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Abstract- This paper explores a constructive systems approach 
to understand the immune system, starting from antibodies which 
are major units bearing specific recognition of the adaptive 
immune system. The exploration proceeds in stages: Arrayed 
Recognitions; Networked Recognition/Actions; and Diversified 
Recognition/Actions. System theoretic aspects of the immune 
system will be discussed with respect to possible application of 
immunity-based problem solving. 

I. INTRODUCTION

DNA based computing [1] has revealed that a biological 
component, i.e. DNA, can solve combinatorial problems such 
as obtaining a Hamiltonian circuit of a given network. A 
character of DNA, i.e. complementary matching (another but 
related character is self-replication), is used. Instead of using 
biological systems such as ants for obtaining shortest paths [2], 
an amoeboid organism for solving maze problems [3] has been 
used in a problem-solving context. 

These works revealed that not only biological systems but 
also a specific character of a mere component (or lower level 
systems in a hierarchy of biological systems) can solve a 
problem. Inspired by these works, we studied how a simple 
elementary component of the immune system, i.e. antibodies, 
can solve problems such as the stable marriage problem [4] 
when properly arranged and arrayed (as in a microarray or 
microchip) [5]. This paper aims to extend the array to a more 
systematic problem solver by progressively developing a 
system of agents mounting a receptor and an effector. 
Throughout the paper, the stable marriage problem is used for 
explaining the different phases of the problem solver. After 
applying this construct to the immunological problem solver, 
we briefly discuss next-generation immunity-based systems. 

The origin of problem solving dates as far back as the period 
when artificial tools were invented. Regarding scientific 
problem solving, Polya [6] examined mathematical problem 
solving and stressed the importance of using similar problems 
to solve a problem. In this study, we examine problem solving 
more rigorously by artificial information systems (i.e. 
computers). 

Problem solving by means-ends analysis (MEA) [7] 
organizes a search in a dynamically constructed search space 
of goal-subgoal decomposition. It embodies and simulates 
human problem solving by a recognition-action cycle as shown 

in Fig. 1, where solid arcs are recognitions and white arcs are 
actions. Recognition action cycles are iterated till there is no 
difference between goal state and current state. Recognitions of the 
current state, the goal state and the difference are used to select an 
appropriate operator to apply to the current state, which is supposed to 
be changed toward the goal state. 

The figure has remarkable similarity to a block diagram of 
feedback control in system theory. An important feature of 
MEA is that the application of operators is not very rigid: if an 
operator selected in the heuristics part is not directly applicable 
to the current problem, the problem will be divided into sub-
problems. This flexibility allows a certain degree of freedom in 
identifying the heuristics, and further contributes to the 
generality of problems that MEA can handle. In fact, MEA was 
implemented as a General Problem Solver (GPS) [8] that can 
deal with many well-known puzzles. 

As an intermediate stepping-stone from the general problem 
solving by MEA to an immunity-based problem solving, let us 
briefly consider more general biological problem solving. One 
difficulty is that units of biological systems such as DNA, cells, 
individuals, and species do not constitute a usual hierarchical 
system as is understood in system-component relations found 
in most artificial systems. A second difficulty that makes 
biological problem solving remarkable, is that biological 
systems use concepts distinct from those used in artificial 
systems to realize robustness. (Robustness is a solution 
implemented and embedded in the system by a biological 
problem solving in response to challenges to the survival of the 
system.) One such example is degeneracy, which is defined as 
‘the ability of elements that are structurally different to 

Current State

Goal State

difference

Operator

Heuristics associating  
the difference with 
operators 

Fig. 1. Problem solving by Means-Ends Analysis 
(MEA) where solid arcs are recognitions and white arcs 
are actions.
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perform the same function or yield the same output’ [9]. This is 
markedly different from “redundancy” or “stand-by” which use 
an exact copy (hence structurally identical). We used the 
concept of “diversity” to implement robustness in an 
immunity-based design [10], but there may be subtle 
differences between degeneracy and diversity, since in 
diversity, even functions may be varied to attain robustness (as 
mentioned briefly in section V). What is more important in 
discussing biological problem solving is: Biological problem 
solving utilizes variations for implementing robustness, 
whereas artificial problem solving considers variations as 
disturbances and tries to prevent them from occurring and to 
minimize their effect. Thus, the “difference” in biological 
problem solving can be quite different from that in Fig. 1. 

The third factor that makes biological problem solving 
complex is that the given problem is the challenge to the 
survival of the problem solver (the biological system) itself. 
This self-referential aspect must be considered when capturing 
the immunity-based problem solving shown in Fig. 2. 

Throughout Fig. 1 (MEA), and this Fig. 2 (immunity-based 
problem solving), the framework for problem solving is: 
recognize the difference and deploy actions based on the 
difference. However, actions are oriented toward the system 
itself for biological problem solving and this immunity-based 
problem solving, hence the process, is intrinsically adaptation. 
Figure 2 and the following discussions focus only on the 
immune system involving antibodies, hence that of adaptive 
immunity. 

In the following sections, an immunity-based problem solver 
will be explored as below: 

1) A recognition part is designed based on antibodies that 
have specific recognition capabilities (Section II). Even 
only a collection of antibodies can exhibit 
computational capability. 

2) An effector part is also involved, and the solver is 
placed within the system, which amounts to 
implementing agents with not only recognition 
capability but also be recognized. This self-referential 

character will pose some system theoretic problems 
(Section III). 

3) Diversity is also involved, which will make the problem 
solver an adaptive system (Section IV). Fig. 2 will be 
elaborated by agents with diversity. 

II. ARRAYED RECOGNITION CAN COMPUTE

After DNA-based computing was pioneered, many 
researches established that not only DNA but also other macro 
molecules could have computational capability comparable to 
DNA. For example, protein based computing was proposed 
[11] and extended [12]. 

 Similarly to DNA-based computing, antibody-based 
computing utilizes complementary matching between macro 
molecules, namely antibodies. Since the computational 
capabilities of DNA-based computing could be inherited to 
antibody-based computing, we focused on the difference 
between them. 

Affinity between antigens and antibodies can be measured 
and their intensities can be ordered (as formatted in an affinity 
matrix). That is, in contrast to Matching(DNAi, DNAj)=1
(matched) 0 (not matched), Affinity(Antigen i, Antibodyj) could 
vary from 0 (no agglutination) to 1 (highest agglutination). 
This difference would suggest that antibody-based computing 
could potentially implement error tolerance that could not be 
implemented by DNA-based computing. 

A. Stable Marriage Problem 

In a naive form, the problem assumes n men and n women 
with each member having preference lists to the members of 
the opposite sex. A pair of a man Mi and a woman Wj is called 
a blocking pair if they are not a pair in the current solution, but 
Mi prefers Wj to the current partner and Wj prefers Mi to the 
current partner as well. A matching between men and women 
with no such blocking pair is called stable.

Let us consider the stable marriage problem by antibody-
based computing. The stable marriage problem (SMP) can be 
mapped to the antigen-antibody reaction so that the preference 
order of each person in SMP will be reflected in the level of 
affinity between an antibody and an antigen. It should be noted 
that the agglutination process could be any agglutination (not 
necessarily between antibodies and antigens) if their affinity 
levels are measurable and ordered. After agglutinogen and 
agglutinin are so arranged, the solution of SMP will emerge by 
observing the concentration of agglutination. 

B. Mapping a stable marriage problem to antibody-based 
computing with an array format 

As stated above, mapping a combinatorial problem to 
antibody-based computing can be done by composing antigen-
antibody compounds corresponding to a problem entity. As for 
the stable marriage problem, the entity is an individual 
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Amplification
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appropriate actions 
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SELF

Fig. 2. The immune system as a problem solver. Only 
antibodies are focused.  
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corresponding to a man or a woman. Antibodies and antigens 
for a compound corresponding to a particular individual will be 
determined by considering her (his) preference list over men 
(women). 

Let us consider a scheme for synthesizing antigen-antibody 
compounds that realize mapping from given preference lists to 
the compounds. If the woman Wi prefers the man Mj to other 
men, the compound corresponding to Wi contains antibody 
AbWi and the compound corresponding to Mj contains antigen 
AgMj that satisfies Aff(AbWi, AgMj) being highest among other 
AgMj (j=1...n). 

If Mj is the second in the preference list of Wi, then Aff(AbWi,
AgMj) must be the second highest and so on. AgMj must realize 
the preference orders from women Wk other than Wi, hence the 
affinity Aff(AbWk, AgMj) must realize the order accordingly. 
(If AgMj alone cannot realize the order, then a new antigen 
realizing the order must be added to the corresponding 
compound.) Constraints for selecting antibodies and antigens 
for a compound corresponding to a person can be summed up 
as follows: 

Aff(AbWi, AgMj) > Aff(AbWi, AgMk) if the woman Wi

prefers Mj to Mk in her preference list for all Wi W, and for 
all distinct pairs Mj, Mk M; and 
Aff(AbMi, AgWj) > Aff(AbMi, AgWk) if the man Mi prefers 
Wj to Wk in his preference list for all Mi M, and for all 
distinct pairs Wj, Wk W.

Let us next consider an algorithm to solve SMP with an 
array format. In the array shown in Table 1, row i and column j
correspond to the compound for man i (i.e. AbMi and AgMi)
and that for woman j (i.e. AbWj and AgWj). In other words, at 
the cross-point ij, two antigen-antibody reactions between 
AbMi and AgWj (reflecting man i’s preference) and between 
AbWj and AgMi (reflecting woman j’s preference) will take 
place.

Table 1.  Arrayed compounds to solve the stable marriage problem. 
Mi (Wi) stands for the compound for a man i (woman j). The symbol * 
at the ij cross-point indicates that Mi and Wi are selected as a stable 
pair due to a high affinity. Each row and each column has only one 
pair.

Compounds M1 M2 ... Mi... Mn

W1     
W2     

    

Wn     

Under the assumption that the concentration observed at 
each cross-point is proportional to both Aff(AbMi, AgWj) and 
Aff(AbWj, AgMi), the array can find a stable matching by 
selecting one cross-point with highest concentration from each 

row and column. This matching is certainly a stable one, for 
suppose otherwise there must be a blocking pair Mk and Wl

such that Aff(AbMk, AgWl) > Aff(AbMk, AgWp(Mk)) and 
Aff(AbWl, AgMk) > Aff(AbWl, AgMp(Wl)) where p(Mk) denotes 
a partner of Mk in the current matching. Then the concentration 
at the cross-point kl is higher than those of kp(Mk) and those of 
p(Wl)l reflecting the affinity level.  

Although obtaining a stable matching shows some 
computational power, it can be solved in O(N2) time where N is 
the number of men (and women). A well-known algorithm 
exists for giving stable matching for man-oriented matching or 
woman-oriented matching [13]. By further assuming that the 
concentration observed at a cross-point can reflect the amount 
of antibodies and antigens, the array may be capable of 
obtaining any stable matching in the array from the man-
oriented (man optimal and woman pessimal) matching to the 
woman-oriented (woman optimal and man pessimal) matching.  

C. Landsteiner’s ABO blood group system as an example 

Landsteiner’s ABO blood group system [14] is a popular and 
yet simple example. His blood type system is based on 
antigens (as agglutinogen) on red blood cells and antibodies (as 
agglutinin) in the blood serum. Table 2 shows agglutinogen 
and agglutinin of each blood type. The antibody (anti-A)
and antigen A have a high level of affinity, so does the 
antibody (anti-B) and antigen B. Thus the blood type A and 
B will cause agglutination when they are mixed. So does the 
blood type AB (which has both antigens A and B) with the 
other three types when transfused, but blood type O without 
any antigen will not cause agglutination. It should be noted that 
Landsteiner’s ABO blood group system is used for explanation 
purposes, and that a similar discussion could be made even for 
other blood type systems. It should also be noted that the 
following example maps the relation of higher preference to 
higher affinity. Hence, the blood type of a matched couple 
would be more likely to agglutinate. 

Table 2.  Landsteiner’s ABO Blood Group System  

            Blood Type A B AB O 

Antigen 
(agglutinogen) 

A B A, B None 

Antibody 
(agglutinin) 

 None ,

In this example, we map the relation that “the woman Wi (the 
man Mi) prefers the man Mj (the woman Wj) to others” to the 
relation that “if the blood of Wi (Mi) would agglutinate when 
the blood of Mj (Wj) were transfused.” That is, if the woman Wi

prefers the man Mj, then the blood type should be so assigned 
that the type for Wi comprises antibody AbWi and antigen 
AgWi; and they type for Mj comprises antibody AbMj and 
antigen AgMj and the affinity Aff(AbWi, AgMj) is highest. 

...

Wj...

...

*...
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In the nontrivial preference list shown in Table 3, one 
assignment would be type O to M1 and W1, type A to M2, and 
type B to W2 (Fig. 3).  Then the stable matching will be (M1,

W1) and (M2, W2), and other couplings will be unstable. For the 
other two preference lists (with the graph topologically 
different from Fig. 3), it is not possible to map the blood type 
with the above correspondence, and other compounds should 
be synthesized for realizing the preference lists. 

III. NETWORKED RECOGNITION CAN REGULATE

A. Self-referential aspect when the solver is put within the 
system

In the previous Arrayed Recognition, one must control the 
concentration of antibodies or antigens outside from the solver 
(array). It would be interesting to leave this regulation task to 
be performed by the solver itself. A significant difference from 
the previous Arrayed Recognition is to embed the problem 
solver (a collection of agents) into the system. Thus, the agents 
can not only recognize but also be recognized, which implies 
that each agent has not only a receptor counterpart but also an 
effector counterpart. This would further mean that the system 
will solve problems in the system itself. Put another way, the 
system must deal with the self-related version of the problem: 
e.g., rather than classifying the self and nonself, it must 
reinforce the self and eliminating nonself. 

Self-reference may be an intrinsic nature of biological 
systems, and could complicate the logic when applied to 
biological problem solving. Von Neumann already noticed that 
biological problem solving could entail a self-referential 
paradox in his seminal work on self-reproducing automata [15]. 
Autopoiesis also focused on the self-referential aspect of 
biological systems [16]. 

B. Dynamical Model of Networked Recognition 

In network theory [17], the immune system is not merely a 
“firewall” but also a network of antigen-antibody reactions. 
That is, when antigen is administered, it stimulates the related 

cells and causes them to generate antibodies. However, the 
generated antibodies themselves are antigens to other cells and 
consequently result in the generation of another antibody. The 
antigen-antibody reaction percolates like a chain reaction and 
hence requires a regulatory mechanism. 

There is huge diversity among immune system models, even 
if we restrict ourselves to those that use differential equations. 
If they were to be described by a single equation with xi:
number of recognizing (or recognized) sets (T-cells, B-cells, 
antibodies, and antigens) and aij: interactions from type i to 
type j (positive for stimulation and negative for suppression), 
the equation would be: 

dxi(t)/dt = F({xi(t)}, {aij(si(t), sj(t), affij(t))}), 
where si denotes state of type i entity (e.g., 

activated/inactivated, virgin/immune, and so on); and affij
affinity between these two types. The dimension of xi (number 
of types) can vary, for a new type can be born, mutated from 
other types, or just injected in case of antigens. 

What makes this equation peculiar to the immune system is 
that interactions aij vary depending on the states of type i and 
type j entities and the affinity between them. It is this affinity 
that is incorporated in models of the immune system devised 
by several techniques such as the “shape-space” model [18], 
where antigens and antibodies are expressed as points in space, 
which allows the affinity between them to be measured as a 
distance between the points. Several spaces such as continuous 
and discrete ones are considered, hence several distances too 
(e.g., Euclidean shape space and Hamming shape space). 

In such dynamical models, immunological concepts such as 
immune memory and tolerance are mapped to attractors of the 
dynamical systems. Within the context of problem solving, 
attractors of the system are mapped to solutions, thus the 
perturbed state (nonself) will be attracted to the solution (self) 
and hence nonself will be eliminated and self will be preserved. 

As discussed above, positive and negative regulation will be 
interpreted as reinforcement and elimination when the solver is 
put within the system. In the context of the stable marriage 
problem, concentration corresponding to the stable pair will be 
increased, while concentration corresponding to the unstable 
pair will be depressed or eliminated (Fig. 4). In this analogy, 
the unstable pair corresponds to the nonself. 

B

O

A

OM1

M2

W1

W2

Fig. 3 A blood type assignment 
reflecting the preference 

Table 3. An example of a preference list for the two by 
two stable marriage problem. 

 M1 M2 
W1 2 1 
W2 2 1 

 W1 W2
M1 2 1 
M2 2 1 

AbMi   AgWj

AgMi    AbWj

+
-- - -

(Mp, Wj) (Mi, Wj) (Mi, Wq)

Fig. 4. The pair (Mi, Wj) is a stable pair while other pairs are 
unstable. Arcs with a positive sign indicate stimulation and 
those with a negative sign indicate inhibition of the 
concentration of corresponding compounds. 
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IV. SELECTED RECOGNITION CAN ADAPT

In the means-ends analysis on the one hand, the problem 
solving process constitutes an intrinsic part of the solution. 
That is, the order in which operators are applied is a critical 
part of the solution of a given puzzle. The problem must be 
fixed throughout the problem solving. Hence, the solver deals 
with a static problem. 

On the other hand, in immunity-based problem solving, the 
problem itself undergoes changes, because the environment 
including the nonself is changing and the solver involving the 
self must change accordingly. Therefore, there is no complete 
solution and there will always be a gap between the current 
solution and the current problem. However, the current 
solution can be used for the next problem when the next 
problem (the change) also evolved from the current problem. 
Problem solving does not have a beginning and an end. As in 
Fig. 5, the current solution is not good for the current 
environment because the environment is ever-changing, 
therefore the gap between these two must be managed for the 
next solution. However, the next solution is built not from 
scratch but from the current solution. The solution must always 
chase the environment, which is an online and dynamical 
adaptation to the dynamical environment. In immunity-based 
problem solving, the typical environmental change is a 
challenge from outside (e.g., bacteria and viruses) and a 
challenge from inside (e.g., cancer). To deal with these 
challenges, the solver (a collection of agents) must prepare a 
diverse set for being selected by these problems (challenges) 
and the selected agents must be further increased. 

Again, when the stable marriage problem is used for 
explanation as shown in Fig. 6, a challenge from outside may 
correspond to administering compounds corresponding to 
unstable pairs, which must be eliminated from the inhibition 
interaction from the set of agents corresponding to stable pairs. 
Thus, a strong signal pathway that causes inhibition of the 
agents corresponding to the stable pairs may raise a problem of 
autoimmune disease. Cancer would correspond to a corruption 
of the preference table defining the self or some malfunction of 
mapping from the table to the set of agents constituting the 
table. 

Since there is always a difference between the current 
solution and the current environment, there must be a 

diversification of agents. 
In the action process shown by white arrows in Fig. 5 which 

basically mimics the affinity maturation, affinity will increase 
by exploring diverse agents with slightly varied receptors. This 
positive way of using diversity can explain the difference from 
degeneracy. In using diversity for exploring the possibility of 
increasing affinity further, slight variations of not only 
structure but function (affinity) can contribute. 

This action process has been formalized as an immune 
algorithm which was presented elsewhere in detail [10]. The 
most naive immune algorithm has the following three steps 
carried out in parallel by agents distributed over the system. In 
the algorithm, agents (corresponding to the immune cells) have 
not only recognizing and communicating capabilities but also 
reproduction capability with possible mutation. 

1. Generation of diversity: Diverse agents with distinct 
specificity of the receptor and the effector are generated. 

2. Establishment of self-tolerance: Agents are adjusted to be 
insensitive to “known patterns” (self) during the developmental 
phase. 

3. Memory of nonself: Agents are adjusted to be more 
sensitive to “unknown patterns” (nonself) during the working 
phase. 

This action part formalized as an immune algorithm has 
been used for noise cancellation where noise corresponds to 
the nonself and the control signal to the self [10]. Since the 
signal is not labeled beforehand, agents must discriminate the 
self signal from the nonself signal by the specific features of 
these signals. Further, the cancellation signal from agents must 
be discriminated for other agents. Although noise cancellation 
can be applied even to unknown noise, it must deal with self-
reactive agents (which try to cancel the control signal) as if 
auto-immune disease could happen to the immune system. 

In the stable marriage problem, if the challenge to the system 
is only nonself corresponding to the unstable pairs, then the 
Networked Recognition (in section III) can inhibit and 
eliminate the challenge. However, there can be many 
challenges from the environment such as a change of the 
preference lists, so stable pairs must undergo change which 
requires diverse compounds to reflect the change. 

Selection 
Amplification 
Elimination 

Current Problem 

difference 

Diversity for  
Unexpected Gap 

Current 
Solution

Fig. 5.  Adaptation as a biological problem solver.  

Selection 
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Elimination 

SELF Information 
(Preference lists) 

difference 

Diversity for  
Unexpected Gap 

Current Solution
(Stable Pairs) 
(Unstable Pairs)

Fig. 6. Immunity-based problem solving applied to stable 
marriage problem.

Environment 
Cancer (Change)
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V. NEXT-GENERATION IMMUNITY-BASED SYSTEMS

It is often the case that “fact is stranger than fiction” where 
biological systems are concerned. Biological systems can be 
neither simple nor optimal. One reason for the apparent 
complexity and intangibility is that biological systems have 
large-scale interactions in a spatio-temporal sense. In space, 
they are interacting with the environment that includes not only 
nonself but also self. In time, they undergo an adaptation in an 
individual time scale as well as an evolution in a species time 
scale.

Thus, it is suggested that a superficial analogy could be 
misleading in mimicking biological systems. Biological 
mimicking should not be done at a phenomenological level, but 
at a principle level instead. 

Another reason for the complexity and intangibility of 
biological systems is that they took an implementation where 
“degeneracy” and “diversity” can be used. This 
implementation seems largely due to the features of the 
materials they are made of, i.e. proteins. 

This would suggest that a constructive systems approach to 
biological mimicking systems can be not only an alternative to 
modeling and simulations but also a complementary tool 
supporting and guiding the modeling and simulation. The huge 
amount of information now available in the post-genome era 
permits a systems approach to biology, and this trend is 
accelerating for immunology as well. 

Genetic circuits [19, 20] and even synthetic multicellular 
systems [21] may not be an unattainable dream. Possible drug 
production by engineering yeast [22] has had a great impact on 
the area. These new bio-engineering technologies have 
provided bioinformatics with not only new tools but also 
systemic views. The post-genome age is also propelling studies 
of the immune system focusing on components such as 
antibodies and MHC (as in [23]), which would lead to studies 
of its systemic organization. 

The next-generation immunity-based systems may depend 
not only on a modeling/simulation approach but also a 
constructive approach that might form a bridge between the 
material and experiment based immunology and 
model/simulation based informatics on bio-systems, since 
biology itself can be viewed as engineering [24]. 

VI. CONCLUSION

Inspired by DNA-based computing for the Hamiltonian 
circuit problem, amoeboid organism solving for the maze 
problem, and ant colony solving for the shortest path, we 
considered antibody-based computing on the stable marriage 
problem. This paper explored the possibility of extending 
antibody-based computing to immunity-based problem solving 
by comparing and modifying means-ends analysis. In 
immunity-based problem solving, problems (challenges to the 
system) are corresponded to nonself. Not only a dynamical 
regulation framework based on Jerne’s idiotypic network 
theory but also a selection and adaptation framework based on 
Burnett’s clonal selection theory are involved in the extension. 
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