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Abstract— Particle swarm optimization (PSO) was proposed by
Kennedy et al. as a general approximate solution method for non-
linear programming problems. Its efficiency has been shown, but
there have been left some shortcomings of the method. Thus, the
authors proposed a revised PSO (rPSO) method incorporating
the homomorphous mapping and the multiple stretching in order
to cope with these shortcomings. In this paper, we construct an
interactive fuzzy satisficing method for multiobjective nonlinear
programming problems based on the rPSO. Furthermore, in
order to obtain better solutions in consideration of the property
of multiobjective programming problems, we incorporate the
direction to nondominated solutions into the rPSO. Finally, we
show the efficiency of the proposed method by applying it to
numerical examples.

I. INTRODUCTION

In general nonlinear programming problems to find a so-
lution which minimizes an objective function under given
constraints, one whose objective function and constraint region
are convex is called a convex programming problem. For
such convex programming problems, there have been proposed
many efficient solution method as the successive quadratic
programming method and the general gradient method. Unfor-
tunately, there have not been proposed any decisive solution
method for nonconvex programming problems. As practical
solution methods, meta-heuristic optimization methods as the
simulated annealing method and the genetic algorithm have
been proposed. In recent years, however, more speedy and
more accurate optimization methods have been desired be-
cause the size of actual problems has been increasing.

As a new optimization method, particle swarm optimization
(PSO) was proposed by Kennedy et al. [2]. PSO is a search
method simulating the social behavior that each individual in
the population acts by using both the knowledge owned by
it and that owned by the population, and they search better
points by constituting the population. The authors proposed
a revised PSO (rPSO) by incorporating the homomorphous

mapping and the multiple stretching technique in order to deal
with shortcomings of the original PSO as the concentration to
local solution and the inapplicability of constrained problems
[5].

In recent years, with the diversification of social require-
ments, the demand for the programs with multiple objective
functions, which may be conflicting with each other, rather
than a single-objective function, has been increasing (e.g. max-
imizing the total profit and minimizing the amount of pollution
in a production planning). Since there does not always exist
a complete optimal solution which optimizes all objectives
simultaneously for multiobjective programming problems, the
Pareto optimal solution or non-inferior solution, is defined,
where a solution is Pareto optimal if any improvement of
one objective function can be achieved only at the expense
of at least one of the other objective functions. For such
multiobjective optimization problems, fuzzy programming ap-
proaches (e.g. H.-J. Zimmermann [12], H. Rommelfanger [7]),
considering the imprecise nature of the DM’s judgments in
multiobjective optimization problems, seem to be very appli-
cable and promising. In the application of the fuzzy set theory
into multiobjective linear programming problems started by
Zimmermann [11], it has been implicitly assumed that the
fuzzy decision or the minimum-operator of Bellman and Zadeh
[1] is the proper representation of the DM’s fuzzy preferences.
Thereby, M. Sakawa et al. have proposed interactive fuzzy
satisficing methods to derive satisficing solutions for the
decision maker along with checking the local preference of the
decision maker through interactions for various multiobjective
programming problems [9].

In this research, focusing on multiobjective nonlinear pro-
gramming problems, we attempt to derive satisficing solu-
tions through the interactive fuzzy satificing method. Since
problems solved in the interactive fuzzy satificing method for
multiobjective nonlinear programming problems are nonlinear
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programming problems, we adopt rPSO [5] as solution meth-
ods to them. In particular, we consider measures to improve the
performance of rPSO in applying it to solving the augmented
minimax problem.

II. MULTIOBJECTIVE NONLINEAR PROGRAMMING

PROBLEMS

In this research, we consider multiobjective nonlinear pro-
gramming problem as follows:

minimize fl(x), l = 1, 2, . . . , k
subject to gi(x) ≤ 0, i = 1, 2, . . . ,m

lj ≤ xj ≤ uj , j = 1, 2, . . . , n
x = (x1, x2, . . . , xn)T ∈ Rn





(1)

where fl(·), gi(·) are linear or nonlinear functions, lj and uj

are the lower limit and the upper limit of each decision variable
xj . In addition, we the feasible region of (1) by X .

III. AN INTERACTIVE FUZZY SATISFICING METHOD

In order to consider the imprecise nature of the decision
maker’s judgments for each objective function in (1), if we
introduce the fuzzy goals such as “fl(x) should be substan-
tially less than or equal to a certain value”, (1) can be rewritten
as:

maximize
x∈X

(µ1(f1(x)), . . . , µk(fk(x))) (2)

where µl(·) is the membership function to quantify the fuzzy
goal for the l th objective function in (1).

Since (2) is regarded as a fuzzy multiobjective decision
making problem, there rarely exist a complete optimal solution
that simultaneously optimizes all objective functions. As a rea-
sonable solution concept for the fuzzy multiobjective decision
making problem, M. Sakawa et al. defined M-Pareto optimal-
ity on the basis of membership function values by directly
extending the Pareto optimality in the ordinary multiobjective
programming problem [8]. In the interactive fuzzy satisficing
method, in order to generate a candidate for the satisficing
solution which is also M-Pareto optimal, the decision maker
is asked to specify the aspiration levels of achievement for
all membership functions, called the reference membership
levels [8]. For the decision maker’s reference membership
levels µ̄l, l = 1, . . . , k, the corresponding M-Pareto optimal
solution, which is nearest to the requirements in the minimax
sense or better than that if the reference membership levels
are attainable, is obtained by solving the following augmented
minimax problem (3).

minimize
x∈X

max
l=1,...,k

{(µ̄l − µl(fl(x)))

+ρ

k∑

i=1

(µ̄i − µi(fi(x)))} (3)

where ρ is a sufficiently small positive number.
We can now construct the interactive algorithm in order to

derive the satisficing solution for the decision maker from the
M-Pareto optimal solution set. The procedure of an interactive
fuzzy satisficing method is summarized as follows.

Step 1: Under a given constraint, minimal value and max-
imum one of each objective function are calculated
by solving following problems.

minimize
x∈X

fl(x), l = 1, 2, . . . , k (4)

maximize
x∈X

fl(x), l = 1, 2, . . . , k (5)

Step 2: In consideration of individual minimal value
and maximum one of each objective function, the
decision maker subjectively specifies membership
functions µl(fl(x)), l = 1, . . . , k to quantify fuzzy
goals for objective functions. Next, the decision
maker sets initial reference membership function
values µ̄l, l = 1, . . . , k.

Step 3: We solve the following augmented minimax prob-
lem corresponding to current reference membership
function values (3).

Step 4: If the decision maker is satisfied with the solution
obtained in Step 3, the interactive procedure is fin-
ished. Otherwise, the decision maker updates refer-
ence membership function values µ̄l, l = 1, 2, . . . , k
based on current membership function values and
objective function values, and return to Step 3.

IV. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization [2] is based on the social behav-
ior that a population of individuals adapts to its environment by
returning to promising regions that were previously discovered
[3]. This adaptation to the environment is a stochastic process
that depends on both the memory of each individual, called
particle, and the knowledge gained by the population, called
swarm.

In the numerical implementation of this simplified social
model, each particle has four attributes: the position vector in
the search space, the velocity vector and the best position in
its track and the best position of the swarm. The process can
be outlined as follows.

Step 1: Generate the initial swarm involving N particles
at random.

Step 2: Calculate the new velocity vector of each particle,
based on its attributes.

Step 3: Calculate the new position of each particle from
the current positon and its new velocity vector.

Step 4: If the termination condition is satisfied, stop.
Otherwise, go to Step 2.

To be more specific, the new velocity vector of the i-th
particle at time t, vt+1

i , is calculated by the following scheme
introduced by Shi and Eberhart [10].

vt+1
i := ωtvt

i + c1R
t
1(p

t
i − xt

i) + c2R
t
2(p

t
g − xt

i) (6)

In (6), Rt
1 and Rt

2 are random numbers between 0 and 1, pt
i

is the best position of the i-th particle in its track and pt
g

is the best position of the swarm. There are three problem
dependent parameters, the inertia of the particle ωt, and two
trust parameters c1, c2.
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Fig. 1. Movement of a particle in PSO.

Then, the new position of the i-th particle at time t, xt+1
i ,

is calculated from (7).

xt+1
i := xt

i + vt+1
i (7)

where xt
i is the current position of the i-th particle at time

t. The i-th particle calculates the next search direction vector
vt+1

i by (6) in consideration of the current search direction
vector vt

i, the direction vector going from the current search
position xt

i to the best position in its track pt
i and the direction

vector going from the current search position xt
i to the best

position of the swarm pt
g , moves from the current position

xt
i to the next search position xt+1

i calculated by (7). The
parameter ωt controls the amount of the move to search
globally in early stage and to search localy by decreasing ωt

gradually.
The searching procedure of PSO is shown in Fig. 1.

Comparing the evaluation value of a particle after movement,
f(xt+1

i ), with that of the best position in its track, f(pt
i), if

f(xt+1
i ) is better than f(pt

i), then the best position in its track
is updated as pt

i := xt+1
i . Futhermore, if f(pt+1

i ) is better
than f(pt

g), then the best position in the swarm is updated as
pt+1

g := pt+1
i .

Such a PSO technique includes two problems. One is that
particles concentrate on the best search positon of the swarm
and they cannot easily escape from the local optimal solution
since the move direction vector vt+1

i calculated by (6) always
includes the direction vector to the best search position of the
swarm. Another is that a particle after move is not always
feasible for problems with constraints.

V. IMPROVEMENT OF PARTICLE SWARM OPTIMIZATION

In this study, to prevent the concentration and stop at local
optimal solutions of particles in the simple PSO, we introduce
the modification of move schemes of a particle, the leaving act
and the multiple stretching technique. In addition, in order to
treat constraints, we divide the swarm into two subswarms. In
one subswarm, since the move of a particle to the infeasible
region are not accepted, if a particle becomes infeasible after
a move, it is repaired to be feasible. In the other subswarm,
the move of a particle to the infeasible region are accepted.

A. Move of a particle

We think about the move from current search position xt
i

of the i-th particle.

p
i
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k
t

x
i
t
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i
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i
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p
g
t

Fig. 2. The new search direction when the best search point of a particle is
renewed at the previous search point.
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Fig. 3. The new search direction when the best search point of a particle is
renewed at the current search point.

First, if the previous search position xt−1
i is the best positon

of a particle in its track pt
i, the next search position xt+1

i

moves near the best position in the swarm pt
g with high

possibility. Thereby, as shown in Fig.2, we change the equation
(6) to determine the next search direction vt+1

i as

vt+1
i := c1R

t
1(p

t
i − xt

i) + c2R
t
2(p

t
k − xt

i) (8)

where pt
i is the best position of the i-th particle. By the change

of the search direction determination scheme, we can relax
concentration of particles to pt

g.
Next, in case that the current search position xt

i is the best
position of a particle in its track pt

i, the direction to current
search position is desirable. Thus, as in Fig.3, we change the
equation (6) to determine the next search direction vt+1

i as

vt+1
i := ωtvt

i (9)

B. Division of the swarm into two subswarms

In application of PSO to optimization problems with con-
straints, a particle after move is not always feasible if we
use the updating equation of search position mentioned above.
To deal with such a situation, we divide the swarm into two
subswarms. In one subswarm, since the move of a particle
to the infeasible region is not accepted, if a particle becomes
infeasible after a move, it is repaired to be feasible. To be
more specific, with respect to infeasible particles which violate
constraints after move, we repair its search position to be
feasible by the bisection method on the direction from the
search position before move, xt

i, to that after move, xt+1
i . In
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the other subswarm, the move of a particle to the infeasible
region are accepted.

C. Secession

Since particles tend to concentrate on the best position of the
swarm as the search goes forward in PSO, the global search
becomes difficult. Thus, we introduce following leaving acts
of a particle.

(1) [Secession I] A particle moves at random to a point
in the feasible region.

(2) [Secession II] A particle moves at random to a point
on the boundary of the feasible region.

(3) [Secession III] A particle moves at random to a point
in a direction of some coordinate axis.

D. Multiple stretching technique

Stretching technique is suggested to prevent the stop at a
local optimal solution of particles in PSO by Parsopoulos et
al. [6]. It enables particles to escape from the current local
optimal solution and not to approach the same local optimal
solution again by changing original evaluation function f(x)
to other evaluation function H(x) defined as follows.

G(x) = f(x) + γ1‖x− x̄‖
(

sign
(
f(x)− f(x̄)

)
+ 1

)
(10)

H(x) = G(x) + γ2

sign
(
f(x)− f(x̄)

)
+ 1

tanh
(
µ
(
G(x)−G(x̄)

)) (11)

Here x̄ is the current local optimal solution, and γ1, γ2, µ are
parameters. In addition, sign(·) is defined function as follows.

sign(x) =





1, x > 0
0, x = 0
−1, x < 0

(12)

In the function G(x), the second term is the penalty depending
on the distance between a search position x and the current
local optimal solution x̄. The term is equal to 0 for x whose
objective function value f(x) is better than f(x̄), while it
takes a value depending on the distance between x and x̄ for
x whose f(x) is worse than f(x̄). Next, the function H(x) is
defined using G(x) expressed in (10). The value of H(x) for a
search position x is equal to the objective function value f(x)
of x if f(x) of x is better than that of x̄, while it takes a very
large value if f(x) of x is worse than that of x̄. Using H(x)
as the new evaluation function, particles can escape from the
current local optimal solution and search a new region which
may include better solutions than the current local optimal
solution.

Although the stretching technique [6] enables particles to
escape from the current local optimal solution, they may stop
at the same local optimal solution again when we apply the
stretching technique to the next local optimal solution. Thus
we use multiple Stretching technique corresponding to plural
local solution. To be concrete, we consider the following
functions for m local optimal solutions x̄k, k = 1, . . . , m.

Gk(x) = f(x) + γ1‖x− x̄k‖
(

sign
(
f(x)− f(x̄min)

)
+ 1

)

(13)

µ0

1

1

Optimal solution

Swarm

1

µ
_

µ
2

Fig. 4. Application of rPSO to the augemented minimax problem.

µ0

1

1

Optimal solution

Swarm

1

µ
_

µ
2

Fig. 5. Application of the proposed PSO to the augemented minimax
problem.

Hk(x) = Gk(x) + γ2

sign
(
f(x)− f(x̄min)

)
+ 1

tanh
(
µ
(
Gk(x)−Gk(x̄k)

)) (14)

S(x) =
m∑

k=1

Hk(x)/m (15)

Here, x̄min is the best among m local optimal solutions. The
value of S(x) for a search position x is equal to the objective
function value f(x) of x if f(x) is better than that of x̄min,
while it takes a very large value if the distance between x and
the nearest local optimal solution is less than a certain value.
Otherwise, it takes a value depending on the distance.

E. Incorporation of the direction to non-dominated particles
in the swarm

Since the shape of the objective function of the augmented
minimax problem (3) solved in the interactive fuzzy satisficing
method for multiobjective nonlinear programming problems
often becomes complex, there does not always exist the
optimal solution int the seach direction of the swarm, shown
in Fig.(4).

Thereby, we pay attention to the fact that the optimal
solution to the augmented minimax problem is one of M-
Pareto optimal solutions to (2) and introduce the direction to
a non-dominated particle (an approximate M-Pareto optimal
solution) to carry out search about M-Pareto optimality and
search about the optimality with respect to the objective
function of the augmented minimax problem shown as Fig.(5).
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In order to incorporate the new search direction, we revise
the equation to determine the next search direction as:

vt+1
i = ωtvt

i + c3R
t
3(x

t
λk
− xt

i) (16)

where xt
λk

is a certain nondominated particle in the current
swarm, c3 is a parameter and Rt

3 is the uniform random
number in the interval [0, 1].

Moreover, it is considered that the current search position
and the direction are favorable since the best position of a
particle is updated when the current search position is the
best position of a particle. So that a particle decides the next
search direction vt+1

i by the translation equation (9)same as
Morihara[5].

By the swarm to move in this way, we can do search about
Pareto optimality.

In rPSO [5], the next search position is decided by vector
to a particle k instead of the best search position of the
swarm in order to relax that a particle concentrates on the
best of the swarm when the best position of a particle is
updated just before that. The technique is not suitable to solve
the augmented minimax problem since it is hard to consider
the vector is the direction provided better solution when any
particle k is dominated.

Thus we chage the next search position vt+1
i by following

equation (17) using the vector to the current seach position of
any non-dominated solution λk insead of the best position of
any particle k.

vt+1
i = c1R

t
1(p

t
i − xt

i) + c2R
t
2(x

t
λk
− xt

i) (17)

With this modification, the swarm moving by traditional
updating equation acts leaving behavior to the direction to the
non-dominated solution. In addition, we can do both search
about Pareto optimality proper and prevent a particle from
concentrating on the local solution excessively in the searching
process.

F. Algorithm of the proposed PSO method

The algorithm of the proposed PSO method based on
rPSO for multiobjective nonlinear programming problems
(MOrPSO) is summarized as follows.

Step 1: Find one feasible solution by PSO in consideration
of the degree of violation of constraints, and set it a
basic point solution of the homomorphous mapping
r. Set t := 0, go to Step 2.

Step 2: Generate the initial search position of each particle
with the guarantee on feasibility using the homomor-
phous mapping. To be concrete, after generating N
points randomly in a hypercube, map them into the
feasible region by the homomorphous mapping with
the basic point solution r. Regard these points as
initial search positions of particles x0

i , i = 1, . . . , N .
In addition, use the initial search position of each
particle x0

i as the best position of itself p0
i . Then,

find the best position among those, and use it as
the best position of the initial swarm p0

g . Moreover,
find nondominated particles based on membership

function values for objective functions. Go to Step
3.

Step 3: Determine the value of ωt. If the current particle
makes use of the information of nondominated par-
ticles, go to Step 4. Otherwise, if it does that of the
best position of the swarm, go to Step 5.

Step 4: Calculate the direction vt+1
i to next search position

xt+1
i of the partilce using the transition scheme ac-

cording to its situation based on the current position
xλk

of any nondominated particle. Then, move it
using eq.(7), and go to Step 6.

Step 5: Calculate the direction vt+1
i to next search position

xt+1
i of the partilce using the transition scheme

according to its situation based on pt
i and pt

g. Then,
move it using eq.(7), and go to Step 6.

Step 6: For paticles to be repaired about infeasibility by the
bisection method, check whether the search position
of the paticle after transition xt+1

i is feasible or not.
If it is infeasible, repair it to be feasible using the
bisection method. Go to Step 7.

Step 7: Decide whether the multiple stretching technique
is carried out or not. If it is carried out, go to Step
8. Otherwise, go to Step 9.

Step 8: Using the evaluation function S(·) derived from the
objective function f(·), evaluate the search position
of each particle after transition xt+1

i , i = 1, . . . , N ,
and go to Step 9.

Step 9: Using the objective function f(·), evaluate the
search position of each particle after transition xt+1

i ,
i = 1, . . . , N , and go to Step 10.

Step 10: If the evaluation value of a particle calculated in
Step 8 or Step 9 is better than that of the best search
position of itself pt

i, update the best position of itself
as pt+1

i := xt+1
i , and goto Step 11. Otherwise, set

pt+1
i := pt

i, and go to Step 11.
Step 11: If the evaluation value of a partilce calculated in

Step 8 or Step 9 is better than that of the best search
position of the swarm pt

g, update the best position
of the swarm as pt+1

g := xt+1
imin

, and go to Step 12.
Otherwise, set pt+1

g := pt+1
g , and go to Step 12.

Step 12: Compare membership function values for each
particle, and update the set of nondominated particles
in the swarm, and go to Step 13.

Step 13: If the condition of the secession is satisfied, apply
the secession procedure to each particle, and go to
Step 14.

Step 14: If t = Tmax (the maximal search generation
number). Otherwise, set t := t + 1, and return to
Step 3.

Here, the termination condition assumes that a number of
iterations of the procedure exceeds a maximum number of
interations. And an application condition of multiple Stretch-
ing technique for a particle i assumes that the best solution of
a particle does not update constant turn.
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TABLE I

RESULTS OF APPLICATION OF THREE METHODS TO AUGMENTED MINIMAX

PROBLEMS.

interactive 1st 2nd time
(µ̄1, µ̄2, µ̄3) (1.0, 1.0, 1.0) (0.8, 1.0, 1.0) (sec)

best 0.1430 0.0823
MOrPSO (proposed) average 0.1452 0.0838 9.03

worst 0.1488 0.0859
best 0.1434 0.0826

rPSO [5] average 0.1466 0.0854 8.55
worst 0.1674 0.1102
best 0.1825 0.1406

RGENOCOP V [9] average 0.1880 0.1568 42.90
worst 0.1952 0.1811

VI. NUMERICAL EXAMPLE

In order to show the efficiency of the proposed PSO
(MOrPSO), we consider the following multiobjective nonlin-
ear programming problem.

minimize
f1(x) = 7x2

1 − x2
2 + x1x2 − 14x1 − 16x2 + 8(x3 − 10)2

+4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+7(x8 − 11)2 + 2(x9 − 10)2 + x2
10 + 45

minimize
f2(x) = (x1 − 5)2 + 5(x2 − 12)2 + 0.5x4

3 + 3(x4 − 11)2

+0.2x5
5 + 7x2

6 + 0.1x4
7 − 4x6x7 − 10x6 − 8x7

+x2
8 + 3(x9 − 5)2 + (x10 − 5)2

minimize
f3(x) = x3

1 + (x2 − 5)2 + 3(x3 − 9)2 − 12x3 + 2x3
4

+4x2
5 + (x6 − 5)2 + 6x2

7 + 7(x7 − 2)x2
8

−x9x10 + 4x3
9 + 5x1 − 8x1x7

subject to
−3(x1 − 2)2 − 4(x2 − 3)2 − 2x2

3 + 7x4

−2x5x6x8 + 120 ≥ 0
−5x2

1 − 8x2 − (x3 − 6)2 + 2x4 + 40 ≥ 0
−x2

1 − 2(x2 − 2)2 + 2x1x2 − 14x5 − 6x5x6 ≥ 0
−0.5(x1 − 8)2 − 2(x2 − 4)2 − 3x2

5 + x5x8 + 30 ≥ 0
3x1 − 6x2 − 12(x9 − 8)2 + 7x10 ≥ 0
4x1 + 5x2 − 3x7 + 9x8 ≤ 105
10x1 − 8x2 − 17x7 + 2x8 ≤ 0
−8x1 + 2x2 + 5x9 − 17x10 ≤ 12
−5.0 ≤ xj ≤ 10.0, j = 1, . . . , 10

We apply the original rPSO [5], RGENOCOP V [9] and the
proposed PSO (MOrPSO) to minimax problems solved in the
interactive fuzzy satisficing method for the above problem. The
results obtained by these three methods are shown in Table I.
In these experiments, we set the swarm size N = 70, the max-
imal search generation number Tmax = 5000. In addition, we
use the following membership functions: µf1(x) = (1500 −
f1(x))/1420, µf2(x) = (3500 − f2(x))/3300, µf3(x) =
(3100− f3(x))/3050.

From table I, in the application of rPSO [5], we can get
better solutions in the sense of best, average and worst than
those obtained by RGENOCOP V [9]. This indicates that rPSO
is better than RGENOCOP V about the accuracy of solutions.

However, as for the difference between best and worst, that
for rPSO is larger than that for RGENOCOP V, i.e., rPSO is
worse than RGENOCOP V with respect to the precision of
solutions.

On the other hand, the results obtained by the prooposed
MOrPSO are better than those by rPSO in the sense of
best, average, worst, the difference between best and worst.
Therefore, MOrPSO proposed in this paper is the best solution
method among these methods with respect to both the accuracy
of solutions and the precision of solutions.

VII. CONCLUSION

In this paper, we focused on multiobjective nonlinear pro-
gramming problems and proposed a new PSO technique which
is efficient for in applying the interactive fuzzy satisficing
method. In particular, considering the features of augmented
minimax problems solved in the tnteractive fuzzy satisficing
method, we incorporated the new direction determination
scheme into rPSO. Finally, we showed the efficiency of the
proposed MOrPSO by applying it to numerical examples.
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