
Strategy Generation Under Uncertainty Using
Bayesian Networks and Black Box Optimization

Eli Faulkner
Quantum Leap Innovations

3 Innovation Way, Suite 100
Newark DE, 19711

Email:etf@quantumleap.us

Abstract— We describe a mechanism for optimal strategy
generation from a Bayesian Belief Network (BBN). This system
takes a BBN model either created by the user or derived from
data. The user then specifies a set of goals (consisting of both
objectives and constraints) and the observed and actionable
variables in the model. The system then applies an optimizer
to develop strategies that optimally achieve the specified goals.
The system can be used by either human decision makers or
autonomous agents. A distinguishing feature of the system is the
ability to return strategies in the form of deterministic actions
that result in the highest probability of achieving the desired
goals. This allows the user to execute the strategies without
further reasoning. In this paper we describe the architecture
of the system and show examples of developing strategies from
models created either by domain experts or directly from data.

I. INTRODUCTION

Bayesian Belief Networks have become a very important
tool in probabilistic modeling and data mining over the past
few decades. Using a Bayesian Belief Network (BBN) to
model a system has some important advantages over other
modeling paradigms such as Neural Networks or Decision
Trees. BBN’s are typically more re-usable than neural net-
works, and often do not need to be re-trained when the
problem changes. The black box nature of Bayesian infer-
ence makes BBN’s a very flexible and useful modeling tool.
Unfortunately, it is not always easy to perform automated
reasoning with Bayesian networks. This is evident from a
brief survey of work in the field. Even surveys which cover
decision making with BBN’s typically gloss over the topic in
comparison to the time that they spend covering inference and
learning algorithms [1], [2], [3].

Quantum Leap’s Next Generation Probabilistic Adaptive
Optimization Engine (Qung PAO), is a system for repre-
senting optimization problems that have Bayesian Relation-
ships between the Decision Variables and the Objectives and
Constraints. The system employs a three stage process for
generating optimal strategies from a Bayesian model.
• Define the Bayesian network.
• Define the optimization problem:

– Actionable variables
– Observed variables.

This work was funded in part by the United States Office of Naval Research
under Contract N00014-02-C-0320

– Objectives such as maximizing or minimizing the
probability of a node being in a certain state.

– Constraints stating the probability of a node being in
a state must be above or below a given value.

• Generate a set of optimal strategies.

We define a strategy as a set of actions which will achieve
a goal with some probability.

Using this process we can make optimal decisions where
actions that the user takes affect the users goals in an uncertain
way. The strategies returned by Qung PAO are completely
deterministic and can be executed by a human or autonomous
agent, but have associated probabilities of achieving the de-
sired goals.

II. BACKGROUND

The core elements of Qung PAO are modeling with
Bayesian Belief Networks1, inferencing with evidence using a
BBN, and the principles of black box optimization.

A. Bayesian Belief Networks

There are many excellent introductions to Bayesian Belief
Networks, from both on line resources [4] and various texts
[1], [2], [3]. In this paper we introduce the basic terminology.
The reader is encouraged to review the literature for further
details.

Given a set of random variables X = {X1, ..., XN},
a Bayesian Belief Network is a structure which efficiently
encodes the joint distribution by exploiting conditional inde-
pendence’s among the variables. A BBN is represented by
B = (G, Θ), where G is a Directed Acyclic Graph (DAG),
and Θ = {Θ1, ...,ΘN} represents conditional probabilities for
P (Xi|Πi) , where Πi are the parents of Xi in G. Using this
representation we have P (X1, ..., Xn) =

∏N
i=1 P (Xi|Πi)

In this paper we will assume that each variable in our net-
work has a discrete domain. Extension to support continuous
variables is straightforward but beyond the scope of the current
project.

1This work can be extended to arbitrary graphical models, but the scope
of this paper is restricted to Bayesian Belief Networks

65

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

1-4244-0702-8/07/$20.00 ©2007 IEEE

Max:
∑

wifi(x1, ..., xn)
Subject to: gk(x1, ..., xn) ≥ 0
Where wi are priority weights

fi are (discontinuous, nonlinear) objectives
gk are (discontinuous, nonlinear) constraints
xj ∈ (R, N, increments, sets, permutations)
xj are bounded or have enumerated values

Fig. 1. The generic description of the nonlinear optimization problem

B. Inference with evidence in a BBN

One of the most important concepts in using a BBN is the
ability update the posterior probabilities of the variables when
some evidence is encountered. One can take a BBN and a set
of variables in that BBN whose states are known, and use this
information to update the posterior probabilities of each other
variable in the network.

Throughout this paper, our Bayesian inference approach
follows the algorithm proposed by Lauritzen and Spiegelhalter
[5]. The method described here could easily be adapted to
other inference algorithms. Since we typically do not need
more than a few digits of accuracy in our solutions, we have
also experimented with using alternate inferencing algorithms
to increase speed.

C. Black Box Optimization

Black box optimization is a process where an optimizer
queries a black box function for local scores of objectives
and constraints and attempts to determine an optimal solution
without full knowledge of the model. This means that the
user defines a black box model relating the decision variables
to objective and constraint scores. The optimizer then pro-
poses candidate solutions by assigning values to all decision
variables, and the black box model that the user specifies
computes the objective and constraint scores corresponding
to that instantiation of the decision variables. This process
is applied repeatedly as the underlying optimization methods
map the search space and learn which points satisfy the
constraints and maximize the objectives. This process is shown
in Figure 2.

The system described in this paper uses a black box opti-
mization technology developed at Quantum Leap Innovations,
the Adaptive Optimization R©Engine.

1) The Adaptive Optimization R©Engine: The Quantum
Leap Adaptive Optimization Engine[6], [7], [8](AOE) is a
system developed to solve general nonlinear optimization
problems (NLOP) and constraint satisfaction problems (CSP).
The AOE is particularly suited for solving nonlinear opti-
mization problems. The NLOP, as described in Figure 1,
can be used to model many real life problems. The NLOP
has enjoyed a long history in the fields of mathematics and
artificial intelligence [9].

The AOE solves problems using black box optimization.
Because we do not know the structure of the surface

which we are optimizing, the AOE employs over 30 different

Fig. 2. The AOE evaluation loop

optimization algorithms in a cooperative-competitive paradigm
to find global optima. These techniques range from weak tech-
niques which solve a large class of problems very slowly, to
strong techniques which solve a small class of problems very
quickly. Examples of weak techniques are enumeration and
random search. Examples of Strong techniques are Sequential
Quadratic Programming and gradient methods. Because it
uses many underlying optimization algorithms, the AOE is
particularly suited for non-linear combinatorial optimization
problems.

For the purposes of this work we only need to know that
the AOE optimizes nonlinear black box models. For further
details on the AOE, see [8].

III. ARCHITECTURE

There are four major constructs in Qung PAO.
• Action variables
• Observed variables
• Objectives
• Constraints
Using these constructs, we define an AOE model that will

use a Bayesian inference engine to relate the actions and
observations to the objectives and constraints. Action variables
and observed variables will be used to set up evidence that we
will use in the inferencing engine. Objectives and constraints
will then be read directly from the posterior probabilities
computed by the inferencing engine.

A. Action Variables

Action variables are the variables in the model which rep-
resent actionable decisions, or decisions which can controlled
by the executor of the strategy. The set of all action variables
defines the search space for strategies. As we are searching

66

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

Fig. 3. The Qung PAO evaluation loop

for potential strategies, the AOE will nominate a state for
each actionable variable. This will be fed into the inferencing
engine as evidence2. Therefore, when a variable is declared as
actionable we can not place an objective or constraint on it.

As an example, we may have ten machines, each with six
gears. There exist 610 possible choices of (machine, gear)
pairs. Since it is overwhelmingly inefficient to enumerate all
possible combinations of actions, we will use the AOE to
search this space.

B. Observed variables

Many of the variables in the system may have their states
known when the user requests a strategy. These observations
can be input into the inferencing engine with the actionable
variable states. Therefore, when a variable is declared as
observed we can not place an objective or constraint on it.

An example of this is the effect that temperature has on a
machine. We can simply place a temperature sensor on each
machine in a factory. When the user requests a solve we now
incorporate this knowledge into the strategy. We usually would
not want to run a machine in high gear when it is overheating,
so this extra information allows us to generate much more
robust strategies.

C. Objectives and Constraints

Each variable that is neither an action nor observed variable
can have zero or more objectives or constraints placed on
it. Let V be the set of all variables in a BBN, A ⊆ V be
the set of actionable variables, and E ⊆ V be the set of
observed variables. For a variable X ∈ V \ (A

⋃
E) with

domain s0, s1, ..., sn an objective on a state in this variable
takes the form maxa∈AP (X = sk) or mina∈AP (X = sk).
For multi-objective problems we currently take a sum of the
objective scores, but weighting or other utility functions could
easily be added to the system.

We can also declare constraints in the form P (X = si) ≤ c
or P (X = si) ≥ c for c ∈ [0, 1].

2Because we are simply viewing the causal network as an encoding of the
joint probability distribution, we do not place the same restrictions on actions
as Pearl[2]. This is a reason why we chose to use the word strategy instead
of plan.

D. Applying the AOE

After we define our actions, observations, objectives, and
constraints, we can apply the AOE to discover the optimal
strategy or set of strategies. This process involves mapping the
optimization constructs into the AOE, then applying the loop
in Figure 2 repeatedly, where the user specifies the number of
times to run the loop.

The mapping from the BBN into the AOE is very simple.
In Figure 1 we see that the AOE supports decision variables
whose domains are sets. For each action variable in Qung PAO,
we declare a decision variable in the AOE whose domain is the
set of all states that the corresponding action variable can take.
We then inform the AOE of the existence of each objective
and constraint in the system.

When the AOE Model receives the decision variable values,
it must compute the posterior probabilities. It does this by
translating the decision variable values and the observed
variable information into an evidence map for the BBN, and
preforming an inference to compute the posterior probabilities.
We then simply need to read the posterior probabilities from
the inferencing engine to get the values of the objectives and
constraints. This loop is shown in Figure 3.

IV. A SIMPLE EXAMPLE

The following is a simple example to demonstrate the use
of the constructs in Qung PAO.

Dave is trying to drive to a destination, but he has no money
and is almost out of gas. The following conditions must be
satisfied to reach his destination successfully.
• He does not get a flat tire
• He does not run out of gas
• He is not late

He also has some choices regarding his trip.
• He can have his windows up or down
• He can have his AC on or off
• He can accelerate slow, medium, or fast
A causal model of this situation is shown in Figure 4.
We can see in this simple example that the driver has control

over three of the variables; Windows, AC, and Acceleration.
He also has the goal of maximizing the probability that he
will reach his destination. This translates into the optimization
definition shown in Figure 5

67

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

Fig. 4. The causal model from Section IV

Fig. 5. The BBN Optimization definition from Section IV

When we define this problem in Qung PAO and optimize,
we get the optimal actions in Table I, which in our example
will result in Dave reaching the destination with a probability
of .6399. Any other set of actions will result in a lower
probability.

Windows UP
AC OFF
Acceleration Medium

TABLE I
THE OPTIMAL STRATEGY FROM SECTION IV WITHOUT CONSTRAINTS

To extend this example, we can consider the same situation
with the same BBN model. We will now say that Dave regards
running out of gas as a much worse condition than being late,
and thus would like to limit the probability of that happening.
We will apply a constraint that P (gas = short) ≤ .02, so any
solution where the probability of running out of gas is greater
than .02 is considered invalid. Generating a new strategy using
Qung PAO, we get the strategy shown in Table II, which has
a probability of .3959 that Dave will reach his destination.

This simple example illustrates many of the major constructs
of Qung PAO, but is far more elementary than a typical
problem. This simple problem only had 2 · 2 · 3 = 12 possible
actions. Using this as a framing example one can easily see
that the search space grows combinatorially, and the problems
can grow past enumerable sizes very quickly.

Windows UP
AC OFF
Acceleration Slow

TABLE II
THE OPTIMAL STRATEGY FROM SECTION IV WITH

P (GAS = SHORT) ≤ .02

V. NUMERICAL RESULTS

As we can see from Figure 3, the running time of the
system is bound by the time that it takes to compute an
inference using the network and the number of times that
the user runs the evaluation loop. We stated earlier that we
can use any Bayesian inferencing algorithm in the system,
but for simplicity we are currently using the algorithm due to
Lauritzen and Spiegelhalter [5]. Unfortunately, this algorithm
is exponential in the number of nodes and edges in the BBN.

In this section we will study the running time as a function
of the network size, and the quality of solutions as a function
of the number of evaluations.

A. Running time analysis

Empirically, the time to compute inferences is greatly ef-
fected by the network topology. To test Qung PAO, we have
generated several random BBN’s, with an various numbers of
nodes and edges, and the maximum in-degree of each node less
than or equal to 3. We then set a single objective and declared
approximately 20% of the other nodes to be actionable.

Fig. 6. The solve times (in seconds) for the networks from Section V with
1.2 times more edges than nodes. The line is an exponential regression of the
data points.

We performed this process for BBN’s between 10 and 50
nodes, with 3 states per node, and ran the evaluation loop 1000
times. Figures 6 and 7 show the results of this experiment
where there were 1.2 and 1.3 times as many edges as nodes.
These results clearly show the non-linear dependency cause
by the speed of the inference algorithm.

Further investigation into the running time of the inference
algorithm is outside of the scope of this paper, but the reader
should understand that the inference algorithm running time
has a dominating effect on the running time of the system.

68

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

Fig. 7. The solve times (in seconds) for the networks from Section V with
1.3 times more edges than nodes. The line is an exponential regression of the
data points.

B. Quality of solutions

A major feature of the Adaptive Optimization Engine is
its on-line solving characteristics. During a Qung PAO solve,
we can see the best solutions as they are returned from the
optimizer. In this section, we will see how the quality of the
solutions returned improved over time.

We performed an experiment on a randomly generated
network with 200 3-state nodes and 220 edges. We defined
objectives on three of these nodes, and declared 40 variables
as actionable. We then ran Qung PAO for 1000 evaluation and
recorded the solutions as they were incrementally returned by
the optimizer. The resulting graph is shown in Figure 8.

Fig. 8. The objective score over time for the experiment of Section V-B

We see that by 500 evaluations, the objective score has
stabilized. We repeated the experiment running for 10000
evaluations on the above network and found a strategy with
an objective score which was only 1.0343E − 4 better than
the score found after 1000 evaluations. Results which find
a near-optimal solution very quickly and make a few minor
improvements during a long solve are typical.

VI. COMPARISON WITH STATE OF THE ART

The system described in this paper has several advantages
over existing methods.

Influence Diagrams (ID) are probabilistic networks with
three types of nodes; chance nodes, decision nodes, and utility
nodes. See [3] for an introduction to Influence Diagrams.
Viewing action nodes as decision nodes and objectives as
utility nodes one can draw a comparison between Qung PAO
and ID’s. While there are some parallels, there are several
major differences.
• All decision nodes in an ID are root nodes.
• All utility nodes in an ID are leaf nodes.
• The objective in an ID uses a utility function.
• Since ID’s are extensions of BBN’s, one has to be careful

when learning the structure of the ID from data or
modeling the ID by hand.

As Pearl says of Influence Diagrams in Causality, “The
difficulty with this approach is that we need to anticipate in
advance, and represent explicitly, all actions whose effects we
might wish to evaluate in the future. This renders the modeling
process unduly cumbersome, if not totally unimaginable.”[2].
In Qung PAO we do not place structural restrictions on the
location of actions, observations, objectives, or constraints dur-
ing construction of the model 3 . These differences make Qung
PAO a much more flexible system in many circumstances.

Classification problems represent an important domain for
decision making and probabilistic reasoning. Popular classi-
fication methods include decision trees and support vector
machines. The primary distinction between these classification
techniques and our system lies in the fact that traditional
classification systems deal with the forward modeling problem
whose output state is predicted by a given set of input states.
They are not well suited for the inverse modeling problems
which is the focus of this study.

Another advantage of our system is the fact they it allows
variables which are neither inputs nor outputs to affect the
goals. A corollary to this is our ability to add or remove
objectives and constraints without retraining our model. When
we remove all objectives and constraints from a variable
in the model, that variable remains in the model and will
effect our solution. This is in contrast to Neural Networks
[10], which would have trouble handling situations where we
have uncontrollable or unmeasurable variables. Models which
do not consider certain variables because they can not be
measured are naturally less accurate in their representation of
the system which is being modeled.

Finally, an additional advantage of BBN’s for optimal
strategy discovery lies in their fundamental transparency. The
discovered strategies are represented directly in terms of the
primary actionable variables. Methods such as neural networks

3It is possible to construct a model in such a way that an action node is
seperated from the objectives and constraints given other action or observed
nodes. If this is the true case then the action taken by the seperated node
has no influence on the goals of the problem, and Qung PAO will assign a
random value to that action. It is possible to extend the system to inform the
user of the system when this occours.

69

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

have the undesirable property of hiding the primary variables
from direct view, making it harder to elaborate strategies that
are meaningful to the end user.

VII. CONCLUSION

Qung PAO has proven to be a powerful system for decision
makers to generate optimal strategies from data.

The system could be used to enable many difficult decision
making processes in many application areas. Some examples
are:
• Health Care - A drug testing application could give

researchers clues on which experiments to run during a
drug testing process.

• Manufacturing - A maintenance planning application
could allow manufacturers to avoid high risk situations
as their machines degrade.

• Homeland Security - A search strategy application for
airports and ships could give law enforcement and the
intelligence community greater analytic power in their
search strategies.

• Research and Development - A project funding applica-
tion could allow research and development organizations
greater risk awareness, and help increase synergy between
projects.

• Marketing - A budget allocation application could give
marketing organizations greater power to reach only the
audience who would be their optimal target market.

• Autonomous/Multi Agent Systems - Autonomous plan-
ning. Links to process execution engines would give
intelligent agents the ability to develop and execute
strategies autonomously.

• Law - A policy making system based on this technology
would give politicians and lobbyists great quantitative
power to back their decisions.

Throughout this paper we have identified some areas of
future research which would expand the capabilities of the
system. Those and other areas of current and future research
are:
• Combination with Bayesian model averaging techniques

so we can use multiple BBN’s as our model.
• Integration with goal-aware structured learning systems

to allow us to build models which only include relevant
variables.

• Implementation of a goal aware inferencing algorithm
which only computed the required posterior probabilities.

• Implementation of alternate inferencing algorithms, like
approximation methods, for inference speed increase.

• Integration of continuous variables.
• Automatic selection of inferencing algorithm based on

network structure.
• Reduction of strategies based on conditional indepen-

dence relationships the the BBN.
As learning and inference algorithms are improved and

discovered, systems which support decision makers in their
use of Bayesian networks will become increasingly important.

This system fills an important missing gap in current research,
as it unifies deterministic decision making with the richness
of probabilistic reasoning.

REFERENCES

[1] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and
Search, Second Edition (Adaptive Computation and Machine Learning).
The MIT Press, 2001. [Online]. Available: http://www.amazon.fr/exec/
obidos/ASIN/0262194406/citeulike04-21

[2] J. Pearl, Causality. Cambridge Universtiy Press, 2000.
[3] R. E. Neapolitan, Learning Bayesian Networks. Prentice Hall, 2003.
[4] K. Murphy, “An introduction to graphical models,” 2001. [Online].

Available: http://www.ai.mit.edu/∼murphyk/Papers/intro gm.pdf
[5] S. Lauritzen and D. Spiegelhalter, “Local computation with probabilities

in graphical structures and their applications to expert systems,” Journal
of the Royal Statistical Society, 1988.

[6] J. Elad, “System and method for representing and solving numeric and
symbolic problems, united states patent 5,195,172,” Patent, 1993.

[7] ——, “System and method for representing and solving numeric and
symbolic problems, united states patent 5,428,712,” Patent, 1995.

[8] E. Faulkner and J. Cowart, “The adaptive optimization engine,”
in INFORMS Annual Meeting, November 5-8, 2006, Pittsburgh,
PA, 2006. [Online]. Available: http://www.quantumleap.us/Research\
&Development/PublishedPapers/INFORMS 2006 AOE.pdf

[9] A. Neumaier, “Complete search in continuous global optimization and
constraint satisfaction,” Acta Numerica 2004, 2004.

[10] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon
Press, 1995.

70

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

