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Abstract— This paper outlines a real-world industrial prob-
lem for product-mix selection involving 8 decision variables and
21 constraints with fuzzy coefficients. On one hand, a multi-
objective optimization approach to solve the fuzzy problem is
proposed. Modified S-curve membership functions are consid-
ered. On the other hand, an ad hoc Pareto-based multi-objective
evolutionary algorithm to capture multiple non dominated
solutions in a single run of the algorithm is described. Solutions
in the Pareto front corresponds with the fuzzy solution of the
former fuzzy problem expressed in terms of the group of three
(~x, µ, α), i.e., optimal solution - level of satisfaction - vagueness
factor. Decision-maker could choose, in a posteriori decision
environment, the most convenient optimal solution according
to his level of satisfaction and vagueness factor. The proposed
algorithm has been evaluated with the existing methodologies
in the field and the results have been compared with the well-
known multi-objective evolutionary algorithm NSGA-II.

I. INTRODUCTION
It is well known that optimization problems arise in a

variety of situations. Particularly interesting are those con-
cerning management problems as decision makers usually
state their data in a vague way: “high benefits”, “as low as
possible”, “important savings”, etc. Because of this vague-
ness, managers prefer to have not just one solution but a set
of them, so that the most suitable solution can be applied
according to the state of existing decision of the production
process at a given time and without increasing delay. In these
situations fuzzy optimization is an ideal methodology, since
it allows us to represent the underlying uncertainty of the
optimization problem, while finding optimal solutions that
reflect such uncertainty and then applying them to possible
instances, once the uncertainty has been solved. This allows
us to obtain a model of the behavior of the solutions based
on the uncertainty of the optimization problem.

Fuzzy constrained optimization problems have been ex-
tensively studied since the seventies. In the linear case, the
first approaches to solve the so-called fuzzy linear program-
ming problem appeared in [2], [15] and [20]. Since then,
important contributions solving different linear models have
been made and these models have been the subject of a
substantial amount of work. In the nonlinear case [1], [6],
[13] the situation is quite different, as there is a wide variety

of specific and both practically and theoretically relevant
nonlinear problems, with each having a different solution
method.

In this paper a real-life industrial problem for product-
mix selection involving 21 constraints and 8 variables has
been considered. This problem occurs in production planning
in which a decision-maker plays a pivotal role in mak-
ing decision under a highly fuzzy environment. Decision-
maker should be aware of his/her level of satisfaction as
well as degree of vagueness while making the product-
mix decision. Thus, the authors have analyzed using the
sigmoidal membership function, the fuzziness patterns and
fuzzy sensitivity of the solution. In [16], [17], [18] a linear
case of the problem is solved by using a linear programming
iterative method which is repeatedly applied for different
degrees of satisfaction values. In this paper, a non linear
case of the problem is considered and we propose a multi-
objective optimization approach in order to capture solutions
for different degrees of satisfaction and vagueness factors
with a simple run of the algorithm. This multi-objective
optimization approach has been proposed by authors in [8],
[9], [10] within a fuzzy optimization general context.

Given this background, the paper is organized as follows:
in section II a non linear case study in chocolate manufac-
turing firm is described and its mathematical formulation
stated. Section III propose a multi-objective optimization
approach for this problem and an ad hoc multi-objective
evolutionary algorithm. Section IV shows results obtained
with the proposed multi-objective evolutionary algorithms
and the well-known NSGA-II algorithm. Finally, section V
offers the main conclusions and future research direction.

II. NON LINEAR CASE STUDY IN CHOCOLATE
MANUFACTURING FIRM

Due to limitations in resources for manufacturing a prod-
uct and the need to satisfy certain conditions in manu-
facturing and demand, a problem of fuzziness occurs in
industrial systems. This problem occurs also in chocolate
manufacturing when deciding a mixed selection of raw
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materials to produce varieties of products. This is referred
here to as the product-mix selection problem [14].

There are a number of products to be manufactured by
mixing different raw materials and using several varieties of
processing. There are limitations in resources of raw mate-
rials and facility usage for the varieties of processing. The
raw materials and facilities usage required for manufacturing
each product are expressed by means of fuzzy coefficients.
There are also some constraints imposed by marketing de-
partment such as product-mix requirement, main product line
requirement and lower and upper limit of demand for each
product. It is necessary to obtain maximum profit with certain
degree of satisfaction of the decision-maker.

A. Optimization Problem with fuzzy coefficients

The firm Chocoman Inc. manufactures 8 different kinds of
chocolate products. Input variables xi represent the amount
of manufactured product in 103 units.

The function to maximize is the total profit obtained
calculated as the summation of profit obtained with each
product and taken into account the applied discount. Table I
shows the profit (ci) and discount (di) for each product i.

There are 8 raw materials to be mixed in different propor-
tions and 9 processes (facilities) to be utilized. Therefore,
there are 17 constraints with fuzzy coefficients separated
in two sets such as raw material availability and facility
capacity. These constraints are inevitable for each material
and facility that is based on the material consumption,
facility usage and the resource availability. Table II shows
fuzzy coefficients ãij represented by

(
al

ij , a
h
ij

)
for required

materials and facility usage j for manufacturing each product
i and non fuzzy coefficients bj for availability of material or
facility j.

Additionally, the following constraints were established by
the sales department of Chocoman Inc.:

1) Main product line requirement. The total sales from
candy and wafer products should not exceed 15% of
the total revenues from the chocolate bar products.
Table I show the values of sales/revenues (ri) for each
product i.

2) Product mix requirements. Large-sized products
(250 g) of each type should not exceed 60% of the
small-sized product (100 g).

Finally, the lower limit of demand for each product i is 0
in all cases, while the upper limit (ui) is shown in table I.

B. Membership Function for Coefficients

We consider the modified S-curve membership function
proposed in [16]. For a value x, the degree of satisfaction
µ

ãij
(x) for fuzzy coefficient ãij is given by the membership

function given in (1).
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Fig. 1. Membership function for coefficient ã11.

µ
ãij

(x) =





1.000 x < al
ij

0.999 x = al
ij

B

1 + Ce
α

(
x−al

ij

ah
ij
−al

ij

) al
ij < x < ah

ij

0.001 x = ah
ij

0.000 x > ah
ij

(1)

Given a degree of satisfaction value µ, the crisp value
aij |µ for fuzzy coefficient ãij can be calculated using (2).

ãij |µ = al
ij +

(
ah

ij − al
ij

α

)
ln

1
C

(
B

µ
− 1

)
(2)

The vagueness factor α determines the shape of the mem-
bership function, while B and C values can be calculated
from α, (3) and (4).

C = − 0.998
(0.999− 0.001eα)

(3)

B = 0.999 (1 + C) (4)

Figure 1 shows membership functions with different vague-
ness factors α for cocoa required in manufacturing milk
chocolate 250 g (coefficient ã11).

C. Problem Formulation

Given a degree of satisfaction value µ, the fuzzy con-
strained optimization problem can be formulated [10], [17]
as the non linear constrained optimization problem shown in
table III.

III. A MULTI-OBJECTIVE EVOLUTIONARY APPROACH

In this section, we propose a multi-objective optimization
approach to solve the problem shown in table III for all
satisfaction degree values and vagueness factors. In the multi-
objective problem, the Pareto front represents the fuzzy
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TABLE I
PROFIT (ci), DISCOUNT (di), DEMAND (ui) AND REVENUES/SALES (ri) IN $ PER 103 UNITS

Product (xi) Synonym Profit (ci) Discount (di) Demand (ui) Revenues/Sales (ri)
x1 = Milk chocolate, 250 g MC 250 c1 = 180 d1 = 0.18 u1 = 500 r1 = 375
x2 = Milk chocolate, 100 g MC 100 c2 = 83 d2 = 0.05 u2 = 800 r2 = 150
x3 = Crunchy chocolate, 250 g CC 250 c3 = 153 d3 = 0.15 u3 = 400 r3 = 400
x4 = Crunchy chocolate, 100 g CC 100 c4 = 72 d4 = 0.06 u4 = 600 r4 = 160
x5 = Chocolate with nuts, 250 g CN 250 c5 = 130 d5 = 0.13 u5 = 300 r5 = 420
x6 = Chocolate with nuts, 100 g CN 100 c6 = 70 d6 = 0.14 u6 = 500 r6 = 175
x7 = Chocolate candy CANDY c7 = 208 d7 = 0.21 u7 = 200 r7 = 400
x8 = Chocolate wafer WAFER c8 = 83 d8 = 0.1 u8 = 400 r8 = 150

TABLE II
RAW MATERIAL AND FACILITY USAGE REQUIRED (PER 103 UNITS) (al

ij , ah
ij ) AND AVAILABILITY (bj ).

Material or Facility MC 250 MC 100 CC 250 CC 100 CN 250 CN 100 CANDY WAFER Availability
Cocoa (kg) 66, 109 26, 44 56, 94 22, 37 37, 62 15, 25 45, 75 9, 21 100000
Milk (kg) 47, 78 19, 31 37, 62 15, 25 37, 62 15, 25 22, 37 9, 21 120000
Nuts (kg) 0, 0 0, 0 28, 47 11, 19 56, 94 22, 37 0, 0 0, 0 60000
Cons.sugar (kg) 75, 125 30, 50 66, 109 26, 44 56, 94 22, 37 157, 262 18, 30 200000
Flour (kg) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 54, 90 20000
Alum.foil (ft2) 375, 625 0, 0 375, 625 0, 0 0, 0 0, 0 0, 0 187, 312 500000
Paper (ft2) 337, 562 0, 0 337, 563 0, 0 337, 562 0, 0 0, 0 0, 0 500000
Plastic (ft2) 45, 75 95, 150 45, 75 90, 150 45, 75 90, 150 1200, 2000 187, 312 500000
Cooking (ton-hours) 0.4, 0.6 0.1, 0.2 0.3, 0.5 0.1, 0.2 0.3, 0.4 0.1, 0.2 0.4, 0.7 0.1, 0.12 1000
Mixing (ton-hours) 0, 0 0, 0 0.1, 0.2 0.04, 0.07 0.2, 0.3 0.07, 0.12 0, 0 0, 0 200
Forming (ton-hours) 0.6, 0.9 0.2, 0.4 0.6, 0.9 0.2, 0.4 0.6, 0.9 0.2, 0.4 0.7, 1.1 0.3, 0.4 1500
Grinding (ton-hours) 0, 0 0, 0 0.2, 0.3 0.07, 0.12 0, 0 0, 0 0, 0 0, 0 200
Wafer making (ton-hours) 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0, 0 0.2, 0.4 100
Cutting (hours) 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.07, 0.12 0.15, 0.25 0, 0 400
Packaging 1 (hours) 0.2, 0.3 0, 0 0.2, 0.3 0, 0 0.2, 0.3 0, 0 0, 0 0, 0 400
Packaging 2 (hours) 0.04, 0.06 0.2, 0.4 0.04, 0.06 0.2, 0.4 0.04, 0.06 0.2, 0.4 1.9, 3.1 0.1, 0.2 1200
Labor (hours) 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 0.2, 0.4 1.9, 3.1 1.9, 3.1 1100

TABLE III
CONSTRAINED OPTIMIZATION PROBLEM FOR CHOCOMAN INC. WITH A GIVEN SATISFACTION DEGREE VALUE µ AND A VAGUENESS FACTOR α.

Maximize

8∑
i=1

(
cixi − dix

2
i

)

Subject to :
8∑

i=1

[
al

ij +

(
ah

ij − al
ij

α

)
ln

1

C

(
B

µ
− 1

)]
xi − bj ≤ 0, j = 1, . . . , 17

8∑
i=7

rixi − 0.15

6∑
i=1

rixi ≤ 0

x1 − 0.6x2 ≤ 0
x3 − 0.6x4 ≤ 0
x5 − 0.6x6 ≤ 0
0 ≤ xi ≤ ui, i = 1, . . . , 8

solution of the former fuzzy optimization problem. Two new
input variables and two new objectives are added in order to
find the optimal solution for each degree of satisfaction value
and vagueness factor [8], [9], [10]. Table IV shows the multi-
objective constrained optimization problem for Chocoman
Inc. In this problem, x9 represents the degree of satisfaction
value and x10 represents the vagueness factor, which must
be minimized and maximized respectively to generate the
desired Pareto front.

Multi-objective Pareto-based evolutionary algorithms [3],
[5] are especially appropriate to solve multi-objective non-
linear optimization problems because they can capture a

set of Pareto solutions in a single run of the algorithm.
We propose an ad hoc multi-objective Pareto-based evo-
lutionary algorithm to solve the Chocoman Inc. problem.
The algorithm uses a real-coded representation, uniform
and arithmetical cross, uniform, non-uniform and minimal
mutation [7]. Diversity among individuals is maintained by
using an ad-hoc elitist generational replacement technique.

The algorithm have a population P of N solutions.
For each solution i, f i

j is the value for j-th objective
(j = 1, . . . , n) and gi

j is the value for j-th constraint
(j = 1, . . . , m). For Chocoman Inc. problem, n = 3 and
m = 21.
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TABLE IV
MULTI-OBJECTIVE CONSTRAINED OPTIMIZATION PROBLEM FOR CHOCOMAN INC.

Maximize

8∑
i=1

(
cixi − dix

2
i

)

Minimize x9

Maximize x10

Subject to :
8∑

i=1

[
al

ij +

(
ah

ij − al
ij

x10

)
ln

1

C

(
B

x9
− 1

)]
xi − bj ≤ 0, j = 1, . . . , 17

8∑
i=7

rixi − 0.15

6∑
i=1

rixi ≤ 0

x1 − 0.6x2 ≤ 0
x3 − 0.6x4 ≤ 0
x5 − 0.6x6 ≤ 0
0 ≤ xi ≤ ui, i = 1, . . . , 8
0.001 ≤ x9 ≤ 0.999
2 ≤ x10 ≤ 20

TABLE V
UTOPIA MINIMUM AND MAXIMUM VALUE FOR CHOCOMAN INC.

PROBLEM.

Utopia min. Utopia max.
Objective 1 140000 210000
Objective 2 0.001 0.999
Objective 3 2 20

Given a population P of N individuals, N children are
generated by random selection, crossing and mutation. Par-

ents and children are ordered in
(⌊

n−1
√

N
⌋

+ 1
)n−1

slots.
A solution i belongs to slot si such that:

si =
n∑

j=2

⌈
f i

j − fumin
j

fumax
j − fumin

j

⌊
n−1
√

N
⌋⌉(⌊

n−1
√

N
⌋)n−j

where fumax
j and fumin

j are the utopia maximum and
minimum values for the j-th objective. For Chocoman Inc.
problem, utopia minimum and maximum values are shown
in table V.

The order inside slots is established with the following
criteria. Position pi of solution i is lower than position pj of
solution j in slot if:
• i is feasible and j is unfeasible, or
• i and j are unfeasible and gi

max ≤ gj
max, or

• i and j are feasible and i dominates j
• i and j are feasible and non dominated and cdi > cdj .

where gi
max = max

j=1,...,m

{
gi

j

}

and cdi is a metric for the crowding distance of solution i:

cdi =





∞, if f i
j = fmax

i or f i
j = fmin

i for any j

n∑

j=1

fsupi

j − f infi

j

fmax
j − fmin

j

, in other case

where fmax
j = max

i=1,...,N

{
f i

j

}
and fmin

j = min
i=1,...,N

{
f i

j

}

f
supi

j

j is the value of the j-th objective for the solution
higher adjacent in the j-th objective to i,

f
infi

j

j is the value of the j-th objective for the solution
lower adjacent in the j-th objective to i.

The new population is obtained by selecting the N best
individual from the parent and children. The following
heuristic rule is considered to establish an order. Solution
i is best than solution j if:
• pi < pj , or
• pi = pj and cdi > cdj

where pi is the position of solution i in its slot.

IV. EXPERIMENTS AND RESULTS

To compare the algorithms performance in multi-objective
optimization, we have followed an empirical methodology
similar to the proposed in [11] and [12]. It has been used
a measure ν that calculates the fraction of the space which
is not dominated by any of the solutions obtained by the
algorithm ([11], [21]). The aim is to minimize the value of
ν. This measure estimates both the distance of solutions to
the real Pareto front and the spread. Value ν can be calculated
as shown in (5) where f i

j is the value for the j-th objective
of the i-th solution in population P ′ which is composed by
the N ′ non dominated solutions of P and fumax

j and fumin
j

are the utopia maximum and minimum value for the j-th
objective.

ν = 1−

N ′∑

i=1


(

fumax
n − f i

n

) n−1∏

j=1

(
f

supi
j

j − f i
j

)


n∏

j=1

(
fumax

j − fumin
j

) (5)

The parameters were set up using a previous process using
a methodology similar to the one proposed in [11]. Table VI
shows the parameters obtained.
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TABLE VI
PARAMETERS IN THE RUN OF THE PROPOSED ALGORITHM AND

NSGA-II FOR CHOCOMAN INC. PROBLEM.

Number of iterations T = 10000
Population size N = 1000
Cross probability pCross = 0.8
Mutation probability pMutate = 0.5
Uniform cross probability pUniformCross = 0.7
Uniform mutation probability pUniformMutate = 0.7
Parameter c for non uniform mutation c = 2.0

Various metrics for both convergence and diversity of the
populations obtained have been proposed for a more exact
evaluation of the effectiveness of the evolutionary algorithms.
In his book, Deb [5] assembles a wide range of the metrics
which figure in the literature. For this paper we propose the
use of two metrics to evaluate the goodness of the algorithm.
The first metric, the generational distance (Υ) proposed by
Veldhuizen [19], evaluates the proximity of the population to
the Pareto optimal front by calculating the average distance
of the population from an ideal population P ∗ made up of
N∗ solutions distributed uniformly along the Pareto front.
This metric is shown in (6).

Υ =




N ′∑

i=1

dv
i




1/v

N ′ (6)

We use v = 1, and parameter di is the Euclidean distance (in
the objective space) between the solution i and the nearest
solution in P ∗:

di =
N∗

min
k=1

√√√√
n∑

j=1

(
fj

i − f∗j
k
)2

where f∗j
k is the value of the j-th objective for the k-th

solution in P ∗. For our problem, we use the profits in table
VII as the ideal population P ∗.

The second metric we use is the spread (∆) put forward
by Deb et al. [5] to evaluate the diversity of the population.
Equation (7) shows this measure.

∆ =

n∑

j=1

de
j +

N∑

i=1

∣∣di − d
∣∣

n∑

j=1

de
j + Nd

(7)

where di may be any metric of the distance between adjacent
solutions, and d is the mean value of such measurements. In
our case, di has been calculated using the Euclidean distance.
Parameter de

j is the distance between the extreme solutions
in P ∗ and P corresponding to the j-th objective.

Figures 2 and 3 show the non dominated solutions ob-
tained in the best of 10 executions of the proposed algorithm
and NSGA-II respectively for Chocoman Inc. problem. Table
VIII shows the best, worst, medium and variance values for

the ν, Υ and ∆ measures obtained in 10 executions of both
algorithms.
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Fig. 2. Non dominated solutions obtained with NSGA-II for Chocoman
Inc. problem.
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Fig. 3. Non dominated solutions obtained with the proposed algorithm for
Chocoman Inc. problem.

As we can see from Table VIII, the proposed algorithm
perform better than NSGA-II in all measures ν, Υ and
∆. Although both algorithms use similar heuristic search,
but the niche of the good performance of the proposed
algorithm is very specific to the problem in which it has been
designed. For the kind of multi-objective problems we are
considering, Pareto search based on the space search partition
in linear slots is most efficient than general search strategies
exclusively based on diversity functions, as in NSGA-II.

V. CONCLUSIONS AND FUTURE WORKS
A. Conclusions

Fuzzy nonlinear optimization problems are, in general,
difficult to solve. In this paper we describe a multi-objective
approach to solve a fuzzy nonlinear constrained optimization
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TABLE VII
OPTIMAL PROFITS FOR UNIFORMLY DISTRIBUTED VALUES IN µ AND α OBTAINED WITH GRADIENT FOR CHOCOMAN INC. PROBLEM.

µ α = 2 α = 4 α = 6 α = 8 α = 10 α = 12 α = 14 α = 16 α = 18 α = 20
0.001 150325.3 150325.3 150325.3 150325.3 150325.3 150325.3 150325.3 150325.3 150325.3 150325.3
0.100 201766.7 197697.5 188504.0 179299.1 173060.6 168939.6 166067.1 163958.5 162346.6 161074.8
0.200 202636.3 200588.1 194094.9 184750.6 177448.8 172496.5 169038.7 166505.7 164573.9 163052.7
0.300 202930.4 201681.5 197001.1 188269.9 180416.9 174914.4 171056.1 168231.8 166080.4 164388.6
0.400 203078.2 202257.0 198847.1 191010.4 182866.0 176926.2 172734.7 169666.3 167331.1 165496.4
0.500 203167.2 202612.2 200140.9 193347.9 185112.3 178793.7 174294.5 170998.3 168491.3 166523.3
0.600 203226.6 202853.4 201104.1 195459.0 187340.3 180679.0 175872.4 172345.1 169663.6 167560.0
0.700 203269.1 203027.7 201851.6 197447.4 189720.8 182749.5 177611.8 173829.8 170955.0 168701.3
0.800 203301.0 203159.7 202449.7 199386.3 192503.5 185288.5 179761.0 175665.4 172550.6 170110.3
0.900 203325.8 203263.1 202939.9 201337.9 196253.0 189096.9 183047.4 178479.3 174996.0 172267.9
0.999 203345.5 203345.5 203345.5 203345.5 203345.5 203345.5 203345.5 203345.5 203345.5 203345.5

TABLE VIII
RESULTS OF 10 RUNS OF THE PROPOSED ALGORITHM AND NSGA-II FOR CHOCOMAN INC. PROBLEM.

Algorithm νbest νworst νmean νvariance

Proposed Algorithm 0.4616 0.4713 0.4665 1.0774× 10−6

NSGA-II 0.4938 0.5021 0.4986 4.6962× 10−7

Υbest Υworst Υmean Υvariance

Proposed Algorithm 299.0841 489.703 378.0084 403.0047
NSGA-II 415.2723 483.2596 451.0228 43.1426

∆best ∆worst ∆mean ∆variance

Proposed Algorithm 1.1752 1.1957 1.1865 4.562× 10−6

NSGA-II 1.2677 1.3067 1.288 1.3429× 10−5

problem which appears in production planning for chocolate
manufacturing. A Pareto-based multi-objective evolutionary
algorithm is proposed to capture the (fuzzy) solution in a
single run of the algorithm. Optimality and diversity metrics
have been used for the evaluation of the effectiveness of the
proposed multi-objective evolutionary algorithm compared
with the well known algorithm NSGA-II. We show the values
obtained using these metrics for the solutions generated by
both algorithms. The results clearly show a real ability and
effectiveness of the proposed approach to solve fuzzy prob-
lems in production planning for chocolate manufacturing.

B. Future Works
Multi-objectives with several other objective functions can

be considered for future research work, as well as fuzzy
costs and fuzzy right-side coefficients in constraints. There
is a possibility of designing a productive computational
intelligence self-organized evolutionary fuzzy system. It’s
also possible to do a comparative study with other evolu-
tionary computational approach for the Industrial production
planning in near future.
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