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Abstract The purpose of this research is to design and 
implement a comprehensive mission planning system for 
swarms of autonomous aerial vehicles (UAV). The system 
integrates several problem domains including path planning, 
vehicle routing, and swarm behavior as based upon a 
hierarchical architecture. The developed system consists of a 
parallel, multi-objective evolutionary algorithm-based 
terrain-following parallel path planner and an evolutionary 
algorithm-based vehicle router. Objectives include 
minimizing cost and risk generally associated with a three 
dimensional vehicle routing problem (VRP). The culmination 
of this effort is the development of an extensible 
developmental path planning model integrated with swarm 
behavior and tested with a parallel UAV simulation. 
Discussions on the system’s capabilities are presented along 
with recommendations for further development. 

Introduction

Path planning is the process of designing a sequence of states 
through which an object must move in order to travel from an 
initial state to a goal state. Path planning optimization is a 
process that proscribes a particular plan for reaching a goal 
state from an initial state at a minimal cost. A path planning 
algorithm is a sequence of steps taken to calculate a path plan 
given knowledge of the path environment and a set of 
conditions or constraints that must be adhered to. Many 
successful path planning algorithms have been developed 
over the years [1,2,3,9,11,17,25,28]. These algorithms vary in 
their effectiveness and efficiency based primarily on the 
specific formulation of the path planning problem and the 
number of variables and constraints required. Based upon this 
foundation in part, it is desired to develop three dimensional 
(3D) autonomous aerial vehicles (UAV) mission plans 
including path planning, vehicle routing, and swarm behavior. 
The outline of the paper is: background, approach and 
objectives, mission planning, high level and low level design, 
implementations, experimental testing, results and analysis.  

Background 

An underlying element of UAV path planning is the Vehicle 
Routing Problem (VRP) which is defined as the task of 
assigning a set of vehicles, each with a limited range and 
capacity, to a set of locations or targets that must be visited 

[27] with cost and risk objectives. The VRP has been shown 
to be an NP-complete problem. Such problem classes do not 
lend themselves to deterministic problem solving methods 
because the runtime of these approaches grows exponentially 
with the problem size. Stochastic methods have been used to 
provide “good” solutions to the VRP in reasonable time 
[21,27]. These stochastic methods achieve their results by 
generating feasible solutions and then improving these results 
through successive refinements using heuristics.   

The UAV routing problem consists of a set of targets L, a 
set of UAVs V, the set of traveling costs Q, the set of routes 
G, a distance function , a capacity function , and a demand 
function . The formal definition is [21]:  

Given L : li (li )  0,i > 0; (l0 ) = 0 and V:   vi (vi ) = k, k > 0     
compute: Q : qij = (li ,lj ) and G : gk = {l0 U L × L U l0 }

 subject to: l G
 minimize:

(l) = l L (l) and Ul g = L and g G = l0
|Q|

k =1 Qk

This model is addressed in the particular application which is 
a swarm of heterogeneous UAVs routed for reconnaissance or 
to deliver munitions to a set of targets in a selected terrain.  

Representing cost and risk as fixed objectives is adequate 
for UAV routing problems in which distances between targets 
are large enough to ignore the added path lengths resulting 
from having to make series of turns in order to change 
heading from one location to another. However, when the 
target layout is such that the distances between the targets are 
as near as several turn radii of a UAV, then the cost of 
traveling between any two targets must consider the heading 
at which the UAVs arrived at the initial location and the 
heading they must assume to vector themselves towards the 
next target. Moreover, the relationship of the UAV swarm 
elements must be explicitly controlled. Taking this into 
account, algorithms that solve the VRP should calculate the 
cost of every assignment from scratch in order to accurately 
represent the cost associated with that assignment.  

In this research, a UAV swarm path planning algorithm is 
developed that calculates the optimal route from a start node 
to an end node, through a mid point. This path through a 
triplet of locations can then be concatenated with other triplets 
to quickly and accurately calculate the actual cost of a vehicle 
assignment. This information can be tabularized and input to 
programs such as an evolutionary algorithm for solving the 
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VRP. For example, the Genetic Vehicle Router (GVR) [21] 
where “good” assignments can be made but the costs 
associated with these assignments are more representative of 
the required physical route or path. The goal is not merely to 
calculate the true cost of a particular assignment made by the 
GVR but to influence the GVR to make better assignments 
using the more complete cost information and thus providing 
proper UAV turn corridors. Swarm behavior is of course an 
integral element of the generic UAV mission planning system 
in order to generate acceptable individual UAV altitude and 
attitude positions and velocities. 

Approach and Objectives

When problems require minimization of multiple competing, 
cost elements, a trade-off is established between the set of 
competing requirements. In these instances, multi-objective 
evolutionary algorithms (MOEAs) can provide a decision 
maker with a variety of candidate solutions, each representing 
a level of optimization of one parameter with respect to 
another [4]. In this research, a MOEA is developed for path 
planning where the objectives are cost, encompassing 
distance traveled and the amount of climbing a vehicle does, 
and risk resulting from flying through areas of threat. The 
solution set contains a selection of routes such that each route 
has the lowest cost associated with a particular level of risk 
and vice versa. 
      Terrain Following (TF) is a mode of flight in which an 
aircraft maintains a fixed altitude above ground level (AGL) 
and flies low (on the order of a few hundred feet) through an 
area of interest. Naturally, this type of flying involves a great 
deal of climbing and descending, a costly operation.  The TF 
concept is to remain hidden from enemy air defenses. The 
technique to hide within rugged terrain is known as terrain 
masking. Terrain Masking (TM) algorithms determine a route 
of flight in which an aircraft can move toward a target or 
location of interest while remaining masked from enemy air 
defense radar by the surrounding terrain. Often routes 
calculated by TM algorithms have significant climbing and 
descending costs associated with them. The process of 
picking the best-masked routes with the least possible cost in 
terms of climbing and overall distance traveled is known as 
Terrain Following Optimization (TFO).    

Thus, the research goal is to develop mission planning 
capabilities for UAV swarms including VR, TF, and swarm 
behavior. In this effort there are three main objectives: 1.
Develop a multi-objective evolutionary algorithm for efficient 
path planning 2. Develop a parallel system that computes 
individual route segments for input to a GVR algorithm and 3.
Incorporate swarm behavior throughout. 

The first objective concerns the development of a robust 
path planning algorithm for terrain following UAV missions. 
Since all routes have both a cost and a risk associated with 
them, path planning can naturally be expressed as a multi-
objective minimization problem. Most often, decreasing the 
cost of the path, i.e. the path length and the amount of 
climbing required to navigate the terrain, results in increasing 
the risk associated with enemy air defenses. Likewise, a path 

generated to avoid intersection with all enemy air defense 
radar systems results in increased path cost. Single objective 
problem formulations for path planning often use constraints 
such as obstacle and threat avoidance and then calculate the 
least-cost path available that adheres to all constraints [22]. 
Other single objective problem formulations treat constraints 
as components of the solutions fitness [28]. Problems defined 
in this way have weights assigned to each objective and the 
resulting fitness is an aggregation of component scores. The 
common disadvantage of these approaches is twofold. First, a 
risk free path may not exist or its cost may exceed the UAV 
capabilities. Second, paths containing an acceptable level of 
risk may have a substantially lower cost than a completely 
risk adverse path if one exists. A multi-objective approach 
provides a choice of routes with cost proportional to their 
level of risk. This empowers the decision maker to choose the 
acceptable level of risk and obtain the least-cost path 
associated with that choice.  

The second objective using parallel path planning 
computation provides efficiency. Our associated Genetic 
Vehicle Routing algorithm [21,26] uses an evolutionary 
approach to find an optimal assignment of vehicles to targets 
for combat or reconnaissance missions. The algorithm uses as 
its set of inputs, the cost associated with traveling between 
any two target locations. This cost reflects only the Euclidian 
distance between the targets. In order to include the cost 
incurred by turning from one location and proceeding to 
another, which increases the path length, the actual cost of 
traveling between two locations must include the direction 
from which the UAV swarm approached the first target and 
the direction the swarm departs the second target in route to a 
subsequent target. The generation of optimal route triplets 
scales as O(n3) compared to the O(n2) cost of optimizing pair-
wise links. This limits scalability but is less costly than the 
exponential alternative of enumerating and calculating all 
possible permutations of complete route assignments. To 
offset some of the cost of enumerating triplets, the path 
planning algorithm is parallelized, solving multiple triplets 
concurrently. The output data from the path planner is then 
given as input to the GVR algorithm which has been modified 
to use this new data in its evaluation function. The result is an 
optimal assignment of UAVs to targets based on the true costs 
of completing the routes. Testing on this component focuses 
on the efficiency and scalability of the parallelization of the 
path planner and its ability to answer queries from the vehicle 
router. 

Regarding the third objective for behavior evaluation, our 
swarm simulation model [5,10] represents a swarm of 
autonomous air vehicles with a set of three behaviors. The 
first swarm behavior is the tendency to remain together. The 
second behavior is a tendency to maintain a safe distance 
from one another. The third behavior is for the swarm 
members to align themselves together toward a particular 
direction. The swarm simulation is extended in this research 
to include a routing capability that guides the swarm along a 
route generated by the path planner and the GVR optimizer 
while still adhering to the three required swarm behaviors.  
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Mission Planning and Routing

Mission Planning for swarms of autonomous unmanned aerial 
vehicles requires an efficient assignment of vehicles or sub-
swarms to targets, a set of efficient, feasible paths for vehicles 
to follow, a set of swarm behaviors that allow the swarm 
members to reach their targets while maintaining their 
collective swarm properties, and a detailed simulation of the 
mission to ensure objectives are met. This chapter considers 
historical approaches to solving these individual problems as 
well as a discussion of ways to unify these problem domains 
into a comprehensive problem statement.  

Path planning: UAV path planning is a subset of a 
broader set of general path planning problems. All path 
planning problems and the algorithms used to solve them 
consist of some initial condition, objective, and a set of 
actions that completely connect the initial condition to the 
objective. However, there are many ways to specify a path 
planning problem. The method selected is often linked to the 
algorithm used to solve the problem.  

Two broad categories of path planning problems and 
approaches dominate the research. The first category defines 
the problem in what is known as a configuration space.
Problem formulations of this type involve determining the set 
of desired actions (torques, rotations, and other forces) needed 
to move a system from an initial state to a goal state. The 
second category of problem formulations, trajectory spaces,
involves generating a set of feasible trajectories to move a 
vehicle from an initial location to a goal location.  
 In this research, paths are specified in line segments with 
restrictions on the degree of turn to ensure the path is 
navigable. Further, the concept of terrain masking which was 
loosely developed by Mittal [13] is extended with a complete 
terrain masking algorithm. The algorithm determines the 
maximum altitude (AGL) of an aircraft at a particular point 
such that at or below this altitude it is out of sight of a known 
threat - intervisibility. In addition to remaining out of sight of 
known threats, the terrain masking algorithm seeks to 
minimize the vehicle’s exposure to unknown threats. This 
principle is known as hidability.  It calculates the number of 
nearby points from which a vehicle is visible at a given 
altitude over a given point (see Figure 1).  
     Autonomous vehicles architectures: Abstract autonomous 
vehicles architectures for mission planning have been 
proposed by Reynolds [18,19] based upon a hierarchical game 
model, Gat [8] based upon a hierarchical control model and 
Price [15,16] based upon a finite automata self-organization 
model. Rysdyk [30] defines a trajectory following guidance 
architecture. Generally, desired complex goal-oriented 
behaviors are defined at the top of hierarchies and are 
produced by aggregations of lower level behaviors generally 
reflecting implicit or explicit state definitions.  
Reynolds “game” hierarchal framework is: Action Selection
(strategy, goals, planning), Steering (path determination), 
Locomotion (animation, articulation, control). Gat’s three 
layer robot hierarchy is: Deliberator (goals, planning), 
Sequencer (plan execution), Controller (reactive feedback 

control, primitive behavior).  Price’s formal agent hierarchy 
is: System state (ombined plans, environmental effectors),  
UAV Agent state (archtypes, behavior determination, path), 
Update local state (reactive action, communication). 
Rysdyk’s model is world states, local states, vehicle states.

Figure 1 Principles of Hidability 
 Probing the details of these suggested frameworks, one 

would note that they are similar as regarding plans, behaviors, 
and implementations. Differences exist as to behavior 
specifics at each level, explicit interfaces between levels and 
use of associated formal notations. Reynolds for example 
developed a complex model for 3-D autonomous animation 
that was implemented for video games such as Sony’s Play 
Station. Gat’s architecture was developed for individual robot 
movement resulting in the ATLANTIS system. Price’s model 
was used to develop a UAV swarm simulation with extensive 
environment interaction. 

The physical model to represent a vehicle or physical 
agent is usually based on a point mass model consisting of a 
mass, position, velocity, maximum force, maximum speed, 
and an orientation with possibility of turn radii and moment of 
inertia.. The orientation can be given as a set of N-basis 
vectors and is therefore suitable for both ground and air 
vehicles. With the point mass vehicle model, the behaviors 
associated with the hierarchy act directly on its vectors. The 
low-level control signals which generate the primitive 
behaviors are communicated from the desired plan behavior. 
Behaviors under these hierarchies can include: seek, flee, 
arrival, pursuit, offset pursuit, path following, obstacle 
avoidance, and containment. Seek is the pursuit of a static 
target. It acts to steer toward a particular position. Flee steers 
the agent so that its velocity is radially aligned away from a 
fixed location. Pursuit is like seek but the added factor that the 
target is moving. This behavior requires not only knowledge 
of the target’s velocity vector, but also the capability to 
predict the targets future velocity. Evasion is the opposite of 
pursuit i.e. the character is steered away from the predicted 
location of the moving target.  Offset pursuit steers a path to 
come within and maintain a fixed distance from a moving 
target. Arrival is the same as seek when there is a significant 
distance between the vehicle and the target. However, arrival 
slows the vehicle down as it approaches. This behavior ends 
with the vehicle at a zero forward velocity and a position 
coincident with the target.  
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This view of behavior hierarchy addresses many of the 
requirements for a UAV swarm in order to be able to follow 
feasible paths to targets. The behavior set is rich and requires 
a complex set of individual members to execute. As to the 
level of autonomous self-organized UAVs, feasible paths can 
be generated by path planning module offline and assigned to 
swarm members or agents thus relieving them of burdensome 
computational requirements. At the strategic level of 
planning, the assignment of sub-swarms to target sets can also 
be performed offline allowing decision makers, rather than 
swarm agents themselves, to better guide the behaviors of the 
swarm to meet the goals. Within each of the suggested 
frameworks, such architectural variations can be selected.  
This then is the complex computational framework used in 
our UAV mission planning and routing system [23]. 

Evaluating our UAV routing performance is done on the 
AFIT UAV Swarm Simulator, a Parallel Discrete Event 
Simulation (PDES). Based originally on Reynolds’ 
Distributed Behavior Model for flocking, the simulator was 
developed by Kadrovach [10] based inpart on Reynolds’ 
Distributed Behavior Model [18]. Corner [5,6,20] ported the 
model from a single-processor Windows platform to a parallel 
Linux-based Beowulf cluster.  Slear [23] extended the model 
and integrated the mission planning generic framework into 
the current computational environment. 

 High Level Design 

The high level system design consists of three principal 
components: a parallel path planner, a vehicle router, and a 
simulation and visualization engine. The development of a 
comprehensive UAV mission planning system consists 
minimally of an efficient assignment of resources to targets, 
an effective means to create vehicle trajectories that 
minimizes risk to the resources and mission cost, and a 
behavior model that produces swarm behavior without 
degrading the other capabilities.  

Parallel Path Planner Objectives: Two generic 
objectives are required: create an efficient and effective path 
planner using a MOEA, and create a flexible parallelization of 
the algorithm to allow for rapid generation of multiple paths 
for use in solving higher level optimization problems such as 
the capacitated vehicle routing problem (CVRP) [27].  

The specific path planning problem model for UAVs 
consists of the following:  

Given a discrete operational space of size n x m units      
superimposed over a terrain grid G (n 1) × (m 1) with
 Location set L, where li n × n l L
subject to: po ... pn P,  (pi , pi+1 )  45 o
        where  is the inbound heading at pi
determine the least cost path P* from all li L to all lj L

The restriction  45 o, ensures that the path remains 
flyable by the UAV. Based on the grid spacing of 750 meters, 
the UAV can safely navigate a 45-degree turn. This turn 
restriction can easily be modified to suit other vehicle types.  

The term “cost” is a composite of individual objectives or 
measures of merit of a mission. In this research, five such 
measures of merit are defined (path, climb, terrain, detection, 
kill cost).  

The path is the sum of the Euclidian distances of the 
route segments. Climb is the amount of climbing a vehicle 
must do in the course of flying a route in order to avoid 
terrain. The Terrain is the cost of exposure to unknown 
threats or the vulnerability associated with being “out in the 
open.” Detection is the cost associated with being exposed to 
enemy detection – a function of both distance and time. Kill 
cost is the cost associated with being within the lethal range 
of an enemy air defense weapon – a function of range, time 
and the lethality of the weapon. While the problem domain of 
the generalized path planner has no restriction on the size of 
the target set L, the target set is limited to three targets or 
locations per instance, {Po, Pm, Pf}, to maintain compatibility 
with the problem domain of the CVRP which is solved by the 
router.  

When a problem has five different cost functions (multi-
objective), it can be solved as an aggregate function that 
attempts to simultaneously minimize all parameters, or it can 
be solved as a multi-objective problem where the output 
consists of a set of non-dominated solutions along the Pareto 
front. An end user can select one of these solutions provided 
they are capable of deciding the appropriate level of trade-off 
between two competing objectives. An output consisting of a 
five-dimensional Pareto front however, would likely 
overwhelm the decision maker by providing more questions 
than answers. Fortunately, the measures of merit can be 
grouped logically into two categories: those that describe the 
cost of the path in terms of time and fuel consumption, (path 
and climb), and those that measure the risk of a given path 
(terrain, detect, and kill). Equations 1 and 2 define the 
grouping of the five problem objectives into two competing 
categories.

cost = path + climb
                                                                              (1)

risk = detect + kill + terrain                                     (2)  

where { , , , , } are weighting factors associated with the 
relative importance of each parameter. The individual cost 
functions are:  

path: The Euclidian distance between each point is 
summed over the length of the route.  

path = i
f

=0               (3)  
climb: The sum of positive changes in elevation from 

each point to the next point; 
climb = f

i=0 z(pi , pi+1 )                                             (4)  
where  is 1 if Zpi+1 > Zpi and  is 0 otherwise.  
     detect: The total linear distance through which the UAV  
swarm flies into the effective detection ring of radar.  
     kill: The same formulation required for the detection cost 
function is applied to the kill cost function. The distinction 
between the two is the effective kill radius of an air defense 
system is generally smaller than the detect radius.     

terrain: While many threats are known a priori, others are 
not. Therefore, the UAV swarm should remain out of sight as 
much as possible. The terrain metric measures the number of 
points in the grid from which a vehicle at a particular point 
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can be seen. The overall terrain score is determined by 
summing the surrounding points from which the vehicle can 
be seen as it flies though each grid point along its path.  

MOEA path planner and router:  A multi-objective 
genetic algorithm path planner interfacing to the CVRP 
router consists of the following elements: a population of 
candidate solutions, a defined chromosome structure of each 
candidate, a set of evolutionary operators which operate on 
the members of the population, a pair of evaluation functions 
to measure fitness of the solutions, an archived set of non-
dominated solutions, and a defined period of evolution.  The 
High Level View of MOEA Path Planning Algorithm is: 

1: procedure MOEA_Planner(N , g, fk(x)) 
2: Initialize Population P of size N
3: Evaluate, Rank (by dominance), sort Population  
4: Create archive population Pa from non-dominated members of Pi

5: for i in 1 to g do
6:   Select for recombination (crossover)  
7: for j in 2 to N do
8:    Statistically select mutation operator k
9:    Mutate member j  
10:    end for 
11:  evaluate Population
12:  determine dominance rank within current population Pg
13:  remove dominated members from Pa

15:  add globally non-dominated members from Pg to Pa
16: end for 
17: end procedure  

The vector function fk(x) is the set of evaluation functions. In 
this algorithm, k=2 where f1(x) is the cumulative cost function 
and f2(x) is the cumulative risk function. A population size of 
50 individuals is selected along with an evolutionary period of 
50 generations, g, based upon computational reasons. No 
heuristic was developed to terminate the evolutionary cycle 
once convergence of the solution was achieved. Further 
experimentation is needed to study the time saving benefits 
associated with early termination of the algorithm. 

The chromosome structure is similar to that used in [67]. 
A chromosome of candidate solution consists of an ordered 
set of points (xi,yi) which define a path from the starting point 
(x0,y0) to a destination point (xf,yf) through a midpoint (xm,ym). 
Additional information contained at each point includes 
elevation (the MSL altitude of the point), set clearance (the 
AGL altitude of the point), and heading (the direction of 
travel from the present point to the next point).  

Set clearance and altitude are used to calculate the 
amount of climb per descent needed to reach the next point as 
well as for terrain masking calculations. Heading is stored to 
ensure feasibility of the turns. The planner calculates the 
change of heading between points to ensure the turn rate is 
within the UAV’s limits. The following diagram illustrates 
the chromosome structure of a candidate solution. 

During initialization, the population of candidates is 
created with each member containing the start, middle, and 
end points. An initial check is performed to ensure that the 
turn around the mid point is less than 45 degrees. If it is not, a 
modified convex hull algorithm is used to add additional 
points to the route such that no turn greater than 45 degrees 
remains. Once the route is repaired, a number of intermediate 
points are randomly added to the route. The number of points 
added is based on the distance between the three original 
points. During this process, the algorithm ensures that the 
change of heading between each point (excluding the starting 
point) is less than 45 degrees.  

Once the population has been initialized [23], it is 
evaluated using the cost functions described. In a single 
objective EA, a program need only maintain the current 
population. In a MOEA, the complete set of non-dominated 
points must be maintained. An approximate Pareto front 
archive is maintained for this purpose. To find initial 
approximate Pareto front points, each member of the 
population is compared to every other member based on the 
member’s F1 score, cost and by its F2 score, risk. The 
population is first sorted by cost. A candidate Ri is added to 
the approximate Pareto front if it meets the following criteria: 

p R,¬ Rp | F1(Ri ) > F1(Rp ) F2(Ri ) F2(Rp )         (5)                  
All non-dominated members of the population are then 

added to the Pareto Front Archive. The population is then 
sorted by rank. The rank of an individual Ri, reflects the 
number of individuals in the population that dominate Ri. All 
non-dominated members of the population are assigned a rank 
of zero. All members dominated by only a single solution are 
given a rank of one. Members dominated by two individuals 
are given a rank of two etc. Rank is the primary selection 
criterion used in the path planner. Dominance count is an 
alternative selection method. Dominance count is defined as 
the number of solutions in the population that a particular 
solution dominates.  

A disadvantage of using dominance is that points along 
the ends of the front tend to evolve out of the populations 
while crowding occurs near the middle of the front. Rank is 
therefore preferable to raw dominance count because greater 
diversity is maintained in the population. Once the population 
has been evaluated and ranked, selection is performed. Like 
other MOEAs [3,4], the planner uses an elitist selection
operator. The use of elitism is common in MOEAs because 
the elitism preserves non-dominated individuals. The top half 
of the rank-sorted population is selected for recombination. 
Pairing of individuals is done randomly. Once paired, two 
offspring are created. These offspring occupy the places of the 
members not selected.  

Crossover is performed at the midpoint of the path. This 
ensures that the offspring remain feasible. During the one 
point crossover operation, the midpoints between two parents 
are exchanged. Since the underlying data structure is a linked 
list, the points beyond the midpoint are copied as well. The 
resulting offspring contain the points of one parent from the 
start of the path to the mid point, and the points of the second 
parent from the mid point to the end of the path.   
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Some other crossover operators considered include  
arithmetical, biased, multi-point, fuzzy forms, and uniform 
[4]. Because of the structure of the chromosome and the 
search landscape, the simple 1-point midpoint crossover 
provides the desired exploratory performance. 

Once the crossover operator has been applied, the 
population then undergoes mutation. The path planner uses 
three distinct mutation operators which are applied with equal 
probability. The first mutation operator, M1 attempts to add a 
point between two existing points in the path. If the addition 
of the point results in an infeasible solution, then the repair 
operator is invoked to create additional navigation points. The 
sharper the turn created by the mutation, the more navigation 
points are needed to smooth the route. The repair algorithm 
generates a number of points proportionate to the change in 
heading caused by the infeasible point. For turns of just over 
45 degrees, only two points are needed. For larger turns, as 
many as seven additional points need to be added. Therefore, 
when the mutation operation adds a point between two 
relatively nearby points, resulting in an unfeasible route, the 
path cannot be repaired and the operation is cancelled. Figure 
2 illustrates this situation. 

Figure 2 Mutate Add Operation on 4-point Path Segment. 
The second mutation operator, M2, attempts to delete a 

point between two points in the path. Again, if the deletion 
results in an infeasible path, the repair operator is called to 
add points which result in a smooth trajectory. Deletion 
operations naturally increase the distance between points. 
Therefore, the repair operator is usually able to add the points 
necessary to achieve feasibility. Nonetheless, feasibility of the 
repair operation is still validated and if the path cannot be 
repaired, the operation is undone. It is important that balance 
is achieved between delete and addition operations. When too 
few deletions occur, the resulting path has too many points 
and is more difficult to evolve. When too few additions occur, 
the path tends to have very few points and the ability of the 
algorithm to minimize cost and risk is diminished. Because 
the deletion operation results in greater success, the addition 
operation is used with a slightly greater probability.  

The last of the mutation operators, M3, selects an 
arbitrary point (not one of the original three) and attempts to 
alter its location by a bounded, random displacement. This 
operator does not change the number of points in the path by 

itself but additional points can be added when the alteration 
results in an infeasible path. When the bounds of the 
displacement are loose, the resulting path is more likely than 
not to be infeasible. Additionally, loosely-bounded 
displacement results in a greater number of points being 
added due to repair. On the other hand, if the bounds of the 
displacement are too tight then the operator becomes nothing 
more than a tool for local search.  Possible additional 
mutation operators could enlarge the search space. For 
example, the use of exploratory mutation operators such as 
Xiao’s Mutate 2 [28] that deletes multiple consecutive 
segments and replaces them with new ones could be 
considered. Rubio [30] uses a  mutation operator in an EA 
along with market-protocol  algorithms for path planning.  
Such techniques  were not incorporated due to the additional 
complexity and concern as to generic utility in our approach. 

Again, the swarm simulator must correctly route 
individual members to required targets by way of required 
waypoints. These way points are generated a priori as part of 
the path planner and are designed to minimize climbing, 
distance, and risk.  

UAV Swarm Behavior: The problem of directing UAV 
swarm behavior can be expressed as the cumulative problem 
of directing individual UAV behavior. The following relations 
mathematically define the problem domain of the swarm 
model: Given a swarm member vi and the following:   

A terrain region (X,Y) with an elevation Z = f (X,Y)
 A neighborhood vehicle set V
 A next waypoint wnext < i, j, k >  
 A current position s(t) = < i, j, k >
 A set clearance C 
Create a vector v(t+ t) to guide vi toward wnext subject to: 
 1. z(t+ t) > C + f(x t+ t ,y t+ t)                                    (6) 
 2. |s(t+ t)-wnext |< |s(t)-wnext |
 3. v V ,v vi , |s(t) b(vi (t))| > |s(t + t) b(vi (t + t))|
where condition 1 maintains the required set clearance, 
condition 2 moves the vehicle toward the next steering point, 
and condition 3 adjusts the separation between the member vi
and all neighbors in V toward the proper separation distance.  
 The behavior model consists of a set of rules to achieve 
path-following swarm behavior in a set of modes under which 
the rules are applied with various weighting factors, and a 
neighborhood of influence which defines which members 
affect the behavior of a given member. Each rule results in a 
unit vector addition operation applied to an individual. The 
sum of these vectors produces the member’s trajectory.  
 Neighborhood - Just as with swarms of insects or flocks 
of birds, swarms of UAVs have limitations on information 
that can be obtained from other members of the swarm. These 
restrictions are generally based on the proximity of a member 
to other members of the swarm. In our model, we define the 
notion of neighborhood which is used to define the 
communication model as well as shape of the swarm 
formation. The swarm shape is a 3-D stack of diamond 
tessellations. Each plane or level in the stack is offset one 
half-step from the level directly above or below it.  
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The main parameter of the swarm formation is the 
separation b, representing the lateral distance between co-
planar members and the distance of the co-planar neighbor 
directly in front and behind the member. Co-planar members 
45 degrees front-left and front-right are at a distance of b 
divided by the square-root of 2. 

Individual UAV swarms are not influenced by those 
behind them for two reasons. First, the lead members are first 
to climb in response to terrain and also reach their target and 
begin their turns before trailing members. Application of the 
cohesion rule would cause lead members to throttle back 
when climbing or turning to allow trailing members to catch 
up. Instead, catching up is achieved by trailing members 
applying the cohesion rule with respect to their distance from 
the leading vehicles. A second reason for this simplification is 
a reduction of the communication overhead. Restricting the 
neighborhood of a member to those members level with or in 
front of the UAV member, reduces the size of the 
neighborhood considerably. Table 1 defines the neighborhood 
of influence surrounding a given swarm member.  

Table 1. Neighborhood of individual UAV influence 

Rules. The behavior model consists of a set of three rules 
R = {r1, r2, r3} [45]. The application of these rules result 
from the interaction of individual swarm members with one 
another and with the terrain. As defined by Kadrovach [10] 
and implemented by Corner [3], each swarm member can 
only detect and be influenced by its neighbors.  The first rule 
creates a vector that causes a vehicle to move toward its 
neighbor whenever the distance to that neighbor exceeds the 
threshold distance value. Recall that vehicles in the lead with 
respect to the next target are not influenced by the cohesion 
rule except by their coplanar members to the left and right.  

Separation. Also from Reynolds, this rule adds a vector 
to the member moving it away from a neighbor when the 
distance to that neighbor decreases to below the threshold 
value. Leading vehicles have no members in front of them and 
are not directly influenced by those behind them. Therefore 
the separation rule applies only to their left and right co-
planar neighbors and their neighbor’s two planes directly 
above and below them. This rule replaces a more general 
alignment rule [3,10,18].  

Modes. The simulation progresses under two primary 
modes: warp and synchronization. During warp mode, 
communication among swarm members is suspended. 
Individual members continue on their path at their current 
heading. When small changes in individual trajectories are 
needed to avoid terrain, the other members are not notified. 

An individual member simply adjusts its trajectory as needed. 
During synchronization mode, members determine their 
neighborhoods and adjust their trajectories according to rules 
1 and 2. The simulation enters synchronization mode under 
two conditions: a) whenever a member alters its angular 
velocity by an amount greater than /8 degrees, and b) at 
scheduled fixed time intervals. The later condition is required 
to prevent drift in the swarm which would occur if minor 
changes in trajectory are extrapolated over long periods of 
time. During warp mode, the members apply only rule 3 
which accounts for climbing and descending. Under 
synchronization mode, the swarm applies rules 1 and 2 with a 
weight of 20% and it applies rule 3 with a weight of 30%. 
This weighting was established empirically for maintaining 
swarm characteristics while achieving the target seeking 
behavior.  

Communication Model. The simulation is built on the 
SPEEDES time-warp framework [24]. Agent message traffic 
is restricted to neighbors and to the central simulation engine. 
This allows for true scalability of the UAV swarm model.  

Since the entire swarm embarks on the mission from a 
single location, a swarm split must be performed as sub-
swarms go out in search of their individual targets. In order to 
minimize maneuvering and communication required for a 
split operation, the swarm uses a train or sausage link model 
in its original formation. Upon reaching a designated split 
point, the leading section of the swarm becomes a sub-swarm 
and turns towards its next target. The remainder of the swarm 
turns toward its next target. The split is done along the length 
of the swarm like a section of railroad cars being removed 
from the track. This method has the advantages of 
maintaining the shape of the sub-swarm and reducing the 
swarm’s temporal footprint. Once a swarm has split, there is 
no join operation defined. At the end of the mission, all 
swarms return to their embarkation point. Due to varying 
target assignments, the sub-swarms return home separately.  

System level design goals and integration: The system’s 
data flow begins with creation of a target set, terrain field, 
threat lay-down, set clearance, and number of available 
swarm vehicles. The terrain masking algorithm is given the 
terrain elevation data, location and range of threats, and the 
set clearance or above ground altitude at which the vehicles 
fly. The threat lay-down is superimposed over the terrain grid 
and grid areas considered to be within the effective detection 
and kill ranges of the threat are identified. The algorithm then 
calculates the line of sight visibility of each grid space within 
the effective range. An individual grid space is eliminated 
from the effective range of the threat when a terrain barrier 
lies between the grid space and the threat such that a line 
drawn from the threat radar to the grid point intersects the 
terrain boundary thus obscuring the grid space from sight of 
the radar.  

The set clearance of the UAV is added to the elevation of 
the grid space to account for the vehicles height above the 
ground. The updated threat range data is then stored for use 
by the path planner. Once the terrain has been preprocessed, 
the vehicle router optimizes the assignment of vehicles to 
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targets. To accomplish this, the router needs to know the 
complete cost associated with a particular route. The router 
produces a set of candidate solutions and invokes the parallel 
path planner to provide complete, feasible paths for each 
route. The router’s genetic algorithm finds the lowest cost 
vehicle assignment for the mission, and retrieves the complete 
set of waypoints for each vehicle or sub-swarm. This 
complete set of paths is then fed to the parallel swarm 
simulator which then simulates the mission and produces a 
visualization of the swarm flying its mission. Figure 3 
illustrates the dataflow design of the integrated system.  

Figure 3 System Data Flow Design 
The path planner produces a solution to the problem of 

minimizing the risk and cost associated with moving a vehicle 
from one location to another by way of an intermediate point. 
The input to the algorithm therefore, is a triple {Pi, Pm, Pf}.
The output contains the set of waypoints between Pi and Pm
and between Pm and Pf. This output forms a single segment 
of a solution to the larger vehicle routing problem which 
contains multiple targets and multiple vehicles. The router 
creates permutations of locations representing an ordered set 
of assignments to a set of vehicles. These permutations 
require sets of the triples described. The generation of these 
triplets is time consuming and the number of possible 3
triplets each grows at a rate of O(n) with the number of 
locations n. This growth rate is mitigated by three methods. 
First, the path planner is parallelized so that several paths can 
be generated at once. Next, the router uses a simple set of 
heuristics to request paths before they are needed. Finally, 
links which have already been calculated are cached for later 
reuse.  

Low Level Design and Implementation 

The path planner is implemented using an object-
oriented (OO) approach and is written in C++. The path 
planner has a naturally hierarchical structure. For example, a 
population consists of a set of paths, and a path consists of a 
set of points. This structure lends itself to object 
encapsulation. Methods are defined that act on objects at 
various levels of abstraction. Where the approach used differs 
from the traditional OO approach is in the area of information 

hiding. Typically an OO design defines strict controls on the 
access to an object’s data members. Specific methods to 
access or alter an object are used to govern the range within 
data must be assigned and to control which objects are 
authorized to act on other objects. Details of the design can be 
found in [23] which has as the major goal of the system 
integration effort, modularity (population, path object, 
evaluation functions, …).  The complexity of the various 
modules is polynomial. 
   

Swarm Simulation Experiments

The AFIT parallel swarm simulation uses SPEEDES 
which is an open-source parallel discrete simulation 
framework developed in C++. Its primary purpose is to allow 
users to develop small and large optimistic time-managed 
simulations [24]. Parallelization of the simulation allows for 
simultaneous processing of events. Optimistic processing of 
events enhances performance by allowing some events to be 
processed out of order. Out of order execution avoids 
delaying received events scheduled at a future time, while 
waiting on the receipt of all events from earlier times.  

In the first experiment to minimize climbing, an artificial 
terrain field is created with a geometrically simple shape. The 
planner optimizes a route to the target by minimizing the 
climbing associated with the created path. Like all paths 
solved by the planner, this scenario consists of start, middle, 
and end locations. In between the straight-line path 
connecting the points are two large areas of high terrain which 
the planner must avoid. No threats are used in this 
experiment. Further, the weight associated with climb cost is 
maximized and the weight associated with distance is 
minimized to demonstrate the satisfaction of this single 
objective.  

In illustrating tradeoffs between cost and risk 
experiment, a real-world route is planned over Nevada in the 
vicinity of Nellis Air Force Base. The path planner minimizes 
the cost of the route by minimizing distance, the amount of 
climbing associated with navigating the route, and the risk of 
the route Hideability, the degree to which vehicles remain out 
of site of potential unknown threats, is used as the 
optimization criterion. Figure 4 shows the three-point route 
for the planner to solve overlayed on a visualized Digital 
Terrain Elevation Data  (DTED) field.  

         
Three point route on DTED field               Least cost and least risk route
Figure 4 3D Route planning in vicinity of Nellis AFB 

This experiment compares the effectiveness of the path 
planner with a modified TFO algorithm. Three-element target 
packages are created along with a grid of real world terrain 
and a realistic threat lay down. The planner is run in single-
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objective mode and its solution is scored and recorded. The 
TFO is run and the output is passed into the evaluation 
function of the planner. The cost results are then compared.  

There are two general uses for the path planner. As a 
stand alone unit, the path planner is multi-objective, i.e. it 
provides decision makers with a range of solutions to a 
particular problem instance. The second use is to generate link 
solutions to the larger capacitated vehicle routing problem 
(CVRP).  

To measure the efficiency of the parallel path planner,
the runtime of the serial version is compared with multiple-
instance parallel runs of the algorithm. With this information, 
the scalability and speed-up of the algorithm is determined. 
The problem instance is suitable for this experiment because 
the route covers a wide range of the problem space,. Also, the 
the repair function due sharp turn is tested, and the solution is 
overlaid on a varied, real-world terrain space where Terrain 
Following Missions are flown. The configuration of the test 
sets conducted on AFIT’s Beowulf clusters consist of 1 to 16 
processors and 1 to 1024 problems in intervals of powers of 
two. Each test is run 30 times for statistical analysis. 

Modifications to the router only affected the data used by 
the routing algorithm. Naturally, scores from the path planner 
differ greatly from the static point-to-point scores originally 
used by the router. Experimentation in this area focus only on 
the ability of router to: successfully invoke the planner, make 
use of the planner’s path scores, and complete its genetic 
routing algorithm.  

In the previous version of the swarm model, a 2-D swarm 
was placed into a uniform terrain region with targets or points 
of interest. The model demonstrated limited capability to find 
targets while conforming to the swarming rules [23].  A suite 
of experiments is developed to test the effects of the 
additional model capabilities on the swarm model. Table 2 
illustrates the behavior enhancements of as they relate to the 
previous model. Testing focuses on adherence to the swarm 
rules as defined and the scalability of the enhanced model. 
The three major behavior enhancements are tested 
independently and collectively.  

Table 2 Swarm Model Behavior Enhancements 

Specific actions taken by the vehicles to reach targets, 
often conflict with the swarming behavior rules. These 
experiments test the ability of the swarm to maintain its 
physical integrity while reaching all assigned targets in the 
route. Each experiment uses a common set of information to 
determine the adherence to the swarm rules.  

Neighborhood: A neighborhood is calculated for each 
swarm member at each time step in the simulation output. 
Each neighbor has a required separation parameter based on 
its position relative to the central UAV as defined in the 
parameter file.  

To separate consequential rules violations from minor 
ones, a threshold violation level is set at 20% of the separation 
parameter. Rules violations in this experiment are then 
determined by instances when a vehicle’s separation from any 
of its neighbors differs from its required distance by ±20%.  
Note that various swarm splitting is required for sub-swarms 
to follow each CVRP route. 

In order to observe the effect of the path-following 
behavior on the swarm’s cohesiveness, metrics are required. 
From the simulation data, the average neighborhood size is 
calculated over time. Deterioration of neighborhood size is 
indicative of the swarm spreading out beyond its intended 
range.  

For the first experiment, the simulation is executed over 
flat terrain with only a single vertical layer. This configuration 
allows for isolation of the effects of path following from other 
model enhancements. For each time t in the simulation, the 
average neighborhood size is calculated using:  
 Ave.N.Size (t) = f

t== 0 |n| / #UAVs   at time t                   (7)                   
Another measure of compliance is the degree to which rules 
are violated. To measure the degree of violation, the absolute 
value of each UAVs violation in meters is calculated at 
various time steps in the simulation. Equation 7 quantifies the 
magnitude of rules violations for UAV i at time t:  

n
j=1 |vectdiff (i,j) req.separation (i,j)|  / n                   (8) 

where vectdiff(i,j) is the separation vector between the i and j
UAVs and req.separation is the position-dependent 
separation distance required by the model’s rules.  

Various experiments are executed to evaluate the impact 
of cost and risk minimization along with terrain following 
employing the indicated metrics. Swarm behavior such as 
synchronization, rule adherence, cohesiveness, sub-swarm 
shape with terrain following are analyzed over the 3D layered 
UAV model. Parallel scalability evaluation was addressed via 
a speedup factor with configurations consisted of 4, 8 and 16 
processors simulating 40, 80, 160, 320, and 640 UAVs.  

Results and Analysis 

To test the planner’s ability to minimize climbing, an 
artificial terrain field is created with a geometrically simple 
shape. In this case, the planner-generated route avoids the 
high terrain to eliminate climbing. The planner is run in multi-
objective mode and the least cost and least risk solutions are 
captured and visualized. Figure 4 also shows the optimized 
route for cost and risk minimization.  

The route in Figure 4 was scored according to the fitness 
functions. Its component scores are given in Table 3. Figure 5 
shows a visualization of the lowest risk score. These two 
solutions represent the two extremes of the Pareto front. To 
compare the planner to the terrain following optimizer, this 
experiment analyzes the effectiveness of the path planner with 
modified TFO algorithm. This experiment was performed by 
running the problem instance Nellis Route 1 on the path 
planner and comparing the results with TFO’s solution. It 
should be noted that TFO was not able to solve the problem 
directly. Due to algorithmic constraints of TFO’s tree search, 
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a maximum of 20nm are allowed between targets. As a result, 
intermediate points had to be inserted between the targets 
before the route could be optimized. An additional limitation 
of TFO is that it optimizes paths between targets but does not 
optimize connections between targets. Therefore, TFO does 
not allow more than 45 degrees of heading change between 
consecutive major waypoints. The parallel path planner has 
neither of these constraints. Figure 5 depicts the TFO solution 
to the problem instance Nellis Route 1.  

        
              Lowest risk route                                      TFO route   
Figure 5 Lowest risk and TFO 3D routes over Nellis AFB 

Table 3 Fitness Component Scores - Nellis Route 

Several inferences can be made from inspection of Figure 
5. First, TFO’s approach to minimizing climbing involves 
seeking the lowest point possible. Inspection of the path 
between shows that higher terrain was avoided whenever 
possible. This contrasts with the parallel path planner’s 
approach which focused on minimizing the total amount of 
climbing. While TFO would avoid high terrain at any cost, the 
parallel path planner allows for high terrain so long as the cost 
of moving into the terrain is offset by reduced climbing and 
descending within the terrain. Table 5 compares the fitness 
evaluation of the TFO solution with the low cost and low risk 
Pareto front points of the parallel path planner.  

Table 5 Nellis Route Evaluations 

Table 5 shows that both solutions of the parallel path planner 
had lower risk routes with shorter path lengths. The planner’s 
low cost route found a lower climb cost while the TFO found 
a lower climb cost than the low risk route. While the two 
programs have a different approach to minimizing climbing, it 
should be noted that the hideability algorithm and its input 
data are identical in both programs. Figure 5 also reveals a 
weakness in TFO’s application of the restriction on heading 
change. Recall that consecutive target inputs in TFO must not 
result in a change in heading greater than 45 degrees. In the 
problem tested, as each segment was optimized 

independently, the resulting solution contains a heading 
change greater than 90 degrees. The MOEA resulting Pareto 
front for the same problem instance is given in Figure 6 
providing multi-objective tradeoffs to the decision maker. 

Figure 6 Risk vs. Cost Pareto Front 
 The efficiency of the parallel path planner experiments 
reveal near linear speed-up. This is due to the independence of 
the nodes, and low communications overhead.  Runtimes 
varied from one job on one processor of 0.2 seconds to 123.3 
seconds for 1024 jobs on one processor to 8.5 seconds for 
1024 jobs on 16 processors. It is clear that the parallelization 
of the path planner results in near linear speedup with each 
increase in the number of processors. This result is not 
unexpected as the parallel decomposition strategy has very 
low overhead. It should be noted however, that the load 
balancing scheme and the use of multiple non-blocking 
receives contributed to the speedup. In the absence of 
effective load balancing and non-blocking communication, 
the speedup would be reduced even with low-overhead 
parallel problem decomposition.  

Evaluating the expanded and improved parallel swarm 
simulator was also a critical element in the development of 
the UAV mission planning system [23].  Most insight as to 
the performance of the UAV mission planner was achieved 
with the parallel simulation as well as feedback to improve 
planning and routing effectiveness [29]. 

Conclusion and Future Research

A multi-objective evolutionary algorithm is developed for 
efficient path planning.  Also, an efficient parallel 
computation system is developed that computes individual 
segments for use in the GVR routing algorithm.  The parallel 
swarm simulator is improved by incorporating path-following 
capabilities with existing swarm behavior and measuring the 
effects of these capabilities on swarm characteristics.  
Additional efforts include exploring larger-sized areas for 
terrain and threat avoidance. Another promising technique is 
to increase the search space through the use of “migrant” 
population members. Originally developed for use in the 
Island model [26], migrant members are randomly initialized 
solutions added to the population at various epochs of the 
evolutionary cycle.  Modifications to the path planner should 
allow either validation that time on target constraints can be 
met or that adjustments in the vehicle speed can be evolved 
along path segments. The addition of more population 
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diversity would allow the planner to search different regions 
of the problem space. Also, a dynamic parameterized UAV 
vehicle second-order model tuned to create path feasibility 
would also be of practical importance.  
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