fuzzy sets provide indeed
a natural language for formulating classification problems in
pattern recognition. In addition, T2 fuzzy sets have found ap-

plications in overcoming time-varying co-channel interference
and equalization of a nonlinear time-varying channel [14],
[15], processing questionnaire surveys [16], inferencing and
knowledge representation [17], and neural-fuzzy clustering for
classification of sports injuries in the lower leg [18].

In this paper we explore a theoretical framework from which
a T2 theory is constructed, which is referred to as the fuzzy
possibility theory. We introduce several fundamental concepts
in this theory, such as fuzzy possibility measure, FPS, T2 fuzzy
variable, T2 possibility distribution function, marginal T2
possibility distribution function, and mutually independent T2
fuzzy variables. An FPS consists of three parts: the universe,
an ample field, and a fuzzy possibility measure. We define a
fuzzy possibility measure as a set function from the ample
field to a collection of RFVs; and a T2 fuzzy variable as a
measurable map from the FPS to the set of real numbers.
The fuzzy possibility theory is a generalization of the usual
possibility theory [19], [20], [21], [22], [23], [24].

The paper is organized as follows. Section II reviews some
concepts in the possibility theory. In Section III, we present
fuzzy possibility space, in which we introduce fuzzy possibil-
ity measure, and define it as an RFV-valued set function on an
ample field. In Section IV, we first define a T2 fuzzy vector as
a measurable map from a fuzzy possibility space to the space
of real vectors. then propose several fundamental concepts
associated with T2 fuzzy vector, such as secondary fuzzy
possibility distribution function and T2 possibility distribution
function. The properties of T2 fuzzy vectors are discussed
via possibility distributions in Sections V and VI, respec-
tively; Section V discusses the marginal secondary possibility
distribution function and marginal T2 possibility distribution
function, while Section VI deals with the independence of T2
fuzzy variables. Finally, we draw conclusions in Section VII.

II. PRELIMINARIES

Let Γ be the universe of discourse, and an ample field A
on Γ is a class of subsets of Γ that is closed under arbitrary
unions, intersections, and complement in Γ. Let Pos : A 7→
[0, 1] be a set function on the ample field A. Pos is said to be a
possibility measure [21] if it satisfies the following conditions:

1) Pos(∅) = 0, and Pos(Γ) = 1;
2) For any subclass {Ai | i ∈ I} of A (finite, countable
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or uncountable),

Pos

(⋃

i∈I

Ai

)
= sup

i∈I
Pos(Ai).

The triplet (Γ,A,Pos) is referred to as a possibility space,
in which a fuzzy vector is defined as follows.

Definition 1: Let (Γ,A,Pos) be a possibility space. An m-
ary function X = (X1, · · · , Xm) : Γ 7→ <m from the universe
Γ to the space of real vectors is called a fuzzy vector if for
every t = (t1, · · · , tm) ∈ <m, the set {γ ∈ Γ | X(γ) ≤ t} is
an element of A, i.e.,

{γ ∈ Γ | X(γ) ≤ t}
= {γ ∈ Γ | X1(γ) ≤ t1, · · · , Xm(γ) ≤ tm} ∈ A.

(1)

As m = 1, X is usually called a fuzzy variable.
The possibility distribution function of the fuzzy vector X is
defined as

µX(t) = Pos({γ ∈ Γ | X(γ) = t}), t ∈ <m. (2)

In this paper, we often make use of a special class of fuzzy
vectors, called regular fuzzy vector, which is formally defined
as follows.

Definition 2: Let (Γ,A,Pos) be an FPS. An m-ary regular
fuzzy vector X = (X1, X2, · · · , Xm) is defined as a fuzzy
vector from the FPS to the set [0, 1]m, i.e., for any γ ∈ Γ,

X(γ) = (X1(γ), X2(γ), · · · , Xm(γ)) ∈ [0, 1]m.

As m = 1, X is called a regular fuzzy variable (RFV).
In the following, we denote by R([0, 1]) as the collection

of all RFVs on [0, 1].
Example 1: An RFV which only takes on value 0 with

possibility 1 is denoted by

0̃ ∼
(

0
1

)
,

while an RFV which only takes on value 1 with possibility 1
is denoted by

1̃ ∼
(

1
1

)
.

Example 2: The following function X is a discrete RFV

X ∼
(

0.2 0.4 0.6 0.8 1
0.3 0.7 1 0.9 0.5

)

which takes on values 0.2, 0.4, 0.6, 0.8, and 1 with possibility
0.3, 0.7, 1, 0.9, and 0.5, respectively.

Definition 3 ([25]): Let Xi, i = 1, · · · , n be mi-ary regular
fuzzy vectors defined on a possibility space (Γ,A,Pos),
respectively. They are said to be mutually independent if

Pos{γ ∈ Γ | X1(γ) = u1, · · · , Xn(γ) = un}
= min1≤i≤n Pos{γ ∈ Γ | Xi(γ) = ui} (3)

for any ui = (u(i)
1 , · · · , u

(i)
mi) ∈ [0, 1]mi , and i = 1, 2, · · · , n.

Moreover, a family of regular fuzzy vectors {Xi, i ∈ I} is
said to be mutually independent if for each integer n, and i1 <
i2 < · · · < in, the regular fuzzy vectors Xik

, k = 1, 2, · · · , n
are mutually independent.

III. FUZZY POSSIBILITY SPACE

It is known that in possibility theory, the possibility measure
and the possibility distribution function of a fuzzy variable can
be determined from each other.

More specifically, if Pos is a possibility measure, then the
possibility distribution function of X can be determined by
Eq.(2); Conversely, if µ : < 7→ [0, 1] is a map from < to [0, 1]
such that supx∈< µ(x) = 1, then the set function Pos defined
by

Pos(A) = sup
t∈A

µ(t), A ∈ P(<) (4)

is a possibility measure [19].
We now suppose that µ : < 7→ R([0, 1]) is a map from <

to a collection of RFVs. In this case, the set function Pos
defined by Eq. (4) is not a crisp number in [0, 1] but an
RFV. Consequently, to deal with T2 fuzziness, it is required
to extend [0, 1]-valued set function to the case of RFV-
valued one, which motivates us to present the following novel
concept.

Definition 4: Let A be an ample field on the universe Γ, and
P̃os : A 7→ R([0, 1]) a set function on A such that {P̃os(A) |
A 3 A atom} is a family of mutually independent RFVs. We
call P̃os a fuzzy possibility measure if it satisfies the following
conditions:

Pos1) P̃os(∅) = 0̃;
Pos2) For any subclass {Ai | i ∈ I} of A (finite, countable

or uncountable),

P̃os

(⋃

i∈I

Ai

)
= sup

i∈I
P̃os(Ai).

Moreover, if µP̃os(Γ)
(1) = 1, then we call P̃os a regular

fuzzy possibility measure.
We call the triplet (Γ,A, P̃os) as a fuzzy possibility space

(FPS).
Remark 1: A regular fuzzy possibility measure is a gen-

eralization of the scalar possibility measure, i.e., if for any
A ∈ A, P̃os(A) is a crisp number in [0, 1] instead of an RFV,
then P̃os is just a possibility measure.

Remark 2: The condition µP̃os(Γ)
(1) = 1 designates that

the RFV P̃os(Γ) takes on value 1 with possibility 1. In
addition, the RFV supi∈I P̃os(Ai) is the supremum of the
family of RFVs {P̃os(Ai), i ∈ I}, which is well-defined based
on the infinite-dimensional product possibility theory [26].

Remark 3: If the universe Γ is a finite set, then the axiom
Pos2) in Definition 4 can be replaced by

P̃os

(
n⋃

i=1

Ai

)
= sup

1≤i≤n
P̃os(Ai)

for any finite subclass {Ai, i = 1, · · · , n} of A.
Remark 4: If A is the power set of the universe Γ, then the

atoms of A are all single point sets {γ}, γ ∈ Γ. Therefore, in
order to define a fuzzy possibility measure on A, it suffices
to give the value of P̃os at each single point set.

617

Proceedings of the 2007 IEEE Symposium on 
Foundations of Computational Intelligence (FOCI 2007)



We now provide an example to show how to define a fuzzy
possibility measure.

Example 3: Let Γ = {γ1, γ2, γ3}, and A = P(Γ). Define a
set function P̃os : P(Γ) 7→ R([0, 1]) as follows

P̃os({γ1}) = (0.3, 0.4, 0.5),

P̃os({γ2}) = 1̃,

P̃os({γ3}) = (0.5, 0.6, 0.7),

and for any subset A of Γ,

P̃os(A) = sup
γ∈A

P̃os({γ}),

where (0.3, 0.4, 0.5), and (0.5, 0.6, 0.7) are supposed to be
mutually independent RFVs. Then, P̃os is a fuzzy possibility
measure on P(Γ), and (Γ,P(Γ), P̃os) is an FPS. In Fig.1, we
show the possibility distribution functions of RFVs P̃os({γ1}
and P̃os({γ3}, respectively.

We now show how to calculate the possibility distribution
of RFV P̃os({γ1, γ2}). Let X1,2, X1, and X2 be the RFVs of
P̃os({γ1, γ2}), P̃os({γ1}) and P̃os({γ2}), respectively.

By the definition of P̃os,

P̃os({γ1, γ2}) = P̃os({γ1}) ∨ P̃os({γ2}),
i.e., X1,2 = X1 ∨ X2. Therefore, the possibility distribution
function of X1,2 is

µX1,2(x)
= Pos({X1,2 = x})
= Pos({X1 ∨X2 = x})
= Pos

(⋃
x1∨x2=x{X1 = x1, X2 = x2}

)
= supx1∨x2=x Pos({X1 = x1, X2 = x2}).

By the independence of X1 and X2,

Pos({X1 = x1, X2 = x2})
= Pos({X1 = x1}) ∧ Pos({X2 = x2})
= µX1(x1) ∧ µX2(x2),

where µX1(x1) and µX2(x2) are the possibility distribution
functions of X1 and X2, respectively, and given by

µX1(x1) =





10x1 − 3, if 0.3 ≤ x1 ≤ 0.4
5− 10x1, if 0.4 < x1 ≤ 0.5
0, otherwise

and
µX2(x2) =

{
1, if x2 = 1
0, otherwise.

Combining the above gives the possibility distribution function
of X1,2 as follows

µX1,2(x)
= supx1∨x2=x (µX1(x1) ∧ µX2(x2))

=
{

1, if x = 1
0, otherwise.

Remark 5: Although RFVs X1,2 and X2 have the identical
possibility distribution function, they are not the same RFV.
This is similar to what we encounter in probability theory, we
have independent and identically distributed random variables,
i.e., two different random variables may have an identical
probability distribution function.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. The possibility distribution functions of P̃os({γ1}) and P̃os({γ3})
defined in Example 3.

IV. T2 FUZZY VARIABLE

So far, we have established the FPS. In this section, we
will justify our approach by showing that certain definitions
existing in the literature can be obtained from the FPS, and in
addition, the new results which are obtained in the following
will lead to credible interpretations for our variable-based
arguments.

One of the interesting consequences of FPS is that it leads
to the definition of a T2 fuzzy set on <m which we will call
a T2 fuzzy vector. The T2 fuzzy vector plays the same role in
fuzzy possibility theory as a random vector does in probability
theory, it can be formally defined as follows.

Definition 5: Let (Γ,A, P̃os) be an FPS. A map ξ =
(ξ1, ξ2, · · · , ξm) : Γ 7→ <m is called an m-ary T2 fuzzy
vector if for any x = (x1, x2, · · · , xm) ∈ <m, the set
{γ ∈ Γ | ξ(γ) ≤ x} is an element of A, i.e.,

{γ ∈ Γ | ξ(γ) ≤ x}
= {γ ∈ Γ | ξ1(γ) ≤ x1, · · · , ξm(γ) ≤ xm} ∈ A.

(5)

As m = 1, the map ξ : Γ 7→ < is called a T2 fuzzy variable.
Remark 6: If the ample field A is replaced by the power

set of Γ, i.e., A = P(Γ), then the requirement in Eq. (5) can
be removed.

The concept of T2 fuzzy vector has been employed in the
current development since it plays the same role as a random
vector does in probability theory. We are suggesting it is a
more appropriate definition for a T2 fuzzy set on <m. In
the literature, a T2 fuzzy set is usually defined via its T2
membership function; whereas in this paper, we obtain the T2
membership function as the transformation of P̃os from the
universe Γ to the space <m via T2 fuzzy vector, which is
formally defined as follows.

Definition 6: Let ξ = (ξ1, ξ2, · · · , ξm) be a T2 fuzzy vector
defined on an FPS (Γ,A, P̃os). The secondary possibility
distribution function of ξ, denoted by µ̃ξ(x), is a map <m 7→
R[0, 1] such that

µ̃ξ(x) = P̃os {γ ∈ Γ | ξ(γ) = x} , x ∈ <m (6)
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while the T2 possibility distribution function of ξ, denoted by
µξ(x, u), is a map <m × Jx 7→ [0, 1] such that

µξ(x, u) = Pos
{
µ̃ξ(x) = u

}
, (x, u) ∈ <m × Jx, (7)

where Pos is the possibility measure induced by the distribu-
tion of µ̃ξ(x), and Jx ⊂ [0, 1] is the support of µ̃ξ(x), i.e.,
Jx = {u ∈ [0, 1] | µξ(x, u) > 0}.

The secondary possibility distribution function and the T2
possibility distribution function of ξ = (ξ1, ξ2, · · · , ξm) are
also refereed to as the secondary joint possibility distribution
function and the T2 joint possibility distribution function of
ξi, i = 1, 2, · · · ,m, respectively.

Remark 7: We present the concepts of T2 fuzzy variable
and T2 possibility distribution function with the intension of
adopting variable-based approach to dealing with T2 fuzziness,
which facilitate us to investigate fuzzy possibility theory via
modern mathematical tools. For instance, by T2 fuzzy vector
ξ, we can turn the study of the abstract FPS (Γ,A, P̃os) to that
of the concrete FPS (<m,P(<m), Π̃), where Π̃ is the fuzzy
possibility measure on P(<m) induced by ξ via the formula

Π̃(A) = P̃os({γ ∈ Γ | ξ(γ) ∈ A}), A ∈ P(<m).

Obviously, the FPS (<m,P(<m), Π̃) is easier to understand
and use than the abstract one, and it also allows us to apply
real analysis approach to dealing with T2 fuzziness.

Definition 7: The support of a T2 fuzzy vector ξ is defined
as

supp ξ = {(x, u) ∈ <n × [0, 1] | µξ(x, u) > 0} , (8)

where µξ(x, u) is the T2 possibility distribution function of ξ.
Remark 8: The concept of support of a T2 fuzzy vector is

similar to the footprint of a T2 fuzzy set defined in [11].
Example 4: Let Γ = (0, 1), and A = P(Γ). Define a set

function P̃os : P(Γ) 7→ R([0, 1]) as follows

P̃os({γ}) = (γ3, γ2, γ), γ ∈ Γ

and for any A ∈ P(Γ),

P̃os(A) = sup
γ∈A

P̃os({γ}),

where {(γ3, γ2, γ), γ ∈ Γ} is supposed to be a family of
mutually independent regularly triangular fuzzy variables, and
for fixed γ ∈ Γ, the possibility distribution function of
(γ3, γ2, γ) is given by

µ(x) =





x−γ3

γ2−γ3 , if γ ≤ x ≤ γ2

γ2−x
γ−γ2 , if γ ≤ x ≤ γ2

0, otherwise.

Then P(Γ) is a fuzzy possibility measure, and (Γ,P(Γ), P̃os)
is an FPS.

Let ξ : Γ 7→ < be a function form Γ to < such that

ξ(γ) = γ, γ ∈ Γ.

Then ξ is a T2 fuzzy variable on (Γ,P(Γ), P̃os). In Fig. 1,
we show the support of ξ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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0.7

0.8

0.9

1

Fig. 2. The support of T2 fuzzy variable ξ defined in Example 4.

V. MARGINAL T2 POSSIBILITY DISTRIBUTION

When we talk about a T2 fuzzy vector ξ, we usually mean 1)
ξ is defined on some FPS; and 2) ξ has known secondary pos-
sibility distribution and T2 possibility distribution functions.
In this section, we will deal with the properties of T2 fuzzy
vectors via possibility distributions.

Let ξ = (ξ1, ξ2, · · · , ξm) be a T2 fuzzy vector defined on
an FPS (Γ,A, P̃os). According to Definition 6, the secondary
possibility distribution function of ξ is

µ̃ξ(x1, x2, · · · , xm)
= P̃os {γ | ξ1(γ) = x1, ξ2(γ) = x2, · · · , ξm(γ) = xm} ,

where (x1, x2, · · · , xm) ∈ <m. Then our question is what are
the secondary possibility functions of ξi, i = 1, 2, · · · ,m; or
more generally, what is the secondary possibility distribution
function of a subvector of ξ. The secondary possibility distri-
bution of a subvector of ξ is called marginal. In the following,
we express the marginal secondary possibility distributions
of ξi, i = 1, 2, · · · ,m in terms of their joint distribution
µ̃ξ(x1, x2, · · · , xm).

Let 1 ≤ r ≤ m, and 1 ≤ i1 < i2 < · · · < ir ≤ m. Since

{γ ∈ Γ | ξi1(γ) = xi1 , · · · , ξir
(γ) = xir

}
=

⋃
xj1 ,xj2 ,··· ,xjm−r

{γ | ξ1(γ) = x1, · · · , ξm(γ) = xm},

we deduce that (ξi1 , ξi2 , · · · , ξir
) is a T2 fuzzy vector on

the FPS (Γ,A, P̃os). In addition, noting that {γ ∈ Γ |
ξ1(γ) = x1, ξ2(γ) = x2, · · · , ξm(γ) = xm} is an atom
of A for any (x1, x2, · · · , xm) ∈ <m, it follows from the
definition of P̃os that P̃os{γ ∈ Γ | ξ1(γ) = x1, ξ2(γ) =
x2, · · · , ξm(γ) = xm}, (x1, x2, · · · , xm) ∈ <m is a family of
mutually independent RFVs.

As a consequence, the marginal secondary possibility dis-
tribution function is formally as follows.

Definition 8: Let ξ = (ξ1, ξ2, · · · , ξm) be a T2 fuzzy vector
on an FPS (Γ,A, P̃os). For any 1 ≤ r ≤ m, and 1 ≤ i1 <
i2 < · · · < ir ≤ m, the marginal secondary possibility
distribution function of (ξi1 , ξi2 , · · · , ξir

) with respect to ξ
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is defined as
µ̃(ξi1 ,ξi2 ,··· ,ξir )(xi1 , · · · , xir )
= sup

xj1 ,··· ,xjm−r

P̃os{γ | ξ1(γ) = x1, · · · , ξm(γ) = xm}
= sup

xj1 ,··· ,xjm−r

µ̃ξ(x1, x2, · · · , xm)

(9)
for any (xi1 , xi2 , · · · , xir

) ∈ <r, where {j1, j2, · · · , jm−r} =
{1, 2, · · · ,m}\{i1, i2, · · · , ir}, and suptj1 ,tj2 ,··· ,tjm−r

is the
supremum of µ̃ξ(x1, x2, · · · , xm) over <m−r.

Moreover, the marginal T2 possibility distribution function
of (ξi1 , · · · , ξir ) with respect to ξ is defined as

µ(ξi1 ,ξi2 ,··· ,ξir )(xi1 , xi2 , · · · , xir
, u)

= Pos
{

µ̃(ξi1 ,ξi2 ,··· ,ξir )(xi1 , xi2 , · · · , xir
) = u

} (10)

for any (xi1 , xi2 , · · · , xir , u) ∈ <m−r × J(xi1 ,xi2 ,··· ,xir ),
where Pos is the possibility induced by the possibility
distribution of µ̃(ξi1 ,ξi2 ,··· ,ξir )(xi1 , xi2 , · · · , xir

),
and J(xi1 ,xi2 ,··· ,xir ) ⊂ [0, 1] is the support of
µ̃(ξi1 ,ξi2 ,··· ,ξir )(xi1 , xi2 , · · · , xir

).
We now provide an example to show the concept of

marginal secondary possibility distribution function.
Example 5: Let (Γ,P(Γ), P̃os) be the FPS defined in Ex-

ample 3. Define a map ξ = (ξ1, ξ2) : Γ 7→ <2 as follows

ξ(γ) =





(−6, 1), if γ = γ1

(−5, 2), if γ = γ2

(−4, 1), if γ = γ3.

Then ξ is a T2 fuzzy vector. Find the marginal secondary
possibility distribution functions of ξ1 and ξ2, respectively.
First, according to Definition 5, the secondary possibility
distribution function of ξ is

µ̃ξ(x1, x2)
= P̃os{γ ∈ Γ | ξ1(γ) = x1, ξ2(γ) = x2},

where (x1, x2) ∈ <2. As (x1, x2) = (−6, 1), we have

µ̃ξ(−6, 1) = P̃os{γ | ξ1(γ) = −6, ξ2(γ) = 1}.
By the definitions of ξ1 and ξ2, we have ξ1(γ1) = −6 and
ξ2(γ1) = 1. It follows from the definition of P̃os that

µ̃ξ(−6, 1) = P̃os({γ1}) = (0.3, 0.4, 0.5).

Using the similar method, we can obtain the following calcu-
lation result

µ̃ξ(x1, x2) =





(0.3, 0.4, 0.5), if (x1, x2) = (−6, 1)
1̃, if (x1, x2) = (−5, 2)
(0.5, 0.6, 0.7), if (x1, x2) = (−4, 1)
0̃, otherwise.

Since (ξ1, ξ2) takes on values (−6, 1), (−5, 2), and (−4, 1),
respectively, we deduce that ξ1 takes on values −6,−5, and
−4, respectively; while ξ2 takes its values in {1, 2}.

We first calculate the marginal secondary possibility distri-
bution function µ̃ξ1

(t1) of ξ1. By Definition 8, we have

µ̃ξ1
(t1) = sup

t2∈<
P̃os {γ | ξ1(γ) = t1, ξ2(γ) = t2} .

If t1 = −6, then we have

{γ | ξ1(γ) = −6, ξ2(γ) = t2} = {γ1}
for t2 = 1, and

{γ | ξ1(γ) = −6, ξ2(γ) = t2} = ∅
for t2 6= 1. As a consequence, we have

µ̃ξ1
(−6)

= supt2∈< P̃os {γ | ξ1(γ) = −6, ξ2(γ) = t2}
= P̃os({γ1}) = (0.3, 0.4, 0.5).

It is similar to deduce

µ̃ξ1
(−5) = P̃os({γ2}) = 1̃,

µ̃ξ1
(−4) = P̃os({γ3}) = (0.5, 0.6, 0.7).

Combining the above gives

µ̃ξ1
(x1) =





(0.3, 0.4, 0.5), if x1 = −6
1̃, if x1 = −5
(0.5, 0.6, 0.7), if x1 = −4
0̃, otherwise.

Moreover, we deduce the marginal secondary possibility
distribution function of ξ2 as follows

µ̃ξ2
(x2) =





(0.5, 0.6, 0.7), if x2 = 1
1̃, if x2 = 2
0̃, otherwise.

VI. INDEPENDENCE

In this section, we continue to study the properties of
T2 fuzzy vectors. Let ξi, i = 1, 2, · · · ,m be T2 fuzzy
variables on an FPS (Γ,A, P̃os). We now focus our atten-
tion on the converse problem discussed in Section V, and
assume that the secondary possibility distribution functions
of ξi, i = 1, 2, · · · ,m are known. Our problem is how to
determine the secondary joint possibility distribution function
of (ξ1, ξ2, · · · , ξm) according to the marginal distributions of
its components.

Generally speaking, the joint secondary possibility distri-
bution function of a T2 fuzzy vector cannot be determined
by its marginal secondary possibility distribution functions
before the relations among marginal secondary possibility dis-
tribution functions have been specified. Example 5 is such an
example. But in the case that T2 fuzzy variables are mutually
independent, their secondary possibility distribution functions
can determine their joint secondary possibility distribution
function. Hence, to characterize the relationship among T2
fuzzy variables via their possibility distributions, we introduce
the mutually independent T2 fuzzy variable as follows.

Definition 9: Let ξi, i = 1, 2, · · · ,m be T2 fuzzy variables
on an FPS (Γ,A, P̃os). They are said to be mutually indepen-
dent if

P̃os ({γ | ξ1(γ) ∈ B1, · · · , ξm(γ) ∈ Bm})
= min

1≤i≤m
P̃os ({γ | ξi(γ) ∈ Bi}) (11)
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for any Bi ⊂ <, i = 1, · · · ,m, where P̃os({γ | ξi(γ) ∈ Bi}),
i = 1, 2, · · · ,m are supposed to be mutually independent
RFVs.

Moreover, a family {ξi | i ∈ I} of T2 fuzzy variables is
said to be mutually independent if for each integer m ≥ 2,
and i1 < i2 < · · · < im, the T2 fuzzy variables ξik

, k =
1, 2, · · · ,m are mutually independent.

Remark 9: The implications of mutually independent T2
fuzzy variables include the following two aspects: For any
subsets Bi ⊂ <, i = 1, 2, · · · ,m,

1) The values that RFV P̃os({γ | ξ1(γ) ∈ B1, ξ2(γ) ∈
B2, · · · , ξm(γ) ∈ Bm}) takes are defined by the
values that RFVs P̃os({γ | ξi(γ) ∈ Bi}), i =
1, 2, · · · ,m take via the operations of the minimum
operator.

2) The possibility distribution function of P̃os({γ ∈ Γ |
ξ1(γ) ∈ B1, ξ2(γ) ∈ B2, · · · , ξm(γ) ∈ Bm}) is
determined by the possibility distribution functions
of P̃os{γ ∈ Γ | ξi(γ) ∈ Bi}, i = 1, 2, · · · ,m as
well as their independence.

VII. CONCLUSION

In this study, to deal with T2 fuzziness, we constructed a
framework of fuzzy possibility theory, in which we introduced
some fundamental concepts.

1) We defined fuzzy possibility measure as an RFV-
valued set function on an ample field, so it general-
izes the scalar possibility measure in the literature.

2) We defined a T2 fuzzy vector as a measurable map
from an FPS to the space of real vectors. Several fun-
damental concepts associated with T2 fuzzy vectors,
such as secondary possibility distribution function
and T2 possibility distribution function, have been
presented.

3) To characterize the properties of T2 fuzzy vectors via
possibility distributions, we proposed the marginal
secondary possibility distribution function and mu-
tually independent T2 fuzzy variables.

Based on the work of this paper, we will continue to
investigate the proposed fuzzy possibility theory as well as
its applications, the detailed results will be presented in our
future papers.
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