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 Abstract − Evolutionary multiobjective optimization (EMO) 
has been utilized in the field of data mining in the following two 
ways: to find Pareto-optimal rules and Pareto-optimal rule sets. 
Confidence and coverage are often used as two objectives to 
evaluate each rule in the search for Pareto-optimal rules. 
Whereas all association rules satisfying the minimum support 
and confidence are usually extracted in data mining, only 
Pareto-optimal rules are searched for by an EMO algorithm in 
multiobjective data mining. On the other hand, accuracy and 
complexity are used to evaluate each rule set. The complexity of 
each rule set is often measured by the number of rules and the 
number of antecedent conditions. An EMO algorithm is used to 
search for Pareto-optimal rule sets with respect to accuracy and 
complexity. In this paper, we examine the relation between 
Pareto-optimal rules and Pareto-optimal rule sets in the design 
of fuzzy rule-based systems for pattern classification problems. 
More specifically, we check whether Pareto-optimal rules are 
included in Pareto-optimal rule sets through computational 
experiments using multiobjective genetic fuzzy rule selection. A 
mixture of Pareto-optimal and non Pareto-optimal fuzzy rules 
are used as candidate rules in multiobjective genetic fuzzy rule 
selection. We also examine the performance of selected rules 
when we use only Pareto-optimal rules as candidate rules. 

 
I.  INTORDUCTION 

Recently association rule mining techniques have been 
applied to classification problems to design an accurate and 
compact classifier [1]-[4]. In these studies, the design of 
classifiers is performed through the following two steps: rule 
discovery and rule pruning. A large number of candidate 
classification rules are extracted from numerical data in the 
rule discovery step. An association rule mining technique 
such as Apriori [5] is used to find all rules satisfying the 
minimum support and confidence. Whereas these two rule 
evaluation measures (i.e., support and confidence) have been 
frequently used in data mining, other measures were also 
proposed to evaluate association rules. Among them are gain, 
variance, chi-squared value, entropy gain, gini, laplace, lift, 
and conviction [6]. It was shown for non-fuzzy rules that the 
best rule according to any of these measures is a Pareto-
optimal rule of a two-objective rule discovery problem with 

support maximization and confidence maximization [6]. The 
use of an evolutionary multiobjective optimization (EMO) 
algorithm was proposed to search for Pareto-optimal rules of 
this two-objective problem for partial classification [7]-[10]. 
Partial classification is the classification of a particular class 
(usually minor class) from all the other classes. Similar 
multiobjective formulations to [7]-[10] were used to search 
for Pareto-optimal association rules [11] and Pareto-optimal 
fuzzy association rules [12].  

In the rule pruning step, a small number of rules are 
selected from the extracted rules using a heuristic rule sorting 
criterion to design an accurate and compact classifier [1]-[4]. 
It is also possible to use global optimization techniques such 
as genetic algorithms [13], [14] for rule pruning instead of a 
heuristic rule sorting criterion. Genetic rule selection was first 
formulated as a single-objective combinatorial optimization 
problem to design an accurate and compact fuzzy rule-based 
classifier [15]. A standard single-objective genetic algorithm 
(SOGA) was used to find a single optimal rule set with 
respect to a weighted sum fitness function defined by the two 
objectives: the number of correctly classified training patterns 
and the number of selected fuzzy rules. This formulation was 
generalized in [16] where a multiobjective genetic algorithm 
(MOGA) was used to search for Pareto-optimal fuzzy rule 
sets with respect to these two objectives. The two-objective 
formulation in [16] was further generalized to the case of 
three objectives by taking into account the number of 
antecedent conditions in each fuzzy rule [17], [18]. The sum 
of the number of antecedent conditions over selected fuzzy 
rules was used as an additional complexity measure. An 
MOGA was used to search for Pareto-optimal rule sets with 
respect to the three objectives. Multiobjective genetic rule 
selection was also used to design non-fuzzy rule-based 
classifiers in [19], [20]. 

In this paper, we examine the relation between Pareto-
optimal fuzzy rules and Pareto-optimal rule sets. First we 
explain fuzzy rule-based classification, multiobjective fuzzy 
data mining and multiobjective fuzzy rule selection in Section 
II. Next we examine whether Pareto-optimal fuzzy rules are 
included in Pareto-optimal rule sets through computational 
experiments on some benchmark classification problems in 
the UCI database in Section III. Then we examine the 
accuracy of selected fuzzy rules when we use only Pareto-
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optimal fuzzy rules as candidate rules in multiobjective 
genetic rule selection in Section IV. Finally we conclude this 
paper in Section V. 
 

II.  TWO MULTIOBJECTIVE FORMULATIONS 

A.  Classification problems 
Let us assume that we have m training (i.e., labeled) 

patterns =px )...,,( 1 pnp xx , mp ...,,2,1=  from M classes in 
the n-dimensional continuous pattern space where pix  is the 
attribute value of the p-th training pattern for the i-th attribute. 
For the simplicity of explanation, we assume that all the 
attribute values have already been normalized into real 
numbers in the unit interval [0, 1].  

 
B.  Fuzzy rules 

For our n-dimensional pattern classification problem, we 
use fuzzy rules of the following form [21]: 

  Rule qR : If 1x  is 1qA  and  ...  and nx  is qnA  
       then Class qC  with qCF ,      (1) 

where qR  is the label of the q-th fuzzy rule, )...,,( 1 nxx=x  
is an n-dimensional pattern vector, qiA  is an antecedent 
fuzzy set, qC  is a class label, and qCF  is a rule weight (i.e., 
certainty grade). We also denote the fuzzy rule qR  in (1) as 

qq CClass⇒A . The rule weight qCF  has a large effect on 
the accuracy of fuzzy rule-based classification systems as 
shown in [22], [23]. For other types of fuzzy rules for pattern 
classification problems, see [24]-[26]. 

Since we usually have no a priori information about an 
appropriate granularity (i.e., the number of fuzzy sets) of 
fuzzy discretization for each attribute, we simultaneously use 
multiple fuzzy partitions with different granularities as shown 
in Fig. 1. In addition to the 14 fuzzy sets in Fig. 1, we also 
use the domain interval [0, 1] itself as an antecedent fuzzy set 
in order to represent a don’t care condition. Thus we have the 
15 possible antecedent fuzzy sets as qiA  for each attribute.  
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Fig. 1. Four fuzzy partitions used in our computational experiments. 

 
C.  Fuzzy rule generation 
 Since we have the 15 antecedent fuzzy sets for each 
attribute of our n-dimensional pattern classification problem, 

the total number of combinations of the antecedent fuzzy sets 
is n15 . Each combination is used in the antecedent part of the 
fuzzy rule in (1). Thus the total number of possible fuzzy 
rules is also n15 . The consequent class qC  and the rule 
weight qCF  of each fuzzy rule qR  are specified from the 
given training patterns in the following heuristic manner. 
 First we calculate the compatibility grade of each pattern 

px  with the antecedent part qA  of the fuzzy rule qR  using 
the product operation as  

  )(...)()( 11 pnApAp xx qnqq µµµ ⋅⋅=xA ,      (2) 

where )( ⋅qiAµ  is the membership function of qiA .  
 Next the confidence of the fuzzy rule hq Class⇒A  is 
calculated for each class h as follows [26]-[28]: 
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 The consequent class qC  is specified by identifying the 
class with the maximum confidence: 

   })Class({)Class( max
,...,2,1

hcCc q
Mh

qq ⇒=⇒
=

AA .   (4) 

The consequent class qC  can be viewed as the dominant 
class in the fuzzy subspace defined by the antecedent part 

qA . When there is no pattern in the fuzzy subspace defined 
by qA , we do not generate any fuzzy rules with qA  in the 
antecedent part. This specification method of the consequent 
class of fuzzy rules has been used in many studies since [21]. 
 Different specifications of the rule weight qCF  have been 
proposed and examined. We use the following specification 
because good results were reported by this specification [23]: 
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D.  Rule discovery criteria 
 Using the above-mentioned procedure, we can generate a 
large number of fuzzy rules by specifying the consequent 
class and the rule weight for each of the n15  combinations of 
the antecedent fuzzy sets. It is, however, very difficult for 
human users to handle such a large number of generated 
fuzzy rules. It is also very difficult to intuitively understand 
long fuzzy rules with many antecedent conditions. Thus we 
generate short fuzzy rules with a few antecedent conditions. It 
should be noted that don’t care conditions can be omitted 
from fuzzy rules. So the rule length means the number of 
antecedent conditions excluding don’t care conditions. We 
examine only short fuzzy rules of length maxL  or less (e.g., 

=maxL 3). This restriction is to find a compact set of fuzzy 
rules with high interpretability. 
 Among short fuzzy rules, we only extract fuzzy rules that 
satisfy both the minimum confidence and support. In the field 
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of data mining, these two rule extraction criteria have been 
frequently used [1]-[5]. In the same manner as the fuzzy 
version of confidence in (3), the support of the fuzzy rule 

hq Class⇒A  is calculated as follows [26]-[28]: 
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p

q∑
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Class
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x
A x
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.     (6) 

 
E.  Multiobjective fuzzy rule mining 

The use of NSGA-II [29], which is a well-known and 
frequently-used multiobjective genetic algorithm (MOGA), 
was proposed by de la Iglesia et al. [7]-[9] in the field of 
classification rule mining. They applied NSGA-II to the 
following two-objective rule discovery problem for partial 
classification. 

  Maximize {Confidence(R), Coverage(R)},     (7) 

where R means a classification rule. It should be noted in (7) 
that the coverage maximization is the same as the support 
maximization since the consequent class is always fixed in 
partial classification. The use of a rule dissimilarity measure 
between classification rules instead of a crowding measure in 
NSGA-II was examined in [8] in order to search for a set of 
Pareto-optimal rules with a large diversity. Pareto-dominance 
relation in NSGA-II was modified in [10] in order to search 
for not only Pareto-optimal rules but also near Pareto-optimal 
rules. The two-objective formulation in (7) is used to define 
Pareto-optimal fuzzy rules in this paper. 

 
F.  Multiobjective fuzzy rule selection 
 Let S  be a set of fuzzy rules of the form in (1). That is, S 
is a fuzzy rule-based classifier. A new pattern px  is 
classified by a single winner rule wR , which is chosen from 
the rule set S as follows: 

  }|)(max{)( SRCFCF qqpwp qw ∈⋅=⋅ xx AA µµ .   (8) 

When multiple fuzzy rules with different consequent classes 
have the same maximum value, xp is randomly assigned to 
one of those classes. On the other hand, the classification of 
xp is rejected when no rules are compatible with xp  (i.e., 
when the maximum value is zero in (8)). Such a pattern is 
viewed as being unclassifiable by S.  

The above-mentioned random tiebreak is not used in the 
rule selection phase in which the combination of fuzzy rules 
is optimized. The random tiebreak is used only when the 
accuracy of selected rule sets (i.e., obtained fuzzy rule-based 
classifiers) is evaluated after rule selection. 

As in our former studies [17]-[19], we use the following 
three objectives in multiobjective genetic rule selection: 

f1(S) : The number of correctly classified patterns by S,  
f2(S) : The number of selected fuzzy rules in S, 
f3(S) : The total number of antecedent conditions in S (i.e., 

the total rule length in S). 

The first objective is maximized while the second and third 
ones are minimized. That is, our three-objective rule selection 
problem is written as follows:  

  Maximize )(1 Sf , and minimize { )(2 Sf , )(3 Sf }.   (9) 

When the first objective is to be evaluated in multiobjective 
genetic rule selection, we use the single winner-based method 
without the random tiebreak. We apply NSGA-II to the three-
objective rule selection problem in (9). For details of NSGA-
II, see [29], [30]. For the implementation of three-objective 
genetic rule selection, see [17]-[20]. 

 
III.  EXAMINATION OF SELECTED FUZZY RULES 

A.  Settings of computational experiments 
We used the five data sets in Table 1 from the UCI 

database. Incomplete patterns with missing values were not 
used. All attribute values were handled as real numbers in the 
unit interval [0, 1]. We simultaneously used the four different 
fuzzy partitions with two, three, four, and five membership 
functions in Fig. 1. That is, we used 14 fuzzy sets and don’t 
care as antecedent fuzzy sets for each attribute. 

 
TABLE I 

DATA SETS 

Data set Attributes Patterns Classes 

Breast W   9   683* 2 
Glass   9 214 6 

Heart C 13   297* 5 
Iris   4 150 3 

Wine 13 178 3 

* Incomplete patterns with missing values are not included. 

We divided each data set into two subsets of the same 
size: training data and test data. Using training data, first we 
extracted fuzzy rules satisfying the following conditions: 

Minimum confidence: 0.6, 
Minimum support: 0.04 (for the wine data set), 
 0.01 (for the other data sets). 

The maximum rule length was specified as three. All the 
extracted fuzzy rules were used in multiobjective genetic rule 
selection as candidate rules.  
 Then we applied NSGA-II to the generated candidate rules 
to search for Pareto-optimal rule sets with respect to the three 
objectives in (9) using the following parameter specifications: 

Population size: 200 strings, 
Crossover probability: 0.9 (uniform crossover), 
Mutation probability: 0.05 ( 01→ ), 

       1/N ( 10→ ,  N: string length), 
Termination condition: 1000 generations. 

In our multiobjective genetic rule selection, the string length 
N is the same as the number of the generated candidate rules. 
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B.  Experimental results 
Wisconsin Breast Cancer Data Set: First we randomly 

divided the data set into 342 and 341 patterns for training and 
testing, respectively. Next we extracted 78607 candidate 
fuzzy rules from the 342 training patterns. Then we applied 
NSGA-II to the candidate rules for multiobjective genetic 
rule selection. From its single run, 18 non-dominated rule sets 
were obtained. Finally each of the obtained rule sets was 
evaluated for the training patterns and the test patterns. 

Training data accuracy and test data accuracy of each rule 
set are shown in Fig. 2 (a) and Fig. 2 (b), respectively. We 
can observe a clear accuracy-complexity tradeoff relation in 
Fig. 2 (a): The classification rate increases with the increase 
in the number of fuzzy rules. This means that we can not 
simultaneously realize the accuracy maximization and the 
complexity minimization. Since we used not only the number 
of fuzzy rules but also the total number of antecedent 
conditions as complexity measures in multiobjective genetic 
rule selection, different rule sets with the same number of 
fuzzy rules were obtained in Fig. 2 (a). Rule sets marked by 
A and B are examined later. Some of the obtained rule sets 
(i.e., a rule set with a single rule) are not shown because their 
classification rates are out of the range of the vertical axis of 
each plot in Fig. 2. 
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              (a) Training data accuracy.                      (b) Test data accuracy. 

Fig. 2. Obtained fuzzy rule sets (Breast W). 

We examined fuzzy rules included in each of the obtained 
rule sets. That is, we examined whether selected fuzzy rules 
are Pareto-optimal or not. In Fig. 3, we show all the selected 
fuzzy rules together with the candidate rules. The upper-right 
bound of the cloud of the candidate rules is the Pareto front in 
terms of confidence and coverage maximization (see Fig. 14). 
Fuzzy rules marked by open circles in Fig. 3 were included in 
at least one of the obtained rule sets. In Fig. 3, some selected 
rules are Pareto-optimal or near Pareto-optimal (i.e., they are 
very close to the upper-right bound of the cloud of the 
candidate rules in each plot of Fig. 3). Other selected rules, 
however, are far from Pareto-optimal rules. In Fig. 4 and Fig. 
5, we show selected fuzzy rules in the rule sets A and B in 
Fig. 2, respectively. As shown in Fig. 4, small rule sets 
usually consist of only Pareto-optimal or near Pareto-optimal 
fuzzy rules. This is because each rule in small rule sets should 

classify many patterns. On the contrary, large rule sets often 
include fuzzy rules far from Pareto-optimal rules as shown in 
Fig. 5.  

 

Confidence
0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
pp

or
t

Candidate Rules Selected Rules

   Confidence
0.6 0.7 0.8 0.9 1.00.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Su
pp

or
t

Candidate Rules Selected Rules

 
                         (a) Class 1.                                              (b) Class 2. 

Fig. 3. Selected rules in Fig. 2 (Breast W). 
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                         (a) Class 1.                                              (b) Class 2. 

Fig. 4. Selected rules in the rule set A in Fig. 2. 
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                         (a) Class 1.                                              (b) Class 2. 

Fig. 5. Selected rules in the rule set B in Fig. 2. 

Glass Data Set: Experimental results are shown in Fig. 6. 
Multiobjective genetic rule selection found 24 rule sets (some 
of them are not shown in Fig. 6 due to their low accuracy). 
We can observe a clear accuracy-complexity tradeoff relation 
in Fig. 6 (a). In Fig. 7, we show selected fuzzy rules in the 
obtained 24 rule sets. Due to the page limitation, we only 
show selected rules with Class 1 and Class 2 consequents in 
Fig. 7 (a) and Fig. 7 (b), respectively. As in Fig. 3, some 
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selected rules are Pareto-optimal or near Pareto-optimal while 
others are far from Pareto-optimal rules. 
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            (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 6. Obtained fuzzy rule sets (Glass). 
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Fig. 7. Selected rules in Fig. 6 (Glass). 

Cleveland Heart Disease Data Set: Experimental results 
are shown in Fig. 8. Multiobjective genetic rule selection 
found 33 rule sets. We can observe a clear accuracy-
complexity tradeoff relation in Fig. 8 (a). On the other hand, 
we can observe a slight overfitting to training data in Fig. 8 
(b). That is, the test data accuracy slightly decreases with the 
increase in the number of fuzzy rules in the range with more 
than four fuzzy rules. Selected rules are shown for Class 1 
and Class 2 in Fig. 9 (a) and Fig. 9 (b), respectively. Some 
selected rules are Pareto-optimal or near Pareto-optimal while 
others are far from Pareto-optimal rules. 

Iris Data Set: Experimental results are shown in Fig. 10. 
All the training patterns were correctly classified by four 
fuzzy rules in Fig. 10 (a). Selected rules are shown in Fig. 11. 
As we can see from Fig. 11, almost all the selected rules are 
Pareto-optimal or near Pareto-optimal. This may be because 
all the selected rule sets are small in Fig. 10 with four or less 
fuzzy rules. 

Wine Data Set: Experimental results are shown in Fig. 12 
and Fig. 13. All the training patterns were correctly classified 
by four fuzzy rules in Fig. 12 (a). As in Fig. 11 for the iris 
data set, almost all the selected rules are Pareto-optimal or 
near Pareto-optimal in Fig. 13 for the wine data set. 
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             (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 8. Obtained fuzzy rule sets (Heart C). 
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                          (a) Class 1.                                             (b) Class 2. 

Fig. 9. Selected rules in Fig. 8 (Heart C). 
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             (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 10. Obtained fuzzy rule sets (Iris). 
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                          (a) Class 1.                                             (b) Class 2. 

Fig. 11. Selected rules in Fig. 10 (Iris). 
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            (a) Training data accuracy.                        (b) Test data accuracy. 

Fig. 12. Obtained fuzzy rule sets (Wine). 
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                          (a) Class 1.                                             (b) Class 2. 

Fig. 13. Selected rules in Fig. 13 (Wine). 

IV.  PARETO-OPTIMAL CANDIDATE FUZZY RULES 

A.  Settings of computational experiments 
For comparison, we performed the same computational 

experiments as in Section III using only Pareto-optimal rules 
as candidate rules in multiobjective genetic rule selection. In 
Fig. 14, we show Pareto-optimal rules for the Wisconsin 
breast cancer data set. Pareto-optimal rules with respect to 
confidence maximization and coverage maximization are 
marked by open circles in Fig. 14. These rules were used as 
candidate rules in multiobjective genetic rule selection in this 
section. Except for the choice of the candidate rules, we used 
the same parameter specifications as in Section III. 
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                         (a) Class 1.                                              (b) Class 2. 

Fig. 14. Pareto-optimal rules (Breast W). 

B.  Experimental results 
Wisconsin Breast Cancer Data Set: Experimental results 

are shown in Fig. 15. From the comparison between Fig. 2 
and Fig. 15, we can see that large rule sets with many rules 
were not obtained when we used only Pareto-optimal rules as 
candidate rules. This observation is consistent with Fig. 5 
where some selected rules in a large rule set were far from 
Pareto-optimal rules. Whereas high training data accuracy 
was not obtained in Fig. 15 (a) in comparison with Fig. 2 (a), 
good test data accuracy was obtained in Fig. 15 (b). That is, 
the test data accuracy was not severely degraded in Fig. 15 
(b) from Fig. 2 (b). Almost the same observations were 
obtained from computational experiments on the other four 
data sets as shown later. 
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             (a) Training data accuracy.                        (b) Test data accuracy. 

Fig. 15. Multiobjective genetic rule selection from Pareto-optimal rules 
(Breast W).  

Glass Data Set: Experimental results are shown in Fig. 16. 
Whereas the training data accuracy was degraded from Fig. 6 
(a) by about 10%, almost the same test data accuracy was 
obtained in Fig. 16 (b) as in Fig. 6 (b).  
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            (a) Training data accuracy.                        (b) Test data accuracy. 

Fig. 16. Multiobjective genetic rule selection from Pareto-optimal rules 
(Glass). 

Cleveland Heart Disease Data Set: Experimental results 
are shown in Fig. 17. From the comparison between Fig. 8 
and Fig. 17, we can see that almost the same test data 
accuracy was obtained while the training data accuracy was 
degraded by about 10%. 
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             (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 17. Multiobjective genetic rule selection from Pareto-optimal rules 
(Heart C). 

Iris Data Set: Experimental results are shown in Fig. 18. 
A 100% training data accuracy was not obtained in Fig. 18 
(a) while all the training patterns were correctly classified by 
four fuzzy rules in Fig. 10. The test data accuracy, however, 
was not degraded (compare Fig. 18 (b) with Fig. 10 (b)).  
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             (a) Training data accuracy.                        (b) Test data accuracy. 

Fig. 18. Multiobjective genetic rule selection from Pareto-optimal rules (Iris). 

Wine Data Set: Experimental results are shown in Fig. 19. 
From the comparison between Fig. 12 and Fig. 19, we can 
see that the use of Pareto-optimal rules as candidate rules 
degraded the test data accuracy as well as the training data 
accuracy. Such a clear degrade in the test data accuracy was 
observed only for the wine data among the five data sets. 
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            (a) Training data accuracy.                       (b) Test data accuracy. 

Fig. 19. Multiobjective genetic rule selection from Pareto-optimal rules 
(Wine). 

V.  CONCLUDING REMARKS 
 
In this paper, we examined the relation between Pareto-

optimal rules and Pareto-optimal rule sets in the design of 
accurate and compact fuzzy rule-based classifiers through 
computational experiments using multiobjective genetic rule 
selection. First we checked whether Pareto-optimal rules 
were selected by multiobjective genetic fuzzy rule selection. 
Computational experiments showed that some selected rules 
were Pareto-optimal or near Pareto-optimal while others are 
far from Pareto-optimal rules. Experimental results also 
showed that large rule sets with many rules tended to include 
fuzzy rules far from Pareto-optimal rules. Next we examined 
the classification performance of obtained rule sets when we 
used Pareto-optimal rules as candidate rules. Experimental 
results showed that the use of Pareto-optimal rules as 
candidate rules degraded training data accuracy while it did 
not degrade test data accuracy in many cases. 

Since almost all selected rules were Pareto-optimal or near 
Pareto-optimal in small rule sets with high interpretability, it 
may be a promising strategy to use Pareto-optimal and near 
Pareto-optimal rules as candidate rules (instead of all rules 
satisfying the minimum support and confidence) to efficiently 
find accurate and interpretable fuzzy rule-based classifiers by 
multiobjective genetic rule selection. 
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