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Abstract— This paper presents the geometric defuzzifier for
generalised type-2 fuzzy sets. This defuzzifier can be executed
in real-time and can therefore be applied to control and other
real world problems. We believe this to be a significant step
forward for generalised type-2 fuzzy logic systems.

I. INTRODUCTION

Type-1 fuzzy logic systems cannot deal appropriately
with imprecision and uncertainty [14]. This is because the
membership functions of type-1 fuzzy systems are precise.
Type-2 fuzzy systems give an improved performance in the
face of uncertainty and imprecision due to the membership
functions being fuzzy [2], [8]. The type-2 literature is largely
focused on interval type-2 fuzzy logic, a cut-down version of
generalised type-2 fuzzy logic. This is partly due to a number
of successful techniques (e.g. [12], [17]) for reducing the
computational complexity of such systems. Some work has
been done on reducing the complexity of the logic operators
used in a generalised type-2 fuzzy system [13], [3], [6].
However, the main bottleneck in a type-2 fuzzy logic system,
defuzzification remains a problem. This paper presents a
geometric approach to the defuzzification of a generalised
type-2 fuzzy set. It is demonstrated both symbolically and
empirically, that the geometric approach yields a massive
reduction in computational complexity and consequently a
huge increase in execution speed.

The rest of this paper is organised as follows. Section
II introduces interval and generalised type-2 fuzzy sets.
Section III introduces type-reduction, the only defuzzification
technique for generalised type-2 fuzzy set current available.
Section IV introduces the notion of geometric defuzzifi-
cation. Section V describes the geometric defuzzifier for
generalised type-2 fuzzy sets. Section VI explores the reduc-
tion in computational complexity achieved by the geometric
defuzzifer. Section VII concludes this work, stating outcomes
and pointing to future avenues of research.

II. TYPE-2 FUZZY SETS

Type-2 fuzzy sets have a fuzzy membership function,
modelling the imprecise nature of a fuzzy membership grade.
As the field has developed, two main categories of type-2
fuzzy set have emerged; generalised and interval. Generalised
type-2 fuzzy sets model a fuzzy membership grade as a fuzzy
number between zero and one. Type-2 interval fuzzy sets
model a fuzzy membership grade as a crisp interval in [0,1].
Generalised and interval type-2 fuzzy sets are defined below.

Definition 1: A Generalised Type-2 Fuzzy Set
At each value of x, such that x ∈ X, in the generalised type-2
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fuzzy set Ã, i.e., µÃ(x) maps to a secondary membership
function f (x), which maps values in [0,1] to values in
[0,1]. Let the domain of the secondary membership function
denoted by Jx then;

Ã =
Z

x∈X

[Z
u∈Jx

fx(u)/u

]/
x (1)

where Jx ⊆ [0,1], x ∈ X, u ∈ [0,1] and fx(u) ∈ [0,1]. Adapted
from Mendel And John [16].
The membership grade of a type-2 fuzzy set is called a
secondary membership function. The secondary membership
function maps possible primary membership grades of the
set to their respective secondary membership grades. So, the
membership grade of a type-2 fuzzy set is itself a fuzzy set.

Definition 2: A Type-2 Interval Fuzzy Set
At each value of x, such that x∈X, in the type-2 type-2 fuzzy
set Ã, µÃ(x) maps to a secondary membership function f (x),
which map values in [0,1] to values in {0,1}. Let the domain
of the secondary membership function denoted by Jx then;

Ã =
Z

x∈X

[Z
u∈Jx

1/u

]/
x (2)

Where Jx ⊆ [0,1], x ∈ X and u ∈ [0,1]. Adapted from Mendel
[15].
Type-2 interval fuzzy sets are a limited version of the gen-
eralised type-2 fuzzy set where the secondary membership
grade is always 1. This limitation allows type-2 interval
fuzzy sets to be processed a great deal more quickly than
generalised type-2 fuzzy sets. This can be exploited is by
modelling an interval type-2 fuzzy set as two type-1 fuzzy
sets, one for the upper and one for the lower bound of the
membership function. This model has led to many new and
more efficient ways of performing logical operations.

III. TYPE-REDUCTION

Type-2 fuzzy sets become useful when deployed in a type-
2 fuzzy logic system as depicted in Fig. 1. The job of a
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Fig. 1. The Architecture of a Type-2 Fuzzy Logic System.

type-2 fuzzy logic system is to take decisions by logical
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reasoning, reaching crisp conclusions based on crisp inputs.
In this deductive reasoning process, type-2 fuzzy sets are
used to model the concepts being reasoned with. Therefore
the truth of a proposition is measured as an interval when
interval type-2 fuzzy sets are used and is measured as a type-
1 fuzzy set when generalised type-2 fuzzy sets are used. It is
this complex model of a proposition of truth that gives type-
2 fuzzy logic its expressive power and the ability to better
cope with uncertainties.

This sophisticated reasoning system with additional mod-
elling capabilities also requires additional processing. The
major bottleneck when processing a type-2 fuzzy system is
type-reduction [17]. So serious is this computational prob-
lem that prior to this research, no time-critical applications
of generalised type-2 fuzzy logic have been reported. For
interval systems the Karnik-Mendel iterative algorithms [12]
and later the Wu-Mendel [17] minimax uncertainty bounds
have overcome this bottleneck.

Type-reduction [12] takes a type-2 fuzzy set and reduces it
to a type-1 fuzzy set. Type-reducing an interval type-2 fuzzy
set results in a crisp interval. Type-reducing a generalised
type-2 fuzzy set results in a type-1 fuzzy set.

A. Type-Reducing Generalised Type-2 Fuzzy Sets

Broadly speaking type-reduction works as follows. The
Mendel-John representation theorem [16] formalises the no-
tion that a type-2 fuzzy set can be represented as a collection
of embedded type-2 fuzzy sets. Each of these embedded type-
2 fuzzy sets has a centroid that can be calculated a number of
ways (centroid, centre of set, height). Each of these centroid
values provides a point in the domain of the type-reduced
set. The membership grade of a point is found by taking a
t-norm of all the secondary grades of the embedded set that
produced that point. More formally:

Definition 3: Type-Reduction: The Generalised Cen-
troid
The generalized centroid (GC) gives a possibilistic distribu-
tion of the centroids of a type-2 fuzzy set. Let Ã be a discrete
type-2 fuzzy set with L discrete points in its domain. Let n
be the number of embedded type-2 sets required to represent
Ã using the Mendel-John representation theorem [16]. The
generalised centroid of Ã may be given as

GCÃ =
n

∑
i=1

[�L
j=1 µÃi

e
(xj,uj)]

/
∑L

j=1 xjuj

∑L
j=1 xj

(3)

where µÃi
e
(xj,uj), xj and uj follow from the definition

of a type-2 embedded set given in equation (4) and
�L

j=1 µÃi
e
(xj,uj) is the t-norm of all values of µÃi

e
(xj,uj) from

1 to L.
For discrete universes of discourse X and U, an em-

bedded type-2 set Ãe has N elements, where Ãe con-
tains exactly one element from Jx1 ,Jx2 , . . . ,JxN , namely
u1,u2, . . . ,uN , each with its associated secondary grade,
namely fx1(u1), fx2(u2), . . . , fxN (uN), i.e.,

Ãe =
N

∑
i=1

[fxi(ui)/ui]/xi ui ∈ Jxi ⊆ U = [0,1] (4)

where Ãj
e is the jth embedded set in Ã and Mi is the number

of points in the domain of the ith secondary membership
function of Ã. The number of embedded sets n, within a
type-2 fuzzy set is given by equation (5).

n =
N

∏
i=1

Mi (5)

As the number of points in the the primary and secondary
domains increase, the number embedded sets that need to
be processed increases dramatically. Figure 2 depicts this
increase for primary and secondary domain cardinalities of
0 to 10. Note the logarithmic scale on the y-axis of Figure
2.

Fig. 2. Number of Embedded Sets Required to Model Type-2 Fuzzy Set
of Primary and Secondary Discretisation Levels Between Zero and Ten.

B. Type-Reducing Interval Type-2 Fuzzy Sets

For generalised type-2 fuzzy sets the generalised centroid
is currently the only method available for defuzzifying a
type-2 fuzzy set, other than the geometric defuzzifier pre-
sented in this paper. For interval type-2 fuzzy sets, in addition
to the generalised defuzzifier there are the Karnik-Mendel
[12] iterative algorithms and the Wu-Mendel [17] minimax
uncertainty bounds. The generalised centroid of a type-2
interval fuzzy set Ã over the domain X is given below.

GCÃ =
Z

θ1∈Jx1

. . .
Z

θ1∈JxN

1

/
∑N

i=1 xiθi

∑N
i=1 θi

= [Cl,Cr] (6)

where JxN is the secondary membership grade at N in the
secondary membership function Jx and x ∈ X. Since it is
a crisp interval, the type-reduced set C only needs two
endpoints to define it, Cl and Cr. Each of these points
come from the centroid values of a set that is embedded
in Ã. The Karnik-Mendel iterative algorithms exploit the
properties of the centroid operation to find these two sets
with a relatively low amount of computational effort. The
Wu-Mendel minimax uncertain bounds procedure identifies
the four embedded sets within Ã that can be combined to
give the best approximation of the centroid of Ã. Unlike the
iterative method, the Wu-Mendel uncertainty bounds have a
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finite level of computation that can be calculated prior to
execution. This is critical for real-time control systems.

This Section has discussed the process of type-reduction.
No matter which technique is used or whether general or
interval type-2 fuzzy sets are the subject, type-reduction is
trying to achieve the same goal. This goal is to identify the
embedded sets that represent the centroid of a given set. With
generalised type-2 fuzzy sets, the sheer number of embedded
sets make type-reduction by far the most computationally
expensive stage of the inference process. To achieve a result
in reasonable computational time a different approach must
be taken. The next Section describes such an approach,
geometric defuzzification.

IV. GEOMETRIC DEFUZZIFICATION

The centre of area defuzzifier is commonly used in type-
1 fuzzy logic. This defuzzifier finds the domain value of
the centre of the area encompassed by the type-1 fuzzy sets
membership function (see Fig 3). It is natural and intuitive

0

1

µ

�

Centroid
Fig. 3. The Centre of Area of a Type-1 Fuzzy Set

that such an operation gives the centroid of a fuzzy set. If
a fuzzy set is characterised by its membership function then
the centre of that fuzzy set must surely equate to the centre
of that fuzzy sets membership function. This is the approach
taken with geometric defuzzification. One way to measure
the centroid of a fuzzy set of any type is the geometric centre
of the area encompassed by that sets membership function.

In [5] we presented a method for finding the geometric
centre of the area encompassed by the membership function
of a interval type-2 fuzzy set. We now review this method as
it forms the basis for the generalised geometric approach
described in the next Section of this paper. Let the area
encompassed by the membership function of an interval type-
2 fuzzy set be a polygon P. P is formed by connecting the
upper and lower membership functions of the interval type-2
fuzzy set. Consider the example interval type-2 fuzzy set Ã
depicted in Figure 4(a). The upper and lower membership
functions of Ã form the polygon P, depicted in Figure 4(b).
One method of finding the centre of the area of the polygon
P is to model P as a collection of simple triangles t0 . . . t3 as
depicted in Figures 5 (a) to (c). Each triangle ti consists of
the origin vertex (0,0) and two consecutive vertices from P.
This is by no means the only method of modelling P with
triangles, this method however, does utilise a computational
simple algorithm for identifying these triangles. The centre

(a) Ã

1

0
0 X

µ

µÃ

µ
Ã

(b) P

1

0
0 X

µ

(x0 ,y0)

(x1 ,y1)

(x2 ,y2)

(x3 ,y3)

Fig. 4. (a) The Polygon PCR .

(a) (b)

(c) (d)

t0 t1

t2 t3

Fig. 5. The Triangles t0, t1, t2 and t3.

of the area P can then be given as the weighted average of
the centroids and areas of each of these triangles [1]. This
weighted average calculation is given by equation (7) which
reduces to equation (8).

Cx =

n
∑

i=0
(

xi+xi+1
3

xiyi+1−xi+1yi
2 )

n
∑

i=0

xiyi+1−xi+1yi
2

(7)

Cx =

n
∑

i=0
(xi + xi+1)(xiyi+1 − xi+1yi)

3(
n
∑

i=0
xiyi+1 − xi+1yi)

(8)

This Section has given a method for finding the centroid
of an interval type-2 fuzzy set using only geometry. This
geometric model gives a low computation alternative to
type-reduction that complements the Wu-Mendel minimax
uncertainty bounds. The approach builds on the geometric
model of type-1 fuzzy logic presented in [4]. So, for the
type-2 interval approach the geometric model has given an
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alternative view, with alternative methods that complement
existing techniques. The next Section extends these methods,
presenting the application of the geometric model to gener-
alised type-2 fuzzy sets. It will be shown that this application
yields a massive reduction in computational complexity.

V. THE GEOMETRIC DEFUZZIFIER FOR GENERALISED

TYPE-2 FUZZY SETS

General type-2 fuzzy sets are truly 3-dimensional entities.
The continuous secondary membership grades provide an
additional degree of freedom, the third dimension. We believe
it is this additional degree of freedom that allows generalised
type-2 fuzzy systems to outperform their type-1 and interval
type-2 counterparts.

It is clear that 3-dimensional geometric primitives must
be used when modelling a generalised type-2 fuzzy set as
a geometric object. The membership function of a type-2
fuzzy set is a collection of points in 3-dimensional space.
The method for calculating the geometric centroid of this
membership function is broken in to two stages:

• Modelling the area encompassed by these points with
geometric primitives, and

• Calculating the centre of this area to give a centroid
value for the membership function.

A. The Geometric Model of a Generalised Type-2 Fuzzy Set

The way that we propose to model the area encompassed
by a type-2 fuzzy sets membership function is both intuitive
and simple. Our approach is limited to type-2 fuzzy sets
where all the secondary membership functions are convex.
This is not a significant limitation. As has been noted in
previous work [6], [7], non-convex membership functions are
import for type-1 fuzzy sets and the primary membership
function of type-2 fuzzy set, but for secondary member-
ship functions non-convexity is not required. A surface that
encompasses the area of a type-2 fuzzy sets membership
function is found by covering the membership function
with a collection of connected 3-dimensional triangles. This
covering of the membership function must be done in a
methodical manner to ensure the greatest possible accuracy.
This is done by breaking down the membership function of
a type-2 fuzzy set in to five areas. The triangles need to
cover each of the areas comes from a face, a 2-dimensional
plane within the 3-dimensional model, or a surface, a specific
3-dimensional area within the 3-dimensional model. The
triangles that cover the membership function are therefore
constructed as five distinct groups:

1) The triangles that cover the upper surface a of the
membership function,

2) The triangles that cover the lower surface b of the
membership function,

3) The triangles that cover the back face c of the mem-
bership function,

4) The triangles that cover the front face d of the mem-
bership function, and

5) The triangles that cover the bottom face e of the
membership function.

(a) (b)
µ(x)

µ(x,u)

1

1

X

b

a

µ(x)

µ(x,u)

1

1

X

c

d
e

Fig. 6. The Surfaces of the Membership Function of a Type-2 Fuzzy Set.

The areas encompassed by each of these are depicted in
Figure 6 (a) and (b) with an example membership function.
The combination of all these surfaces forms a solid geometric
object, a property that is exploited by the type-2 geometric
defuzzifier.

Constructing the triangles that cover faces c, d and e is
relatively straight forward since each of these surfaces lays
completely in a 2-dimensional plane. Let Ã be a generalised
type-2 fuzzy set over the discrete domain X consisting of
m discrete points. Let each secondary membership function
µÃ(xi) consist of n discrete points. The set of triangles that
cover c is given below.

[ m−1

∑
i=1

{µÃ(xi,u1i),µÃ(xi+1,uni+1),µÃ(xi,uni)},
{µÃ(xi,u1i),µÃ(xi+1,u1i+1),µÃ(xi+1,uni+1)}

(9)

Equation (9) gives a (classical) set of triangles that cover the
FOU of Ã. These triangles are constructed from the first and
last points of adjacent secondary membership grades.

The triangles that cover d and e can be found in a similar
manner. For area d any secondary membership functions with
more than one point at unity must first be identified. For area
e any secondary membership functions where u1 = 0 must
first be identified.

The triangles that cover areas c, d and e give an accurate
model of these areas of the type-2 fuzzy sets membership
function. Areas a and b present a slightly different problem.
The surfaces that make up a and b are non-planar. Modelling
a non-planar surface with triangles will always cause some
loss of information. We do not believe approximating these
surfaces will have a significant impact on the performance of
the type-2 system. This assertion is based on the empirical
evidence presented in [2].

The method for finding these triangles is simple, however
writing this process down is somewhat more complicated.
The triangles that cover a are formed from the member-
ship grades in Ã that are after the apex of the secondary
membership function. The triangles that cover b are formed
from the membership grades in Ã that are before the apex of
the secondary membership function. Any points in between
are covered by d. Broadly speaking, the method works as
follows; form triangles that model the function from left to
right, moving from the edges of each secondary membership
function towards the apex.
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0

1
µ(x,u)

1
µ(x)

area area area
b d a

s e

Fig. 7. A Secondary Membership Function in Ã

Our method will now be given in a more formal manner.
Let A be a generalised type-2 fuzzy set over the discrete
domain X consisting of m discrete points. Let each secondary
membership function µÃ(xi) consist of n discrete points. Let
the largest secondary membership grade at point xi be Mi.
Let the first point in µÃ(xi) with a value of Mi be at sth point
in the domain. Let the last point in µÃ(xi) with a value of
Mi be at eth point in the domain. These variables are further
clarified in Figure V-A. The set of triangles that cover a is
given below:

[ m−1

∑
i=1

e+1

∑
j=n

{µÃ(xi,uj),µÃ(xi,uj−1),µÃ(xi+1,uj)},
{µÃ(xi,uj−1),µÃ(xi+1,uj−1),µÃ(xi+1,uj)}

(10)

The set of triangles that cover b is given below:

[ m−1

∑
i=1

s−1

∑
j=1

{µÃ(xi,uj),µÃ(xi,uj+1),µÃ(xi+1,uj+1)},
{µÃ(xi,uj),µÃ(xi+1,uj+1),µÃ(xi+1,uj)}

(11)

Essentially, equations (10) and (11) provide a methodical
approach to constructing a model of a the membership
function of a type-2 fuzzy set with triangles, moving from
the edges of each secondary membership function towards
the apex. Consider type-2 fuzzy set Ã depicted in Figure 8
(a). Two of the triangles that, in our method, would be used to
model the upper surface of Ã are depicted in Figure 8(b). Two
of the triangles that would be used to model the lower surface
of Ã are depicted in Figure 8(c). With the methods described
in this Section we can now model the membership function
of a type-2 fuzzy set as a collection of triangles. Such a
type-2 fuzzy set is depicted in Figure 9 with equivalent
geometric model depicted in Figure 10. The triangles are
formed from adjacent points from the membership function
of a discrete type-2 fuzzy set. This allows for a simple
algorithmic construction method. The triangles in 10 connect
in such a way that they form a solid surface. We call such a
type-2 fuzzy set a geometric type-2 fuzzy set. The next step
is to find the centroid of this geometric type-2 fuzzy set.

B. The Centroid of a Geometric Type-2 Fuzzy Set

The centroid, the centre of this 3-dimensional area can be
given by a weighed average of the centroids and areas of the
triangles [9]. This is exactly the same approach as applied to
interval type-2 fuzzy sets in Section IV. The only difference
is that here we are dealing with triangles in 3D rather than

(a)

0

1

1

X

µ(x)

µ(x,u)

(b)

0

1

1

X

µ(x)

µ(x,u)

(c)

0

1

1

X

µ(x)

µ(x,u)

Fig. 8. (a) An Example Type-2 Fuzzy Set. (b) Two Triangles that Model
the Upper Surface of the Set. (c) Two Triangles that Model Tthe Lower
Surface of the Set.

2D. The area of a triangle is the same in n-dimensions, it’s
given by half the determinant of the cross product of two
edge vectors, as given in equation (12). The domain value
of the centroid of a triangle is given by taking the arithmetic
mean of the domain values of the three vertices that define
the triangle, as given in equation (13). In both equations (12)
and (13) the three vertices of a triangle are denoted p, q and
r with the component of the vertices being given by a dot
notation, p.x,p.y,p.z.

At =

∣∣ �q−p× �r−p
∣∣

2
(12)

Ct =
p.x+q.x+ r.x

3
(13)
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µ(x)1

0

1

X

µ(x,u)

Fig. 9. A Type-2 Fuzzy Set

µ(x)1

0

1
µ(x,u)

X
Fig. 10. The Geometric Model of the Type-2 Fuzzy Set Depicted in Figure
9

We can now give a formal definition for the geometric
centroid of a type-2 fuzzy set.

Definition 4: Geometric Centroid of a Type-2 Fuzzy Set.
Let a generalised type-2 fuzzy set Ã be modelled by a set of
3-dimensional triangles t. The centroid C, the centre of area,
of Ã is given by a weighted average of the centroid and area
of every triangle in t, i.e.,

C =
∑n

i=1 CtiAti

∑N
i=0 Ati

(14)

where ti is the ith triangle in t and n is the number of triangles
in t.

This Section has defined the geometric defuzzifier for a
type-2 fuzzy set. Although complicated, this approach gives
a massive reduction in computation when compared to the
generalised centroid. It is this approach that has, for the first
time, allowed a generalised type-2 fuzzy logic controller to
be implemented (as reported in [2]). The following Section
gives both a symbolic and an empirical comparison of the
computational cost of type-reduction and geometric defuzzi-
fication for generalised type-2 fuzzy sets.

µ(x)

1

µ(x,u)
1

X

Fig. 11. A Discrete Type-2 Fuzzy Set.

VI. REDUCTION IN COMPUTATIONAL COMPLEXITY

Having discussed the geometric defuzzifier at length we
now set out to demonstrate how this approach achieves the
huge reduction in computational complexity that allows for
real-time execution.

In this Section we use a worked example to demonstrate
the computational differences between type-reduction and
geometric defuzzification for a generalised type-2 fuzzy set.
The set we will examine is depicted in Figure 11. This set has
ten elements in the primary domain and five elements in each
of the secondary domains. If we compare this “resolution”
of the membership function to that of a type-1 fuzzy set it
is clearly not a excessive level of discretisation and some
may even think it a little conservative. The number n, of
embedded type-2 sets contained within this set is 9,765,625.
The geometric equivalent of this set is given in Figure
12. This geometric type-2 fuzzy set was arrived using the
algorithm presented in Section V-A of this paper. The number
m, of 3-dimensional triangles needed to construct this set is
127. This number follows from the form of the fuzzy set and
may be calculated beforehand if require. However, doing so
requires

A. Algebraic Comparison

The approach we take in this Section is to, as far as is pos-
sible, express the computational cost of the two approaches
in terms of the number of floating point calculations. Before
we can attempt to compare the level of computation of the
two defuzzifier symbolically, a number of terms need to be
introduced.

• fp, the cost of the calculation of the product, division,
indices operation of two floating point numbers,

• fa, the cost of the calculation of the addition or subtrac-
tion of two floating point numbers,
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µ(x)

1

µ(x,u)
1

X

Fig. 12. A Geometric Type-2 Fuzzy Set.

• ft, the cost of the calculation of the t-norm or t-conorm
of two floating point numbers,

• ei, the cost of enumerating a single type-2 embedded
set,

• ec, the cost of calculating the centroid of a single type-2
embedded set,

• et, the cost of finding the t-norm of all secondary grades
in a type-2 embedded set,

• ti, the cost of initialising a single 3-dimensional triangle,
• ta, the cost of calculating the area of a single 3-

dimensional triangle, and
• tc, the cost of calculating the centroid of a single 3-

dimensional triangle.

Throughout this example we assume that the enumerated
embedded sets are 95% redundant, we believe this figure
to be realistic. By redundant we mean the of the 9,765,625
embedded sets only 488,281 are distinct enough from one
another to form a point in the defuzzified set. Embedded sets
with very close or identical centroids and t-normed secondary
membership functions are not included in the type-reduced
set. Assuming this 95% redundancy, the cost of calculating
the generalised centroid is therefore:

COSTGC = n(ei + ec + et)+0.05n(2fa + fp)+ fp (15)

We have no way of knowing the cost of ei, however since
the primary domain has a cardinality of 10, we know the
following:

COSTec = 10(2fa + fp)+ fp (16)

and
COSTet = 10ft (17)

Substituting equations (16) and (17) into (15) gives:

COSTGC = n(ei +10(2fa +fp)+fp +10ft)+0.05n(2fa +fp)+fp
(18)

which reduces to:

COSTGC = 20.1nfa +(11.05n+1)fp +10nft +nei (19)

Moving on to the geometric approach, we know that none
of the 127 triangles are redundant, all must be used in the
calculation. The cost of the geometric is therefore:

COSTGeo = m(ti + ta + tc)+m(2fa + fp)+ fp (20)

We have no way of knowing the cost of ti, however from
equations (13) and (12), we know the following:

ta = 4fa +13fp (21)

and
tc = 2fa + fp (22)

Substituting equations (21) and (22) into (20) gives:

COSTGeo = m(4fa +13fp + ti)+m(2fa + fp)+ fp (23)

which reduces to:

COSTGeo = 8mfa +(17m+1)fp +mti (24)

Comparing equations (19) and (24), let us for the moment, ig-
nore the 10ei and ti terms respectively. If we were to assume
n and m were equal then the two operations are, more or less
equal in terms of computational complexity. However, we
know that this is very much not the case. In our conservative
example n is close to 10 million whilst m is only 127. This
demonstrates how the massive reduction in computational
complexity achieved by the geometric defuzzifier. It is simply
achieved through the efficiency of the geometric model, or
rather it is achieved because of the massive inefficiency of
the generalised centroid.

B. Empirical Comparison

Having shown the huge difference in computational com-
plexity of the two methods, we now explore what this
difference means for the execution speed of an actual type-2
fuzzy logic system.

In this example we used an existing type-2 fuzzy logic
system designed to perform the task of mobile robot naviga-
tion [2]. Each system had an identical rule base consisting of
twelve rules, all of which had two fuzzy sets in the antecedent
and one fuzzy set in the consequent. The system was given
typical inputs, taken from those observed during execution
of the system on the robot platform. The time taken for each
defuzzifier to calculate the centroid of the final type-2 fuzzy
set that was output from the system was recorded over a
series of thirty runs. The experiment was conducted using a
Dell Dimension PC with a PIII processor running at 450Mhz
with 256Mb of RAM under the Fedora 1 distribution of the
Linux operating system. The system was executed with the
highest possible operating system priority. Table I gives the
result of this experiment.

So, in this experiment the geometric defuzzifier was over
200,000 times faster in terms of execution speed than the
generalised approach. This is a massive improvement in com-
putational speed which, for the first time, allows generalised
fuzzy system to be executed with a reasonable time frame.
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Geometric Defuzzifier Generalised Centroid
Time 5.81×102 1.30×108

TABLE I

THE MEAN EXECUTION TIMES (IN MICROSECONDS) OF THE

DEFUZZIFIERS OVER 30 RUNS. GIVEN TO 3 SIGNIFICANT FIGURES.

VII. CONCLUSION

This paper has introduced the geometric defuzzifier for
generalised type-2 fuzzy sets. The geometric defuzzifier
massively reduces the level of computational complexity,
and in turn the amount of execution time for defuzzifing
a generalised type-2 fuzzy set. This reduction is so large
that the real-time execution of a generalised type-2 fuzzy
system is now possible. This has significant implications for
generalised type-2 fuzzy logic, enabling for the first time
application to the control and signal processing domains.

There are important differences between the generalised
centroid and geometric defuzzifier. The generalised centroid
breaks the defuzzification problem down into many smaller
defuzzification problems and aggregates them. Doing this
results in a type-reduced set. This set gives a measure
of the uncertainty propagated through the fuzzy system.
The geometric defuzzifier tackles the problem in one go,
translating directly from a generalised type-2 fuzzy set to
a crisp number, giving no measure of uncertainty. The
two operations are also identifying different properties. The
generalised centroid finds a average of the centroids of the
embedded fuzzy sets that make up the type-2 set. The geo-
metric defuzzifier finds the centre of the area encompassed
by the membership function of the type-2 fuzzy set. These
are two quite distinct notions. If it were ever needed, then
both operations could be easily extended to take account of
a further degree of freedom. However, this would lead to an
impossibly slow generalised centroid, whereas the geometric
defuzzifier would not suffer from a significant increase in
computational complexity.

We believe this work opens up a new wide avenue of
research into generalised type-2 fuzzy logic. A great deal
of research remains to be undertaken in this field, some
important tasks are given below:

1) Implementation of a generalised type-2 fuzzy logic
system in hardware,

2) Further comparisons of interval and generalised type-2
fuzzy logic,

3) Deeper investigation of the differences between the
generalised centroid and type-reduction, and

4) Formal understanding for the loss of information when
a generalised type-2 fuzzy set is modelled with geom-
etry.

This new approach allows, for the first time, generalised
type-2 fuzzy logic systems to be applied to real world
problems. We hope that this work will allow for greater
discussion of the usefulness of generalised type-2 fuzzy logic
and of the role this important technology has to play in the
field of fuzzy logic.
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