
UAV Swarm Mission Planning and Routing using Multi-Objective

Evolutionary Algorithms

Gary B. Lamont, James N. Slear and Kenneth Melendez

Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
Wright-Patterson AFB, Dayton, OH 45433

{Gary.Lamont@AFIT.Edu}

Abstract The purpose of this research is to design and
implement a comprehensive mission planning system for
swarms of autonomous aerial vehicles (UAV). The system
integrates several problem domains including path planning,
vehicle routing, and swarm behavior as based upon a
hierarchical architecture. The developed system consists of a
parallel, multi-objective evolutionary algorithm-based
terrain-following parallel path planner and an evolutionary
algorithm-based vehicle router. Objectives include
minimizing cost and risk generally associated with a three
dimensional vehicle routing problem (VRP). The culmination
of this effort is the development of an extensible
developmental path planning model integrated with swarm
behavior and tested with a parallel UAV simulation.
Discussions on the system’s capabilities are presented along
with recommendations for further development.

Introduction

Path planning is the process of designing a sequence of states
through which an object must move in order to travel from an
initial state to a goal state. Path planning optimization is a
process that proscribes a particular plan for reaching a goal
state from an initial state at a minimal cost. A path planning
algorithm is a sequence of steps taken to calculate a path plan
given knowledge of the path environment and a set of
conditions or constraints that must be adhered to. Many
successful path planning algorithms have been developed
over the years [1,2,3,9,11,17,25,28]. These algorithms vary in
their effectiveness and efficiency based primarily on the
specific formulation of the path planning problem and the
number of variables and constraints required. Based upon this
foundation in part, it is desired to develop three dimensional
(3D) autonomous aerial vehicles (UAV) mission plans
including path planning, vehicle routing, and swarm behavior.
The outline of the paper is: background, approach and
objectives, mission planning, high level and low level design,
implementations, experimental testing, results and analysis.

Background

An underlying element of UAV path planning is the Vehicle
Routing Problem (VRP) which is defined as the task of
assigning a set of vehicles, each with a limited range and
capacity, to a set of locations or targets that must be visited

[27] with cost and risk objectives. The VRP has been shown
to be an NP-complete problem. Such problem classes do not
lend themselves to deterministic problem solving methods
because the runtime of these approaches grows exponentially
with the problem size. Stochastic methods have been used to
provide “good” solutions to the VRP in reasonable time
[21,27]. These stochastic methods achieve their results by
generating feasible solutions and then improving these results
through successive refinements using heuristics.

The UAV routing problem consists of a set of targets L, a
set of UAVs V, the set of traveling costs Q, the set of routes
G, a distance function , a capacity function , and a demand
function . The formal definition is [21]:

Given L : li (li) 0,i > 0; (l0) = 0 and V: vi (vi) = k, k > 0
compute: Q : qij = (li ,lj) and G : gk = {l0 U L × L U l0 }

 subject to: l G
 minimize:

(l) = l L (l) and Ul g = L and g G = l0
|Q|

k =1 Qk

This model is addressed in the particular application which is
a swarm of heterogeneous UAVs routed for reconnaissance or
to deliver munitions to a set of targets in a selected terrain.

Representing cost and risk as fixed objectives is adequate
for UAV routing problems in which distances between targets
are large enough to ignore the added path lengths resulting
from having to make series of turns in order to change
heading from one location to another. However, when the
target layout is such that the distances between the targets are
as near as several turn radii of a UAV, then the cost of
traveling between any two targets must consider the heading
at which the UAVs arrived at the initial location and the
heading they must assume to vector themselves towards the
next target. Moreover, the relationship of the UAV swarm
elements must be explicitly controlled. Taking this into
account, algorithms that solve the VRP should calculate the
cost of every assignment from scratch in order to accurately
represent the cost associated with that assignment.

In this research, a UAV swarm path planning algorithm is
developed that calculates the optimal route from a start node
to an end node, through a mid point. This path through a
triplet of locations can then be concatenated with other triplets
to quickly and accurately calculate the actual cost of a vehicle
assignment. This information can be tabularized and input to
programs such as an evolutionary algorithm for solving the

10

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

1-4244-0702-8/07/$20.00 ©2007 IEEE

VRP. For example, the Genetic Vehicle Router (GVR) [21]
where “good” assignments can be made but the costs
associated with these assignments are more representative of
the required physical route or path. The goal is not merely to
calculate the true cost of a particular assignment made by the
GVR but to influence the GVR to make better assignments
using the more complete cost information and thus providing
proper UAV turn corridors. Swarm behavior is of course an
integral element of the generic UAV mission planning system
in order to generate acceptable individual UAV altitude and
attitude positions and velocities.

Approach and Objectives

When problems require minimization of multiple competing,
cost elements, a trade-off is established between the set of
competing requirements. In these instances, multi-objective
evolutionary algorithms (MOEAs) can provide a decision
maker with a variety of candidate solutions, each representing
a level of optimization of one parameter with respect to
another [4]. In this research, a MOEA is developed for path
planning where the objectives are cost, encompassing
distance traveled and the amount of climbing a vehicle does,
and risk resulting from flying through areas of threat. The
solution set contains a selection of routes such that each route
has the lowest cost associated with a particular level of risk
and vice versa.
 Terrain Following (TF) is a mode of flight in which an
aircraft maintains a fixed altitude above ground level (AGL)
and flies low (on the order of a few hundred feet) through an
area of interest. Naturally, this type of flying involves a great
deal of climbing and descending, a costly operation. The TF
concept is to remain hidden from enemy air defenses. The
technique to hide within rugged terrain is known as terrain
masking. Terrain Masking (TM) algorithms determine a route
of flight in which an aircraft can move toward a target or
location of interest while remaining masked from enemy air
defense radar by the surrounding terrain. Often routes
calculated by TM algorithms have significant climbing and
descending costs associated with them. The process of
picking the best-masked routes with the least possible cost in
terms of climbing and overall distance traveled is known as
Terrain Following Optimization (TFO).

Thus, the research goal is to develop mission planning
capabilities for UAV swarms including VR, TF, and swarm
behavior. In this effort there are three main objectives: 1.
Develop a multi-objective evolutionary algorithm for efficient
path planning 2. Develop a parallel system that computes
individual route segments for input to a GVR algorithm and 3.
Incorporate swarm behavior throughout.

The first objective concerns the development of a robust
path planning algorithm for terrain following UAV missions.
Since all routes have both a cost and a risk associated with
them, path planning can naturally be expressed as a multi-
objective minimization problem. Most often, decreasing the
cost of the path, i.e. the path length and the amount of
climbing required to navigate the terrain, results in increasing
the risk associated with enemy air defenses. Likewise, a path

generated to avoid intersection with all enemy air defense
radar systems results in increased path cost. Single objective
problem formulations for path planning often use constraints
such as obstacle and threat avoidance and then calculate the
least-cost path available that adheres to all constraints [22].
Other single objective problem formulations treat constraints
as components of the solutions fitness [28]. Problems defined
in this way have weights assigned to each objective and the
resulting fitness is an aggregation of component scores. The
common disadvantage of these approaches is twofold. First, a
risk free path may not exist or its cost may exceed the UAV
capabilities. Second, paths containing an acceptable level of
risk may have a substantially lower cost than a completely
risk adverse path if one exists. A multi-objective approach
provides a choice of routes with cost proportional to their
level of risk. This empowers the decision maker to choose the
acceptable level of risk and obtain the least-cost path
associated with that choice.

The second objective using parallel path planning
computation provides efficiency. Our associated Genetic
Vehicle Routing algorithm [21,26] uses an evolutionary
approach to find an optimal assignment of vehicles to targets
for combat or reconnaissance missions. The algorithm uses as
its set of inputs, the cost associated with traveling between
any two target locations. This cost reflects only the Euclidian
distance between the targets. In order to include the cost
incurred by turning from one location and proceeding to
another, which increases the path length, the actual cost of
traveling between two locations must include the direction
from which the UAV swarm approached the first target and
the direction the swarm departs the second target in route to a
subsequent target. The generation of optimal route triplets
scales as O(n3) compared to the O(n2) cost of optimizing pair-
wise links. This limits scalability but is less costly than the
exponential alternative of enumerating and calculating all
possible permutations of complete route assignments. To
offset some of the cost of enumerating triplets, the path
planning algorithm is parallelized, solving multiple triplets
concurrently. The output data from the path planner is then
given as input to the GVR algorithm which has been modified
to use this new data in its evaluation function. The result is an
optimal assignment of UAVs to targets based on the true costs
of completing the routes. Testing on this component focuses
on the efficiency and scalability of the parallelization of the
path planner and its ability to answer queries from the vehicle
router.

Regarding the third objective for behavior evaluation, our
swarm simulation model [5,10] represents a swarm of
autonomous air vehicles with a set of three behaviors. The
first swarm behavior is the tendency to remain together. The
second behavior is a tendency to maintain a safe distance
from one another. The third behavior is for the swarm
members to align themselves together toward a particular
direction. The swarm simulation is extended in this research
to include a routing capability that guides the swarm along a
route generated by the path planner and the GVR optimizer
while still adhering to the three required swarm behaviors.

11

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

Mission Planning and Routing

Mission Planning for swarms of autonomous unmanned aerial
vehicles requires an efficient assignment of vehicles or sub-
swarms to targets, a set of efficient, feasible paths for vehicles
to follow, a set of swarm behaviors that allow the swarm
members to reach their targets while maintaining their
collective swarm properties, and a detailed simulation of the
mission to ensure objectives are met. This chapter considers
historical approaches to solving these individual problems as
well as a discussion of ways to unify these problem domains
into a comprehensive problem statement.

Path planning: UAV path planning is a subset of a
broader set of general path planning problems. All path
planning problems and the algorithms used to solve them
consist of some initial condition, objective, and a set of
actions that completely connect the initial condition to the
objective. However, there are many ways to specify a path
planning problem. The method selected is often linked to the
algorithm used to solve the problem.

Two broad categories of path planning problems and
approaches dominate the research. The first category defines
the problem in what is known as a configuration space.
Problem formulations of this type involve determining the set
of desired actions (torques, rotations, and other forces) needed
to move a system from an initial state to a goal state. The
second category of problem formulations, trajectory spaces,
involves generating a set of feasible trajectories to move a
vehicle from an initial location to a goal location.
 In this research, paths are specified in line segments with
restrictions on the degree of turn to ensure the path is
navigable. Further, the concept of terrain masking which was
loosely developed by Mittal [13] is extended with a complete
terrain masking algorithm. The algorithm determines the
maximum altitude (AGL) of an aircraft at a particular point
such that at or below this altitude it is out of sight of a known
threat - intervisibility. In addition to remaining out of sight of
known threats, the terrain masking algorithm seeks to
minimize the vehicle’s exposure to unknown threats. This
principle is known as hidability. It calculates the number of
nearby points from which a vehicle is visible at a given
altitude over a given point (see Figure 1).
 Autonomous vehicles architectures: Abstract autonomous
vehicles architectures for mission planning have been
proposed by Reynolds [18,19] based upon a hierarchical game
model, Gat [8] based upon a hierarchical control model and
Price [15,16] based upon a finite automata self-organization
model. Rysdyk [30] defines a trajectory following guidance
architecture. Generally, desired complex goal-oriented
behaviors are defined at the top of hierarchies and are
produced by aggregations of lower level behaviors generally
reflecting implicit or explicit state definitions.
Reynolds “game” hierarchal framework is: Action Selection
(strategy, goals, planning), Steering (path determination),
Locomotion (animation, articulation, control). Gat’s three
layer robot hierarchy is: Deliberator (goals, planning),
Sequencer (plan execution), Controller (reactive feedback

control, primitive behavior). Price’s formal agent hierarchy
is: System state (ombined plans, environmental effectors),
UAV Agent state (archtypes, behavior determination, path),
Update local state (reactive action, communication).
Rysdyk’s model is world states, local states, vehicle states.

Figure 1 Principles of Hidability
 Probing the details of these suggested frameworks, one

would note that they are similar as regarding plans, behaviors,
and implementations. Differences exist as to behavior
specifics at each level, explicit interfaces between levels and
use of associated formal notations. Reynolds for example
developed a complex model for 3-D autonomous animation
that was implemented for video games such as Sony’s Play
Station. Gat’s architecture was developed for individual robot
movement resulting in the ATLANTIS system. Price’s model
was used to develop a UAV swarm simulation with extensive
environment interaction.

The physical model to represent a vehicle or physical
agent is usually based on a point mass model consisting of a
mass, position, velocity, maximum force, maximum speed,
and an orientation with possibility of turn radii and moment of
inertia.. The orientation can be given as a set of N-basis
vectors and is therefore suitable for both ground and air
vehicles. With the point mass vehicle model, the behaviors
associated with the hierarchy act directly on its vectors. The
low-level control signals which generate the primitive
behaviors are communicated from the desired plan behavior.
Behaviors under these hierarchies can include: seek, flee,
arrival, pursuit, offset pursuit, path following, obstacle
avoidance, and containment. Seek is the pursuit of a static
target. It acts to steer toward a particular position. Flee steers
the agent so that its velocity is radially aligned away from a
fixed location. Pursuit is like seek but the added factor that the
target is moving. This behavior requires not only knowledge
of the target’s velocity vector, but also the capability to
predict the targets future velocity. Evasion is the opposite of
pursuit i.e. the character is steered away from the predicted
location of the moving target. Offset pursuit steers a path to
come within and maintain a fixed distance from a moving
target. Arrival is the same as seek when there is a significant
distance between the vehicle and the target. However, arrival
slows the vehicle down as it approaches. This behavior ends
with the vehicle at a zero forward velocity and a position
coincident with the target.

12

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

This view of behavior hierarchy addresses many of the
requirements for a UAV swarm in order to be able to follow
feasible paths to targets. The behavior set is rich and requires
a complex set of individual members to execute. As to the
level of autonomous self-organized UAVs, feasible paths can
be generated by path planning module offline and assigned to
swarm members or agents thus relieving them of burdensome
computational requirements. At the strategic level of
planning, the assignment of sub-swarms to target sets can also
be performed offline allowing decision makers, rather than
swarm agents themselves, to better guide the behaviors of the
swarm to meet the goals. Within each of the suggested
frameworks, such architectural variations can be selected.
This then is the complex computational framework used in
our UAV mission planning and routing system [23].

Evaluating our UAV routing performance is done on the
AFIT UAV Swarm Simulator, a Parallel Discrete Event
Simulation (PDES). Based originally on Reynolds’
Distributed Behavior Model for flocking, the simulator was
developed by Kadrovach [10] based inpart on Reynolds’
Distributed Behavior Model [18]. Corner [5,6,20] ported the
model from a single-processor Windows platform to a parallel
Linux-based Beowulf cluster. Slear [23] extended the model
and integrated the mission planning generic framework into
the current computational environment.

 High Level Design

The high level system design consists of three principal
components: a parallel path planner, a vehicle router, and a
simulation and visualization engine. The development of a
comprehensive UAV mission planning system consists
minimally of an efficient assignment of resources to targets,
an effective means to create vehicle trajectories that
minimizes risk to the resources and mission cost, and a
behavior model that produces swarm behavior without
degrading the other capabilities.

Parallel Path Planner Objectives: Two generic
objectives are required: create an efficient and effective path
planner using a MOEA, and create a flexible parallelization of
the algorithm to allow for rapid generation of multiple paths
for use in solving higher level optimization problems such as
the capacitated vehicle routing problem (CVRP) [27].

The specific path planning problem model for UAVs
consists of the following:

Given a discrete operational space of size n x m units
superimposed over a terrain grid G (n 1) × (m 1) with
 Location set L, where li n × n l L
subject to: po ... pn P, (pi , pi+1) 45 o
 where is the inbound heading at pi
determine the least cost path P* from all li L to all lj L

The restriction 45 o, ensures that the path remains
flyable by the UAV. Based on the grid spacing of 750 meters,
the UAV can safely navigate a 45-degree turn. This turn
restriction can easily be modified to suit other vehicle types.

The term “cost” is a composite of individual objectives or
measures of merit of a mission. In this research, five such
measures of merit are defined (path, climb, terrain, detection,
kill cost).

The path is the sum of the Euclidian distances of the
route segments. Climb is the amount of climbing a vehicle
must do in the course of flying a route in order to avoid
terrain. The Terrain is the cost of exposure to unknown
threats or the vulnerability associated with being “out in the
open.” Detection is the cost associated with being exposed to
enemy detection – a function of both distance and time. Kill
cost is the cost associated with being within the lethal range
of an enemy air defense weapon – a function of range, time
and the lethality of the weapon. While the problem domain of
the generalized path planner has no restriction on the size of
the target set L, the target set is limited to three targets or
locations per instance, {Po, Pm, Pf}, to maintain compatibility
with the problem domain of the CVRP which is solved by the
router.

When a problem has five different cost functions (multi-
objective), it can be solved as an aggregate function that
attempts to simultaneously minimize all parameters, or it can
be solved as a multi-objective problem where the output
consists of a set of non-dominated solutions along the Pareto
front. An end user can select one of these solutions provided
they are capable of deciding the appropriate level of trade-off
between two competing objectives. An output consisting of a
five-dimensional Pareto front however, would likely
overwhelm the decision maker by providing more questions
than answers. Fortunately, the measures of merit can be
grouped logically into two categories: those that describe the
cost of the path in terms of time and fuel consumption, (path
and climb), and those that measure the risk of a given path
(terrain, detect, and kill). Equations 1 and 2 define the
grouping of the five problem objectives into two competing
categories.

cost = path + climb
 (1)

risk = detect + kill + terrain (2)

where { , , , , } are weighting factors associated with the
relative importance of each parameter. The individual cost
functions are:

path: The Euclidian distance between each point is
summed over the length of the route.

path = i
f

=0 (3)
climb: The sum of positive changes in elevation from

each point to the next point;
climb = f

i=0 z(pi , pi+1) (4)
where is 1 if Zpi+1 > Zpi and is 0 otherwise.
 detect: The total linear distance through which the UAV
swarm flies into the effective detection ring of radar.
 kill: The same formulation required for the detection cost
function is applied to the kill cost function. The distinction
between the two is the effective kill radius of an air defense
system is generally smaller than the detect radius.

terrain: While many threats are known a priori, others are
not. Therefore, the UAV swarm should remain out of sight as
much as possible. The terrain metric measures the number of
points in the grid from which a vehicle at a particular point

13

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

can be seen. The overall terrain score is determined by
summing the surrounding points from which the vehicle can
be seen as it flies though each grid point along its path.

MOEA path planner and router: A multi-objective
genetic algorithm path planner interfacing to the CVRP
router consists of the following elements: a population of
candidate solutions, a defined chromosome structure of each
candidate, a set of evolutionary operators which operate on
the members of the population, a pair of evaluation functions
to measure fitness of the solutions, an archived set of non-
dominated solutions, and a defined period of evolution. The
High Level View of MOEA Path Planning Algorithm is:

1: procedure MOEA_Planner(N , g, fk(x))
2: Initialize Population P of size N
3: Evaluate, Rank (by dominance), sort Population
4: Create archive population Pa from non-dominated members of Pi

5: for i in 1 to g do
6: Select for recombination (crossover)
7: for j in 2 to N do
8: Statistically select mutation operator k
9: Mutate member j
10: end for
11: evaluate Population
12: determine dominance rank within current population Pg
13: remove dominated members from Pa

15: add globally non-dominated members from Pg to Pa
16: end for
17: end procedure

The vector function fk(x) is the set of evaluation functions. In
this algorithm, k=2 where f1(x) is the cumulative cost function
and f2(x) is the cumulative risk function. A population size of
50 individuals is selected along with an evolutionary period of
50 generations, g, based upon computational reasons. No
heuristic was developed to terminate the evolutionary cycle
once convergence of the solution was achieved. Further
experimentation is needed to study the time saving benefits
associated with early termination of the algorithm.

The chromosome structure is similar to that used in [67].
A chromosome of candidate solution consists of an ordered
set of points (xi,yi) which define a path from the starting point
(x0,y0) to a destination point (xf,yf) through a midpoint (xm,ym).
Additional information contained at each point includes
elevation (the MSL altitude of the point), set clearance (the
AGL altitude of the point), and heading (the direction of
travel from the present point to the next point).

Set clearance and altitude are used to calculate the
amount of climb per descent needed to reach the next point as
well as for terrain masking calculations. Heading is stored to
ensure feasibility of the turns. The planner calculates the
change of heading between points to ensure the turn rate is
within the UAV’s limits. The following diagram illustrates
the chromosome structure of a candidate solution.

During initialization, the population of candidates is
created with each member containing the start, middle, and
end points. An initial check is performed to ensure that the
turn around the mid point is less than 45 degrees. If it is not, a
modified convex hull algorithm is used to add additional
points to the route such that no turn greater than 45 degrees
remains. Once the route is repaired, a number of intermediate
points are randomly added to the route. The number of points
added is based on the distance between the three original
points. During this process, the algorithm ensures that the
change of heading between each point (excluding the starting
point) is less than 45 degrees.

Once the population has been initialized [23], it is
evaluated using the cost functions described. In a single
objective EA, a program need only maintain the current
population. In a MOEA, the complete set of non-dominated
points must be maintained. An approximate Pareto front
archive is maintained for this purpose. To find initial
approximate Pareto front points, each member of the
population is compared to every other member based on the
member’s F1 score, cost and by its F2 score, risk. The
population is first sorted by cost. A candidate Ri is added to
the approximate Pareto front if it meets the following criteria:

p R,¬ Rp | F1(Ri) > F1(Rp) F2(Ri) F2(Rp) (5)
All non-dominated members of the population are then

added to the Pareto Front Archive. The population is then
sorted by rank. The rank of an individual Ri, reflects the
number of individuals in the population that dominate Ri. All
non-dominated members of the population are assigned a rank
of zero. All members dominated by only a single solution are
given a rank of one. Members dominated by two individuals
are given a rank of two etc. Rank is the primary selection
criterion used in the path planner. Dominance count is an
alternative selection method. Dominance count is defined as
the number of solutions in the population that a particular
solution dominates.

A disadvantage of using dominance is that points along
the ends of the front tend to evolve out of the populations
while crowding occurs near the middle of the front. Rank is
therefore preferable to raw dominance count because greater
diversity is maintained in the population. Once the population
has been evaluated and ranked, selection is performed. Like
other MOEAs [3,4], the planner uses an elitist selection
operator. The use of elitism is common in MOEAs because
the elitism preserves non-dominated individuals. The top half
of the rank-sorted population is selected for recombination.
Pairing of individuals is done randomly. Once paired, two
offspring are created. These offspring occupy the places of the
members not selected.

Crossover is performed at the midpoint of the path. This
ensures that the offspring remain feasible. During the one
point crossover operation, the midpoints between two parents
are exchanged. Since the underlying data structure is a linked
list, the points beyond the midpoint are copied as well. The
resulting offspring contain the points of one parent from the
start of the path to the mid point, and the points of the second
parent from the mid point to the end of the path.

14

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

Some other crossover operators considered include
arithmetical, biased, multi-point, fuzzy forms, and uniform
[4]. Because of the structure of the chromosome and the
search landscape, the simple 1-point midpoint crossover
provides the desired exploratory performance.

Once the crossover operator has been applied, the
population then undergoes mutation. The path planner uses
three distinct mutation operators which are applied with equal
probability. The first mutation operator, M1 attempts to add a
point between two existing points in the path. If the addition
of the point results in an infeasible solution, then the repair
operator is invoked to create additional navigation points. The
sharper the turn created by the mutation, the more navigation
points are needed to smooth the route. The repair algorithm
generates a number of points proportionate to the change in
heading caused by the infeasible point. For turns of just over
45 degrees, only two points are needed. For larger turns, as
many as seven additional points need to be added. Therefore,
when the mutation operation adds a point between two
relatively nearby points, resulting in an unfeasible route, the
path cannot be repaired and the operation is cancelled. Figure
2 illustrates this situation.

Figure 2 Mutate Add Operation on 4-point Path Segment.
The second mutation operator, M2, attempts to delete a

point between two points in the path. Again, if the deletion
results in an infeasible path, the repair operator is called to
add points which result in a smooth trajectory. Deletion
operations naturally increase the distance between points.
Therefore, the repair operator is usually able to add the points
necessary to achieve feasibility. Nonetheless, feasibility of the
repair operation is still validated and if the path cannot be
repaired, the operation is undone. It is important that balance
is achieved between delete and addition operations. When too
few deletions occur, the resulting path has too many points
and is more difficult to evolve. When too few additions occur,
the path tends to have very few points and the ability of the
algorithm to minimize cost and risk is diminished. Because
the deletion operation results in greater success, the addition
operation is used with a slightly greater probability.

The last of the mutation operators, M3, selects an
arbitrary point (not one of the original three) and attempts to
alter its location by a bounded, random displacement. This
operator does not change the number of points in the path by

itself but additional points can be added when the alteration
results in an infeasible path. When the bounds of the
displacement are loose, the resulting path is more likely than
not to be infeasible. Additionally, loosely-bounded
displacement results in a greater number of points being
added due to repair. On the other hand, if the bounds of the
displacement are too tight then the operator becomes nothing
more than a tool for local search. Possible additional
mutation operators could enlarge the search space. For
example, the use of exploratory mutation operators such as
Xiao’s Mutate 2 [28] that deletes multiple consecutive
segments and replaces them with new ones could be
considered. Rubio [30] uses a mutation operator in an EA
along with market-protocol algorithms for path planning.
Such techniques were not incorporated due to the additional
complexity and concern as to generic utility in our approach.

Again, the swarm simulator must correctly route
individual members to required targets by way of required
waypoints. These way points are generated a priori as part of
the path planner and are designed to minimize climbing,
distance, and risk.

UAV Swarm Behavior: The problem of directing UAV
swarm behavior can be expressed as the cumulative problem
of directing individual UAV behavior. The following relations
mathematically define the problem domain of the swarm
model: Given a swarm member vi and the following:

A terrain region (X,Y) with an elevation Z = f (X,Y)
 A neighborhood vehicle set V
 A next waypoint wnext < i, j, k >
 A current position s(t) = < i, j, k >
 A set clearance C
Create a vector v(t+ t) to guide vi toward wnext subject to:
 1. z(t+ t) > C + f(x t+ t ,y t+ t) (6)
 2. |s(t+ t)-wnext |< |s(t)-wnext |
 3. v V ,v vi , |s(t) b(vi (t))| > |s(t + t) b(vi (t + t))|
where condition 1 maintains the required set clearance,
condition 2 moves the vehicle toward the next steering point,
and condition 3 adjusts the separation between the member vi
and all neighbors in V toward the proper separation distance.
 The behavior model consists of a set of rules to achieve
path-following swarm behavior in a set of modes under which
the rules are applied with various weighting factors, and a
neighborhood of influence which defines which members
affect the behavior of a given member. Each rule results in a
unit vector addition operation applied to an individual. The
sum of these vectors produces the member’s trajectory.
 Neighborhood - Just as with swarms of insects or flocks
of birds, swarms of UAVs have limitations on information
that can be obtained from other members of the swarm. These
restrictions are generally based on the proximity of a member
to other members of the swarm. In our model, we define the
notion of neighborhood which is used to define the
communication model as well as shape of the swarm
formation. The swarm shape is a 3-D stack of diamond
tessellations. Each plane or level in the stack is offset one
half-step from the level directly above or below it.

15

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

The main parameter of the swarm formation is the
separation b, representing the lateral distance between co-
planar members and the distance of the co-planar neighbor
directly in front and behind the member. Co-planar members
45 degrees front-left and front-right are at a distance of b
divided by the square-root of 2.

Individual UAV swarms are not influenced by those
behind them for two reasons. First, the lead members are first
to climb in response to terrain and also reach their target and
begin their turns before trailing members. Application of the
cohesion rule would cause lead members to throttle back
when climbing or turning to allow trailing members to catch
up. Instead, catching up is achieved by trailing members
applying the cohesion rule with respect to their distance from
the leading vehicles. A second reason for this simplification is
a reduction of the communication overhead. Restricting the
neighborhood of a member to those members level with or in
front of the UAV member, reduces the size of the
neighborhood considerably. Table 1 defines the neighborhood
of influence surrounding a given swarm member.

Table 1. Neighborhood of individual UAV influence

Rules. The behavior model consists of a set of three rules
R = {r1, r2, r3} [45]. The application of these rules result
from the interaction of individual swarm members with one
another and with the terrain. As defined by Kadrovach [10]
and implemented by Corner [3], each swarm member can
only detect and be influenced by its neighbors. The first rule
creates a vector that causes a vehicle to move toward its
neighbor whenever the distance to that neighbor exceeds the
threshold distance value. Recall that vehicles in the lead with
respect to the next target are not influenced by the cohesion
rule except by their coplanar members to the left and right.

Separation. Also from Reynolds, this rule adds a vector
to the member moving it away from a neighbor when the
distance to that neighbor decreases to below the threshold
value. Leading vehicles have no members in front of them and
are not directly influenced by those behind them. Therefore
the separation rule applies only to their left and right co-
planar neighbors and their neighbor’s two planes directly
above and below them. This rule replaces a more general
alignment rule [3,10,18].

Modes. The simulation progresses under two primary
modes: warp and synchronization. During warp mode,
communication among swarm members is suspended.
Individual members continue on their path at their current
heading. When small changes in individual trajectories are
needed to avoid terrain, the other members are not notified.

An individual member simply adjusts its trajectory as needed.
During synchronization mode, members determine their
neighborhoods and adjust their trajectories according to rules
1 and 2. The simulation enters synchronization mode under
two conditions: a) whenever a member alters its angular
velocity by an amount greater than /8 degrees, and b) at
scheduled fixed time intervals. The later condition is required
to prevent drift in the swarm which would occur if minor
changes in trajectory are extrapolated over long periods of
time. During warp mode, the members apply only rule 3
which accounts for climbing and descending. Under
synchronization mode, the swarm applies rules 1 and 2 with a
weight of 20% and it applies rule 3 with a weight of 30%.
This weighting was established empirically for maintaining
swarm characteristics while achieving the target seeking
behavior.

Communication Model. The simulation is built on the
SPEEDES time-warp framework [24]. Agent message traffic
is restricted to neighbors and to the central simulation engine.
This allows for true scalability of the UAV swarm model.

Since the entire swarm embarks on the mission from a
single location, a swarm split must be performed as sub-
swarms go out in search of their individual targets. In order to
minimize maneuvering and communication required for a
split operation, the swarm uses a train or sausage link model
in its original formation. Upon reaching a designated split
point, the leading section of the swarm becomes a sub-swarm
and turns towards its next target. The remainder of the swarm
turns toward its next target. The split is done along the length
of the swarm like a section of railroad cars being removed
from the track. This method has the advantages of
maintaining the shape of the sub-swarm and reducing the
swarm’s temporal footprint. Once a swarm has split, there is
no join operation defined. At the end of the mission, all
swarms return to their embarkation point. Due to varying
target assignments, the sub-swarms return home separately.

System level design goals and integration: The system’s
data flow begins with creation of a target set, terrain field,
threat lay-down, set clearance, and number of available
swarm vehicles. The terrain masking algorithm is given the
terrain elevation data, location and range of threats, and the
set clearance or above ground altitude at which the vehicles
fly. The threat lay-down is superimposed over the terrain grid
and grid areas considered to be within the effective detection
and kill ranges of the threat are identified. The algorithm then
calculates the line of sight visibility of each grid space within
the effective range. An individual grid space is eliminated
from the effective range of the threat when a terrain barrier
lies between the grid space and the threat such that a line
drawn from the threat radar to the grid point intersects the
terrain boundary thus obscuring the grid space from sight of
the radar.

The set clearance of the UAV is added to the elevation of
the grid space to account for the vehicles height above the
ground. The updated threat range data is then stored for use
by the path planner. Once the terrain has been preprocessed,
the vehicle router optimizes the assignment of vehicles to

16

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

targets. To accomplish this, the router needs to know the
complete cost associated with a particular route. The router
produces a set of candidate solutions and invokes the parallel
path planner to provide complete, feasible paths for each
route. The router’s genetic algorithm finds the lowest cost
vehicle assignment for the mission, and retrieves the complete
set of waypoints for each vehicle or sub-swarm. This
complete set of paths is then fed to the parallel swarm
simulator which then simulates the mission and produces a
visualization of the swarm flying its mission. Figure 3
illustrates the dataflow design of the integrated system.

Figure 3 System Data Flow Design
The path planner produces a solution to the problem of

minimizing the risk and cost associated with moving a vehicle
from one location to another by way of an intermediate point.
The input to the algorithm therefore, is a triple {Pi, Pm, Pf}.
The output contains the set of waypoints between Pi and Pm
and between Pm and Pf. This output forms a single segment
of a solution to the larger vehicle routing problem which
contains multiple targets and multiple vehicles. The router
creates permutations of locations representing an ordered set
of assignments to a set of vehicles. These permutations
require sets of the triples described. The generation of these
triplets is time consuming and the number of possible 3
triplets each grows at a rate of O(n) with the number of
locations n. This growth rate is mitigated by three methods.
First, the path planner is parallelized so that several paths can
be generated at once. Next, the router uses a simple set of
heuristics to request paths before they are needed. Finally,
links which have already been calculated are cached for later
reuse.

Low Level Design and Implementation

The path planner is implemented using an object-
oriented (OO) approach and is written in C++. The path
planner has a naturally hierarchical structure. For example, a
population consists of a set of paths, and a path consists of a
set of points. This structure lends itself to object
encapsulation. Methods are defined that act on objects at
various levels of abstraction. Where the approach used differs
from the traditional OO approach is in the area of information

hiding. Typically an OO design defines strict controls on the
access to an object’s data members. Specific methods to
access or alter an object are used to govern the range within
data must be assigned and to control which objects are
authorized to act on other objects. Details of the design can be
found in [23] which has as the major goal of the system
integration effort, modularity (population, path object,
evaluation functions, …). The complexity of the various
modules is polynomial.

Swarm Simulation Experiments

The AFIT parallel swarm simulation uses SPEEDES
which is an open-source parallel discrete simulation
framework developed in C++. Its primary purpose is to allow
users to develop small and large optimistic time-managed
simulations [24]. Parallelization of the simulation allows for
simultaneous processing of events. Optimistic processing of
events enhances performance by allowing some events to be
processed out of order. Out of order execution avoids
delaying received events scheduled at a future time, while
waiting on the receipt of all events from earlier times.

In the first experiment to minimize climbing, an artificial
terrain field is created with a geometrically simple shape. The
planner optimizes a route to the target by minimizing the
climbing associated with the created path. Like all paths
solved by the planner, this scenario consists of start, middle,
and end locations. In between the straight-line path
connecting the points are two large areas of high terrain which
the planner must avoid. No threats are used in this
experiment. Further, the weight associated with climb cost is
maximized and the weight associated with distance is
minimized to demonstrate the satisfaction of this single
objective.

In illustrating tradeoffs between cost and risk
experiment, a real-world route is planned over Nevada in the
vicinity of Nellis Air Force Base. The path planner minimizes
the cost of the route by minimizing distance, the amount of
climbing associated with navigating the route, and the risk of
the route Hideability, the degree to which vehicles remain out
of site of potential unknown threats, is used as the
optimization criterion. Figure 4 shows the three-point route
for the planner to solve overlayed on a visualized Digital
Terrain Elevation Data (DTED) field.

Three point route on DTED field Least cost and least risk route
Figure 4 3D Route planning in vicinity of Nellis AFB

This experiment compares the effectiveness of the path
planner with a modified TFO algorithm. Three-element target
packages are created along with a grid of real world terrain
and a realistic threat lay down. The planner is run in single-

17

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

objective mode and its solution is scored and recorded. The
TFO is run and the output is passed into the evaluation
function of the planner. The cost results are then compared.

There are two general uses for the path planner. As a
stand alone unit, the path planner is multi-objective, i.e. it
provides decision makers with a range of solutions to a
particular problem instance. The second use is to generate link
solutions to the larger capacitated vehicle routing problem
(CVRP).

To measure the efficiency of the parallel path planner,
the runtime of the serial version is compared with multiple-
instance parallel runs of the algorithm. With this information,
the scalability and speed-up of the algorithm is determined.
The problem instance is suitable for this experiment because
the route covers a wide range of the problem space,. Also, the
the repair function due sharp turn is tested, and the solution is
overlaid on a varied, real-world terrain space where Terrain
Following Missions are flown. The configuration of the test
sets conducted on AFIT’s Beowulf clusters consist of 1 to 16
processors and 1 to 1024 problems in intervals of powers of
two. Each test is run 30 times for statistical analysis.

Modifications to the router only affected the data used by
the routing algorithm. Naturally, scores from the path planner
differ greatly from the static point-to-point scores originally
used by the router. Experimentation in this area focus only on
the ability of router to: successfully invoke the planner, make
use of the planner’s path scores, and complete its genetic
routing algorithm.

In the previous version of the swarm model, a 2-D swarm
was placed into a uniform terrain region with targets or points
of interest. The model demonstrated limited capability to find
targets while conforming to the swarming rules [23]. A suite
of experiments is developed to test the effects of the
additional model capabilities on the swarm model. Table 2
illustrates the behavior enhancements of as they relate to the
previous model. Testing focuses on adherence to the swarm
rules as defined and the scalability of the enhanced model.
The three major behavior enhancements are tested
independently and collectively.

Table 2 Swarm Model Behavior Enhancements

Specific actions taken by the vehicles to reach targets,
often conflict with the swarming behavior rules. These
experiments test the ability of the swarm to maintain its
physical integrity while reaching all assigned targets in the
route. Each experiment uses a common set of information to
determine the adherence to the swarm rules.

Neighborhood: A neighborhood is calculated for each
swarm member at each time step in the simulation output.
Each neighbor has a required separation parameter based on
its position relative to the central UAV as defined in the
parameter file.

To separate consequential rules violations from minor
ones, a threshold violation level is set at 20% of the separation
parameter. Rules violations in this experiment are then
determined by instances when a vehicle’s separation from any
of its neighbors differs from its required distance by ±20%.
Note that various swarm splitting is required for sub-swarms
to follow each CVRP route.

In order to observe the effect of the path-following
behavior on the swarm’s cohesiveness, metrics are required.
From the simulation data, the average neighborhood size is
calculated over time. Deterioration of neighborhood size is
indicative of the swarm spreading out beyond its intended
range.

For the first experiment, the simulation is executed over
flat terrain with only a single vertical layer. This configuration
allows for isolation of the effects of path following from other
model enhancements. For each time t in the simulation, the
average neighborhood size is calculated using:
 Ave.N.Size (t) = f

t== 0 |n| / #UAVs at time t (7)
Another measure of compliance is the degree to which rules
are violated. To measure the degree of violation, the absolute
value of each UAVs violation in meters is calculated at
various time steps in the simulation. Equation 7 quantifies the
magnitude of rules violations for UAV i at time t:

n
j=1 |vectdiff (i,j) req.separation (i,j)| / n (8)

where vectdiff(i,j) is the separation vector between the i and j
UAVs and req.separation is the position-dependent
separation distance required by the model’s rules.

Various experiments are executed to evaluate the impact
of cost and risk minimization along with terrain following
employing the indicated metrics. Swarm behavior such as
synchronization, rule adherence, cohesiveness, sub-swarm
shape with terrain following are analyzed over the 3D layered
UAV model. Parallel scalability evaluation was addressed via
a speedup factor with configurations consisted of 4, 8 and 16
processors simulating 40, 80, 160, 320, and 640 UAVs.

Results and Analysis

To test the planner’s ability to minimize climbing, an
artificial terrain field is created with a geometrically simple
shape. In this case, the planner-generated route avoids the
high terrain to eliminate climbing. The planner is run in multi-
objective mode and the least cost and least risk solutions are
captured and visualized. Figure 4 also shows the optimized
route for cost and risk minimization.

The route in Figure 4 was scored according to the fitness
functions. Its component scores are given in Table 3. Figure 5
shows a visualization of the lowest risk score. These two
solutions represent the two extremes of the Pareto front. To
compare the planner to the terrain following optimizer, this
experiment analyzes the effectiveness of the path planner with
modified TFO algorithm. This experiment was performed by
running the problem instance Nellis Route 1 on the path
planner and comparing the results with TFO’s solution. It
should be noted that TFO was not able to solve the problem
directly. Due to algorithmic constraints of TFO’s tree search,

18

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

a maximum of 20nm are allowed between targets. As a result,
intermediate points had to be inserted between the targets
before the route could be optimized. An additional limitation
of TFO is that it optimizes paths between targets but does not
optimize connections between targets. Therefore, TFO does
not allow more than 45 degrees of heading change between
consecutive major waypoints. The parallel path planner has
neither of these constraints. Figure 5 depicts the TFO solution
to the problem instance Nellis Route 1.

 Lowest risk route TFO route
Figure 5 Lowest risk and TFO 3D routes over Nellis AFB

Table 3 Fitness Component Scores - Nellis Route

Several inferences can be made from inspection of Figure
5. First, TFO’s approach to minimizing climbing involves
seeking the lowest point possible. Inspection of the path
between shows that higher terrain was avoided whenever
possible. This contrasts with the parallel path planner’s
approach which focused on minimizing the total amount of
climbing. While TFO would avoid high terrain at any cost, the
parallel path planner allows for high terrain so long as the cost
of moving into the terrain is offset by reduced climbing and
descending within the terrain. Table 5 compares the fitness
evaluation of the TFO solution with the low cost and low risk
Pareto front points of the parallel path planner.

Table 5 Nellis Route Evaluations

Table 5 shows that both solutions of the parallel path planner
had lower risk routes with shorter path lengths. The planner’s
low cost route found a lower climb cost while the TFO found
a lower climb cost than the low risk route. While the two
programs have a different approach to minimizing climbing, it
should be noted that the hideability algorithm and its input
data are identical in both programs. Figure 5 also reveals a
weakness in TFO’s application of the restriction on heading
change. Recall that consecutive target inputs in TFO must not
result in a change in heading greater than 45 degrees. In the
problem tested, as each segment was optimized

independently, the resulting solution contains a heading
change greater than 90 degrees. The MOEA resulting Pareto
front for the same problem instance is given in Figure 6
providing multi-objective tradeoffs to the decision maker.

Figure 6 Risk vs. Cost Pareto Front
 The efficiency of the parallel path planner experiments
reveal near linear speed-up. This is due to the independence of
the nodes, and low communications overhead. Runtimes
varied from one job on one processor of 0.2 seconds to 123.3
seconds for 1024 jobs on one processor to 8.5 seconds for
1024 jobs on 16 processors. It is clear that the parallelization
of the path planner results in near linear speedup with each
increase in the number of processors. This result is not
unexpected as the parallel decomposition strategy has very
low overhead. It should be noted however, that the load
balancing scheme and the use of multiple non-blocking
receives contributed to the speedup. In the absence of
effective load balancing and non-blocking communication,
the speedup would be reduced even with low-overhead
parallel problem decomposition.

Evaluating the expanded and improved parallel swarm
simulator was also a critical element in the development of
the UAV mission planning system [23]. Most insight as to
the performance of the UAV mission planner was achieved
with the parallel simulation as well as feedback to improve
planning and routing effectiveness [29].

Conclusion and Future Research

A multi-objective evolutionary algorithm is developed for
efficient path planning. Also, an efficient parallel
computation system is developed that computes individual
segments for use in the GVR routing algorithm. The parallel
swarm simulator is improved by incorporating path-following
capabilities with existing swarm behavior and measuring the
effects of these capabilities on swarm characteristics.
Additional efforts include exploring larger-sized areas for
terrain and threat avoidance. Another promising technique is
to increase the search space through the use of “migrant”
population members. Originally developed for use in the
Island model [26], migrant members are randomly initialized
solutions added to the population at various epochs of the
evolutionary cycle. Modifications to the path planner should
allow either validation that time on target constraints can be
met or that adjustments in the vehicle speed can be evolved
along path segments. The addition of more population

19

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

diversity would allow the planner to search different regions
of the problem space. Also, a dynamic parameterized UAV
vehicle second-order model tuned to create path feasibility
would also be of practical importance.

Acknowledgements: This effort is a research element of
the AFIT Advanced Navigation Technology Laboratory. The
research is sponsored by the Information Directorate and the
Sensors Directorate (Virtual Combat Laboratory), Air Force
Research Laboratory (AFRL), WPAFB, Ohio.

Bibliography

1. Brown, Darrin. Routing Unmanned Aerial Vehicles
While Considering General Restricted Operating Zones. MS
Thesis, AFIT/GOR/ENS/01M-04. Graduate School of
Engineering and Management, Air Force Institute of
Technology (AU), WPAFB, Dayton, OH March 2001.

2. Carriker, W. “The Use of Simulated Annealing to
Solve the Mobile Manipulator Path Planning Problem,”
Proceedings of the 1990 IEEE International Conference on
Robotics and Automation (1):204-209 (1990). 9.

3. Castillo, Oscar and Trujillo, J. “Multiple Objective
Optimization Genetic Algorithms for Path Planning in
Autonomous Mobile Robots,” Int’l Journal of Computers,
Systems, and Signals, 6 (1):48-62 (2005). 14 November 2005

4. Coello, C. D. Veldhuizen, and G. Lamont,
Evolutionary Algorithms for Solving Multi-Objective
Problems, Kluwer Academic Publishers, Norwell, MA 2002.

5. Corner, J. and Lamont, G. “Parallel Simulation of
UAV Swarm Scenarios,” Proc. Winter Simulation Conf., 355-
363 (2004)

6. Corner, J. Swarming Reconnaissance Using Unmanned
Aerial Vehicles in a Parallel Discrete Event Simulation. MS
Thesis, AFIT/GCE/ENG/04-01. Graduate School of
Engineering and Management, Air Force Institute of
Technology, WPAFB, Dayton, OH 2003

7. ----SkyView. Georgia Tech Research Institute. 5 Jan
2005

8. Gat, E., “On Three-Layer Architectures,” Artificial
Intelligence and Mobil Robots, Case Studies of Successful
Robot Systems, pp195-210, AAAI press, 1998

9. Jia, Dong. Vagners, J., “Parallel Evolutionary
Algorithms for UAV Path Planning.” Proceedings of the
AIAA 1st Intelligent Systems Conference. (2004)

10. Kadrovach, A. A Communication Modeling System
for Swarm-based Sensor Networks. PhD dissertation,
Graduate School of Engineering and Management, Air Force
Institute of Technology, WPAFB, OH (2003).

11. LaValle, S. Planning Algorithms, Chapter 5, pp 193-
196 Cambridge University Press, MA. 2006

12. Lozano, P. “A Simple Motion-Planning Algorithm
for General Robot Manipulators,” IEEE Transactions on
Robotics and Automation, 3(3), 224-238 (1987)

13. Mittal, S and Deb, K. “Three-Dimensional Offline
Path Planning for UAVs Using Multiobjective Evolutionary
Algorithms,” Kanpur Genetic Algorithms Laboratory Report:
20040008, Indian Institute of Tech., Kanpur, India (2004).

14. Nikolos, I., Tsourveloudis, N.C., VAlavanis, K.P.,
“Evolutionary Algorithm Based Offline/Online Path Planner
for UAV Navigation,” IEEE Transactions on Systems, Man,
and Cybernetics – Part B: Cybernetics 33 (6):898-912, 2003.

15. Price, I. Evolving Self Organizing Behavior for
Homogeneous and Heterogeneous Swarms of UAVs and
UCAVs. MS Thesis, AFIT/GCS/ENG/06M11. Graduate
School of Engineering and Management, Air Force Institute
of Technology (AU), WPAFB, Dayton, OH March 2006.

16 Price, I. and G. B. Lamont, “GA Directed Self-
Organized Search and Attack UAV Swarms,” Proc. Winter
Simulation Conference, 2006

17. Rathbun, D. “Evolutionary Approaches to Path
Planning Through Uncertain Environments,” Proc. of AIAA
UAV Conference, Portsmouth, VA #2002-3455 (2002).

18. Reynolds, C. “Flocks, Herds, and Schools: A
Distributed Behavior Model,” Computer Graphics, 21(4):25-
34 (1987).

19. Reynolds, C. “Steering Behaviors for Autonomous
Characters,” Proceedings of The Game Developers
Conference. San Jose, California. 763-782. (1999).

20. Russell, M. “On Using SPEEDES as a Platform for
UAV Swarm Simulation.” Proceedings of the 2005 Winter
Simulation Conference 1130-1137 (2005).

21. Russell, M., A Genetic Algorithm for the UAV
Routing Problem Integrated with a Parallel Swarm
Simulation. MS Thesis, AFIT/GCS/ENG/05M-16. Graduate
School of Engineering and Management, Air Force Institute
of Technology (AU), WPAFB, Dayton, OH March 2005.

22. Sezer, E., Mission Route Planning with Multiple
Aircraft & Targets Using Parallel A* Algorithm. MS Thesis.
AFIT/GCS/ENG/01M-06. College of Engineering, Air Force
Institute of Technology, WPAFB, Dayton, OH (2000)

23. Slear, J., AFIT UAV Swarm Mission Planning and
Simulation System, MS Thesis, AFIT/GCE/ENG/06-08.
Graduate School of Engineering and Management, Air Force
Institute of Technology (AU), WPAFB, OH June 2006.

24. -----. SPEEDES Users Guide. Solana Beach CA:
Metron, Inc., April 2003 (DN: 2024 v4)

25. Sugihara, K and Smith, J. “A Genetic Algorithm for
3-D Path Planning of a Mobile Robot.” white paper,
Department of Information and Computer Science, University
of Hawaii, Manoa, Honolulu, 1999

26. Tavares, J. “GVR Delivers it on time,” Proc. of Asia-
Pacific Conference on Simulated Evolution and Learning
(SEAL’02), 745-749. 2002.

27. Toth, Paolo and Vigo, D. The Vehicle Routing
Problem, Philadelphia: SIAM (2002).

28. Xiao, J. and Michalewicz, Z. “Adaptive Evolutionary
Planner/Navigator for Mobile Robots,” IEEE Transactions on
Evolutionary Computation 1 (1):18-28, April (1997)

29. Melendez, K., Slear J., and Lamont G., “Parallel
UAV Swarm Simulation With Optimal Route Planning,”
Proc. of Summer Simulation Conference, 2006

30 Rubio, J.S., Vagners, J., Rysdyk, R., “Adaptive Path
Planning for Autonomous UAV Oceanic Search Missions,”
AIAA 1st Intelligent Systems Technical Conference, 2004

20

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

