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Abstract— In this paper, we focus on two-level integer program-
ming problems with random variable coefficients in objective
functions and/or constraints. Using chance constrained pro-
gramming approaches in stochastic programming, the stochastic
two-level integer programming problems are transformed into
deterministic two-level integer programming problems. After
introducing fuzzy goals for objective functions, we consider the
application of the interactive fuzzy programming technique to
derive a satisfactory solution for decision makers. Since several
integer programming problems have to be solved in the inter-
active fuzzy programming technique, we incorporate a genetic
algorithm designed for integer programming problems into it.
An illustrative numerical example is provided to demonstrate
the feasibility of the proposed method.

I. INTRODUCTION

In this paper, we consider decision making situations in
hierarchical systems, which are formulated as two-level integer
programming problems. In these problems, there exist a deci-
sion maker with integer decision variables at the upper level
and another decision maker with integer decision variables at
the lower level.

For two-level programming problems, a number of ap-
proaches are proposed according to the relationship between
these decision makers. Under the assumption that they do not
have motivation to cooperate mutually, the Stackelberg solution
[18] is adopted as a reasonable solution for the situation. On
the other hand, in the case of a project selection problem
in an administrative office and an autonomous divisions of a
company, it seems natural that the decision makers cooperate
with each other. For such cooperative situations, solutions that
both decision makers can be satisfied with seems reasonable.
In order to obtain such the satisfactory solution for the deci-
sion makers, Sakawa et al. have proposed interactive fuzzy
programming techniques for two-level or multi-level linear
programming problems [15], [16].

In actual decision making situations, we must often make
a decision on the basis of vague information or uncertain

data. For such decision making problems involving uncertainty,
there exist two typical approaches: probability-theoretic ap-
proach and fuzzy-theoretic one. Stochastic programming, as
an optimization method based on probability theory, have been
developed in various ways [7], including two stage problem
considered by G.B. Dantzig [3], chance constrained program-
ming proposed by A. Charnes and W.W. Cooper [2]. For
multiobjective stochastic linear programming problems, I.M.
Stancu-Minasian [7] discussed the minimum risk approach,
while J.P. Leclercq [5] and J. Teghem Jr. et al. [20] proposed
interactive decision making methods.

On the other hand, fuzzy mathematical programming repre-
senting the vagueness in decision making situations by fuzzy
concepts have been studied by many researchers [8], [9]. Fuzzy
multiobjective linear programming, first proposed by H.-J.
Zimmermann [21], have been developed rapidly developed by
numerous researchers, and an increasing number of successful
applications has been appearing [17], [6], [19].

As a hybrid of the stochastic approach and the fuzzy
one, Sakawa et al. [11], [12] presented an interactive fuzzy
satisficing method to derive a satisficing solution for the
decision maker after reformulating a multiobjective stochastic
linear programming problem using several models for chance
constrained programming. Furthermore, they also proposed
decision making methods based on interactive fuzzy program-
ming for two-level stochastic linear programming problems.
However, there has never been reported the application of these
methods to two-level stochastic programming problems with
discrete decision variables.

Under these circumstances, in this paper, we deal with
two-level integer programming problems with random vari-
able coefficients in objective functions and/or constraints.
First, the two-level stochastic integer programming problem
is transformed into deterministic ones based on a probability
maximization model. Then, we attempt to obtain a satisfac-
tory solution for decision makers through interactive fuzzy
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programming [15], [16]. In this derivation of a satisfactory
solution through interactive fuzzy programming, several deter-
ministic linear and nonlinear integer programming problems
have to be solved. Since it is generally difficult to strictly
solve linear and nonlinear integer programming problems with
considerably many decision variables and/or constraints, we
use a genetic algorithm designed for integer programming
problems.

II. TWO-LEVEL STOCHASTIC INTEGER PROGRAMMING

PROBLEMS

Two-level stochastic integer programming problems involv-
ing random variable coefficients are formualted as follows.

minimize
DM� (upper level)

��������� �� � �������� � ��������

minimize
DM� (lower level)

��������� �� � �������� � ��������

subject to ���� ����� � ����
���� � �0� 1� � � � � ������ �� � �� � � � � 	�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�

�������
������

(1)
where �� is the 	� dimensional integer decision variable
column vector for the upper level decision maker DM�, ��

is the 	� dimensional integer decision variable column vector
for the lower level decision maker DM�, �� is the 
 � 	�
coefficient matrix, �� is the 
 � 	� coefficient matrix. It
should be noted that ������, � � �� �, � � �� � are Gaussian
random variable row vectors with finite mean ���� and finite

covariance matrix ���� �
�
�����

�
�
�
Cov��������� ���� ���	

�
,

� � �� �, � � �� �, �� � �� � � � � 	�, �� � �� � � � � 	�, and �����,
� � �� � � � �
 are random variables with finite mean ��� which
are independent of each other, and the distribution function of
each of them is also assumed to be continuous and increasing.
Furthermore, ���� , � � �� �, �� � �� � � � � 	� are positive integer
values.

Since (1) contains random variable coefficients, definitions
and solution methods for ordinary deteministic mathemati-
cal programming problems cannot be directly applied. Con-
sequently, we deal with the constraints in (1) as chance
constrained conditions [2] which mean that the constraints
need to be satisfied not always but with a certain probability
(satisficing level) and over. Namely, replacing the constraints
in (1) by chance constrained conditions with satisficing levels
��, � � �� � � � �
, (1) can be converted as:

minimize
DM� (upper level)

��������� �� � �������� � ��������

minimize
DM� (lower level)

��������� �� � �������� � ��������

subject to Pr������ � ����� � ������ � ��
� � �� � � � �


���� � �0� 1� � � � � ������ �� � �� � � � � 	�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�

���������
��������

(2)
where �� is the �th row vector of � and ����� is the �th element
of ����.

Because distribution functions ����� � Pr������ � �� of
random variables �����, � � �� � � � �
 are continuous and

increasing, the � th constraint in (2) can be rewritten as:

Pr������ � ����� � ������ � �� � ����� � ����� � 
��

where 
�� � ���� ��� ���.
Thereby, (2) can be transformed into the following equiva-

lent problem:

minimize
DM� (upper level)

��������� �� � �������� � ��������

minimize
DM� (lower level)

��������� �� � �������� � ��������

subject to ���� ����� � 
�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�

��������
�������

(3)
where 
� � �
��� � � � �
���� . In the following, for notational
convenience, the feasible region of (3) is denoted by � .

For the two-level chance constrained programming problem
(3), several models such as an expectation optimization model,
a variance minimization model, a probability maximization
model, a fractile criterion optimization model, have been
proposed depending on the concern of the decision maker.

In this paper, we study the probability maximization model,
which aims to maximize the probability that each of objective
functions is less than or equal to a certain permissible level.

III. PROBABILITY MAXIMIZATION MODEL

In (3), substituting the maximization of the probability that
each of the objective functions ��������� �� is less than or
equal to a certain permissible level �� for the minimization of
the objective functions ��������� �� � �������� � ��������,
� � �� �, the problem can be converted as follows.

maximize
DM� (upper level)

��������� � Pr���������� �� � ���

maximize
DM� (lower level)

��������� � Pr���������� �� � ���

subject to ���� ����� � 
�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�
���� � �0� 1� � � � � ������ �� � �� � � � � 	�

��������
�������

(4)
The objective functions Pr���������� �� � ���, � � �� � are

rewritten as:

Pr ���������� �� � ���
� Pr ��������� � �������� � ���

� Pr
	
�������� � �������� � ������� � �������


���
�
���

�
������

�
���

�
��

�
�� � ������� � �������

���

�
���

�
������

�
���

�
��

�

� ��

�
�� � ������� � �������

���

�
���

�
������

�
���

�
��



where ���	� is the distribution function of a standard Gaussian
random variable.
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Then, (4) can be transformed into the following equivalent
problem:

maximize
DM� (upper level)

��

�
�� � ������� � ��������
���

�
���

�
������

�
���

�
��

�

maximize
DM� (lower level)

��

�
�� � ������� � ��������
���

�
���

�
������

�
���

�
��

�

subject to ���� ����� � ��
���� � �0� 1� � � � � ������ 	� � �� � � � � 
�
���� � �0� 1� � � � � ������ 	� � �� � � � � 
�

������������
�����������

(5)

IV. INTERACTIVE FUZZY PROGRAMMING

In general, it seems natural that there exists the ambiguity
or fuzziness in the evaluation of each objective function by the
decision maker. In order to consider the imprecise nature of
the decision maker’s judgement for each objective function in
(5), we introduce the fuzzy goals such as “��������� should
be substantially greater than or equal to a certain value”. Then,
(5) can be rewritten as:

maximize
DM� (upper level)

�������������

maximize
DM� (lower level)

�������������

subject to ���� ����� � ��
���� � �0� 1� � � � � ������ 	� � �� � � � � 
�
���� � �0� 1� � � � � ������ 	� � �� � � � � 
�

��������
�������

(6)
where ����� is a membership function to quantify a fuzzy goal
for the th objective function in (5), as shown in Fig. 1.

Fig. 1. Membership function

We attempt to derive a satisfactory solution by the interactive
fuzzy programming technique using fuzzy goals to consider
the ambiguity of the decision makers’ judgement and a ratio
of the satisfactory degree for DM	 (��) to that for DM� (��).

Computational procedure of interactive fuzzy programming

Step 1: Determine the satisficing levels ��, � � �� � � � ��
for constraints in (2).

Step 2: Solve problems (7), (8) to obtain the indi-
vidual minimum ������� and maximum ������� of
E���������� ��� � �������������,  � �� 	 under the

chance constrained conditions with satisficing levels
��, � � �� � � � ��.

minimize
���

�����������  � �� 	 (7)

maximize
���

�����������  � �� 	 (8)

Since these problems are deterministic integer pro-
gramming problems, in order to find (approximate)
optimal solutions to them, we apply Genetic Algo-
rithm with Double Strings using Continuous Relax-
ation based on Reference Solution Updating (GAD-
SCRRSU) designed for integer programming prob-
lems [10]. Then, specify permissible levels ��,  �
�� 	 for the objective functions in consideration of
������� and �������.

Step 3: For the purpose of obtaining the individual
minimum ������ and maximum ������ of ���������,
 � �� 	 in (5), solve the following problems.

minimize
���

�� � ������� � ��������
���

�
���

�
������

�
���

�
��

(9)

maximize
���

�� � ������� � ��������
���

�
���

�
������

�
���

�
��

(10)

We also apply GADSCRRSU [10] to solve these
problems. Then, specify membership functions for
objective functions in (5), �������������,  � �� 	,
and set the upper bound 
��� and the lower bound

��� of a ratio of the satisfactory degree for DM	 to
that for DM�, 
 � ���������������������������.

Step 4: Based on the maximizing decision of Bellman
and Zadeh [1], solve the following maximin problem
through GADSCRRSU [10].

maximize ��
�����

���������������

subject to � � �

�
(11)

If DM� is satisfied with the optimal solution to
(11), terminate the interaction procedure. Otherwise,
taking into account a ratio of satisfactory degrees 
,
DM� subjectively specifies the minimal satisfactory
level �Æ for �������������.

Step 5: Solve the following problem for �Æ using GAD-
SCRRSU [10].

maximize �������������

subject to ������������� � �Æ
� � �

��
� (12)

Then, calculate the value of 
 corresponding to the
optimal solution ���

�
���

�
� to (12).

Step 6: If DM� is satisfied with �������
�

�
���

�
��,  � �� 	

and 
 � �
����
����, stop. Otherwise, ask DM� to
update the minimal satisfactory level �Æ. To be more
specific, if 
 � 
���, i.e., �����������

�

�
�� is much

greater than �������
�

�
���

�
��, DM� should decrease

the value of �Æ. If 
 � 
���, i.e., �����������
�

�
�� is

much less than �������
�

���
�

���, DM� should increase
the value of �Æ. Go to step 5.
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V. GENETIC ALGORITHM WITH DOUBLE STRINGS USING

CONTINUOUS RELAXATION BASED ON REFERENCE

SOLUTION UPDATING (GADSCRRSU)

In this section, we explain GADSCRRSU [10] proposed
as a general solution method for linear integer programming
problems defined as (13).

minimize ��

subject to �� � �

�� � ��� �� � � � � ���� � � �� � � � � �

��
� (13)

where � � ���� � � � ���� is an � � � coefficient matrix, � �
�	�� � � � � 	��� is an � dimensional column vector and � �
�
�� � � � � 
�� is an � dimensional row vector.

A. Individual Representation

In GADSCRRSU, double strings shown in Fig. 2 is used as
the individual representation.

Individual S :
���� ���� � � � ����
����� ����� � � � �����

Fig. 2. Double string

In the figure, each of ����, � � �� � � � � � is the index
of an element in a solution vector and each of ����� �
��� �� � � � � ������, � � �� � � � � � is the value of the element,
respectively. For example, the first column of the double string
in Fig. 2 means that the candidate of the value of ����� is �����.

B. Decoding Algorithm

Since a solution corresponding to a double string, i.e., � �
���� ��� � � � � ���

� does not always safisfy the constraint �� �
� in (13), the decoding procedure is needed to repair infeasible
solutions. In [10], a decoding algorithm of double strings for
linear integer programming problems is constructed as follows.
In the algorithm, a feasible solution ��, called a reference
solution, is used as the origin of decoding.

Decoding algorithm using a reference solution

In this algorithm, it is assumed that a feasible solution ��

to (13) is obtained in advance. Let � and  be the number
of variables and the number of individuals in the population,
respectively. Also, �� means a column vector of positive right-
hand side constants, and the corresponding coefficient matrix
is denoted by �� � ���� � � � � ��

�
� �.

Step 1: Let � 	� � and ���� 	� �.
Step 2: If ����� � �, set ����� 	� � and � 	� � 
�, and go

to step 4. If ����� �� �, go to step 3.
Step 3: If ����
 ��

���� � ����� � �
�, set ����� 	� �����,

���� 	� ����
 ��
���� � ����� and � 	� � 
 �, and

go to step 4. Otherwise, set ����� 	� � and � 	� �
�,
and go to step 4.

Step 4: If � � �, go to step 5. If � � �, go to step 2.
Step 5: Let � 	� �, � 	� � and ��� 	� �.

Step 6: If ����� � �, set � 	� � 
 � and go to step 8. If
����� �� �, set ��� 	� ���
����� � ����� and go to
step 7.

Step 7: If ��� � �, set � 	� �, � 	� � 
�, and go to step
8. Otherwise, set � 	� � 
 � and go to step 8.

Step 8: If � � �, go to step 9. If � � �, go to step 6.
Step 9: If � � �, go to step 10. If not, go to step 11.
Step 10: For ����� satisfying � � � � �, let ����� 	� �����.

For ����� satisfying � 
 � � � � �, let ����� 	� �,
and stop.

Step 11: Let ��� 	�
��

��� ����� � �
�

���� and � 	� �.
Step 12: If ����� � ��

����, let ����� 	� ����� and � 	� � 
 �,
and go to step 16. Otherwise, go to step 13.

Step 13: If ��������� ��
�

����
����� ������ � �, set ��� 	�
���� ����� � �

�

���� 
 ����� � ����� and ����� 	� �����,
and go to step 16. Otherwise, go to step 14.

Step 14: Let ����� 	� 	��� � ������� 
 ������
 and go to step
15.

Step 15: If ��� � ����� � �
�

���� 
 ����� � ����� � �, set
��� 	� �����������

�

����
�����������, ����� 	� �����
and ����� 	� �����, and go to step 16. Otherwise, set
����� 	� ��

���� and go to step 16.
Step 16: If � � �, stop. Otherwise, return to step 12.
Because solutions obtained the decoding algorithm using

a reference solution tend to concentrate around the reference
solution, the reference solution updating procedure is adopted.

C. Reference solution updating

The diversity of solutions � greatly depends on the reference
solution used in the above decoding algorithm. In order to
widen the search region, we propose the following reference
solution updating procedure such that the current reference
solution is updating by another feasible solution if the diversity
of solutions seems to be lost. To do so, for every generation,
check the dependence on the reference solution through the
calculation of the mean of the Hamming distance between
all solutions corresponding to individuals and the reference
solution, and when the dependence on the reference solu-
tion is strong, replace the reference solution by the solution
corresponding to an individual having maximum Hamming
distance.

Let  , ��, � �� ���� and �� respectively denote the number
of individuals, the reference solution, a parameter for reference
solution updating and a feasible solution decoded by the � th
individual, then the reference solution updating procedure can
be described as follows.

Reference solution updating procedure

Step 1: Set � 	� �, ���	 	� �, ���	 	� � and �
�� 	� �.
Step 2: Calculate �� �

��

��� ��
�
�������

����� and let �
�� 	�

�
��
��. If �� � ���	 and ��� � ���, let ���	 	�
��, ���	 	� � and � 	� � 
 �, and go to step 3.
Otherwise, let � 	� � 
 � and go to step 3.

Step 3: If � � �, go to step 4. Otherwise, return to step 2.
Step 4: If �
���� �

��

��� ��� � �, then update the refer-
ence solution as �� 	� ����� , and stop. Otherwise,
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TABLE I

RELATIONS BETWEEN OPTIMAL SOLUTIONS TO INTEGER KNAPSACK

PROBLEMS AND THOSE TO CONTINUOUS RELAXATION PROBLEMS.

�
�

�
� ��� �

�

�
�� ���

�
�

�
� � 606 4

�
�

�
�� � 279 111

stop without updating the reference solution.

It should be observed here that when the constraints of
the problem are strict, there exist a possibility that all of the
individuals are decoded in the neighborhood of the reference
solution. To avoid a such possibility, in addition to the refer-
ence solution updating procedure, after every � generations,
the reference solution is replaced by another feasible solution.

D. Usage of Continuous Relaxation

It is expected that an optimal solution to the continous
relaxation problem becomes a good approximate optimal so-
lution of the original integer programming problem. With
this observation in mind, after generating 20 single-objective
integer programming problems involving 50 variables and
10 constraints at random, they and their linear programming
relaxation problems are solved. To be more explicit, �� , � �
�� � � � � � and ��� , � � �� � � � �	, � � �� � � � � � are determined
by uniform integer random numbers in ������ �� and ��� ����,
respectively, while 
�, � � �� � � � �	 are defined as


� � � �

��

���

��� � � � �� � � � �	 (14)

where a positive constant � is a parameter to control the
degree of strictness of the constraints, determined by a uniform
real random number ranging from � to ��. In addition, upper
bounds �� of � , � � �� � � � � � are set at �� for all �.

Table 1 shows relations between the optimal solution to in-
teger knapsack problems �� and that to corresponding continu-
ous relaxation problems 	� , while Fig. 3 shows the frequency
distribution of differences between the values of an optimal
solution � of integer programming problems and an optimal
solution 	� of linear programming relaxation problems.

As a result, it is recognized that each variable � takes ex-
actly or approximately the same value that 	� does, especially,
such variables � as 	� � � are very likely to be equal to �.

Based on the fact, the information about the optimal solution
to the continuous relaxation problem is used in the generation
of the initial population and the mutation [10].

E. Reproduction

As a reproduction operator, elitist expected value selection,
which is the combination of expected value selection and elitist
preserving selection, is adopted. In [14], elitist expected value
selection is defined as a combination of elitism and expected
value selection as mentioned below.

Fig. 3. Frequency distribution of �� � ��� .

Elitism: If the fitness of a string in the past populations is
larger than that of every string in the current popula-
tion, preserve this string into the current generation.

Expected value selection: For a population consisting of �
strings, the expected value of the number of the � th
string s� in the next population

�� �
�
s��
��

���

�
s��

��

is calculated. Then, the integral part of �� denotes
the deterministic number of the string s� preserved
in the next population. While, the decimal part of ��

is regarded as probability for one of the string s� to
survive, i.e., � �

��

����� strings are determined on
the basis of this probability.

F. Crossover

If a single-point crossover or multi-point crossover is di-
rectly applied to individuals of double string type, the �th
element of an offspring may take the same number that
the ��th element takes. Similar violation occurs in solving
traveling salesman problems or scheduling problems through
genetic algorithms as well. In order to avoid this violation, a
crossover method called partially matched crossover (PMX)
was proposed [4] and was modified so as to be suitable for
double strings [14].

PMX for double string

Step 0: Select two individuals � , � from the population
as parent individuals and prepare copies � � and � �

of � and � , respectively.
Step 1: Choose two crossover points at random on these

strings, say, � and � 
� � ��.
Step 2: (a) Set � � �.

(b) Find �� such that ���
��� � �� 
��.
Then, interchange 
���
��� ��

�� ����
�

with 
���
���� ��
�� �����

� and
set � � � � �.

(c) If � � �, stop. Otherwise, return to (b).
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Step 3: Replace the part from � to � of � � with that of
� and let � � be the offspring of � .

An illustrative example of crossover is shown in Fig. 4.

Fig. 4. Partially matched crossover (PMX) for double strings.

G. Mutation

It is considered that mutation plays the role of local random
search in genetic algorithms. In this paper, two mutation
operators (bit-reverse type and inversion) are used. A direct
extension of mutation for 0-1 programming problems is to
change the value of ����� at random in ��� ������ uniformly,
when mutation occurs at �����. The mutation operator is further
refined by using the information about the solution of the linear
programming relaxation problem ��. To be more explicit, the
following algorithm is carried out.

Mutation of bit reverse type for double strings

Step 0: Set � �� �.
Step 1: Set 	 �� �.
Step 2: Generate a random number 
� according to the

corresponding Gaussian distribution with mean �����
and variance ��. For a given mutation rate ��, if
�����	 � ��, then go to step 3. Otherwise, go to
step 4.

Step 3: Let

����� ��

��
�

� � 
�  ��

�
� � ��
� � ��
 � 
�  �� � ��


�� � 
� � �� � ��


Fig. 5. Mutation and inversion for double strings.

and go to step 4.
Step 4: If 	  �, set 	 �� 	 � � and return to step 2.

Otherwise, go to step 5.
Step 5: If �  � , set � �� � � � and return to step 1.

Otherwise, stop.

Inversion operator

Step 1: After determining the two inversion points � and �

��  �	, pick out a part of the upper row of a double
string from � to �.

Step 2: Arrange the substring in the reverse order.
Step 3: Put the arranged substring back in the double string.
An illustrative example of mutation and inversion is shown

in Fig. 5.

H. Computational procedures of GADSCRRSU

Step 0: Determine values of the parameters used in
the genetic algorithm: the population size � , the
generation gap �, the probability of crossover ��,
the probability of mutation ��, the probability of
inversion ��, the minimal search generation ����,
the maximal search generation ������ ����	, the
scaling constant ��	
�, the convergence criterion �,
the degree of use of information about solutions to
linear programming relaxation problems 
, and set
the generation counter � at �.

Step 1: Generate the initial population consisting of �

individuals based on the information of the optimal
solution to the continuous relaxation problem.

Step 2: Decode each individual (genotype) in the current
population and calculate its fitness based on the
corresponding solution (phenotype).

Step 3: If the termination condition is fulfilled, stop.
Otherwise, let � �� �� � and go to step 4.

Step 4: Apply reproduction operator using elitist expected
value selection after linear scaling.

Step 5: Apply crossover operator, called PMX (Partially
Matched Crossover) for double string.

Step 6: Apply mutation based on the information of a
solution to the continuous relaxation problem.

Step 7: Apply inversion operator. Go to step 2.

VI. NUMERICAL EXAMPLE

To demonstrate the feasibility of the proposed method,
consider the following two-level integer programming problem
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TABLE II

MEANS OF COEFFICIENTS OF OBJECITVE FUNCTIONS.

��� � �� � �� � �� � �� � ��

� �� � �� � �� � ��	 
 ��

� �
 � �� � �� � �� �	 �


��� � � � �� �	 �	 �� �� � �

�� � � � �� � � � �� �

� �
 � �	 
 �	 � 
 �� ��

involving random variable coefficients.

minimize
DM� (upper level)

��������� �� � �������� � ��������

minimize
DM� (lower level)

��������� �� � �������� � ��������

subject to ����� � ����� � �����
����� � ����� � �����

...
������ � ������ � ������
���� � �0� 1� � � � � ���� �� � �� � � � � ��
���� � �0� 1� � � � � ���� �� � �� � � � � ��

���������������
��������������
(15)

where �� � ���� � � � � ����
� , �� � ����� � � � � ����

� , each
element of random variable vectors ����� � �������� �������,
� � �� 	 is a Gaussian random variable whose mean is given
as Table II, and random variables �����, 	 � �� � � � � �� are also
Gaussian random variables, 
�
���� 	���, 
������� ����,

����� 	���, 
���		�� ����, 
��	���� ����,

�
�		� ����, 
���
�� ����, 
������ �����, 
���
�� �	���,

������ ����, respectively. All of ����s are equal to ��.

Table III shows the result of the application of the proposed
interactive fuzzy programming based on the probability max-
imization model.

Parameters of GADSCRRSU [10] are set as: population size

 � ���, crossover rate �� � ���, generation gap  � ���,
mutation rate �� � ����, inversion rate �� � ����, parameter
for reproduction � � ���, minimal search generation number
���	 � ���, maximal search generation number ��
� � ����,
scaling constant ����� � ��
, parameter for reference solution
updating � � ��	, penalty constant � � �.

First, following step 1 in the interactive fuzzy programming,
DM� specifies satisficing levels ��, 	 � �� � � � � �� as:

���� � � � � ����
� � ������ ����� ����� ����� �����

����� ����� ����� ����� ������

Then, the corresponding �� are calculated as:

�� � �
�	����� ��
������ �������� ���		��� �	��
�		�

������� ���
��� �

���� �
���� ���	����� �

Next, following step 2, minimal values ���	��	 and maximal
values ���	�
� of objective functions ������������� under the
chance constrained conditions corresponding to given satisfic-
ing levels are calculated using GADSCRRSU as

���	��	 � �		�
 � ���	��	 � ��	��
���	�
� � �
�� � ���	�
� � ��	�

Fig. 6. Linear membership function

Based on these values, the permissible levels ��, � � �� 	 for
objective functions are specified as �� � �	��, �� � ����.

Following step 3, after (9) and (10) are solved by GAD-
SCRRSU, minimal values ��	��	 and maximal values ��	�
�

are calculated as

��	��	 � �������� � ��	��	 � ��������
��	�
� � �����	� � ��	�
� � ������	�

In consideration of these values, the membership functions
to quantify fuzzy goals for objective functions are subjectively
determined. Here, the following linear membership function,
as shown in Fig. 6, is adopted.

�������������

�

����
���

� � ��������� � ��	�
���������� ��	�

��	� � ��	�
� ��	� � ��������� � ��	�

� � ��������� � ��	�

In this paper, parameters ��	�, ��	�, � � �� 	 which charac-
terize membership functions ����� are determined by Zimmer-
mann’s method [21].

��	� � ����
�
�
���

�
� � �����	�

��	� � ����
�
���

�
�� � ��	�	�

��	� � ����
�
�
���

�
� � ������	�

��	� � ����
�
�
���

�
� � �������


Furthermore, the upper bound and the lower bound of the
ratio of satisfactory degrees � are set as ��
� � ���� and
���	 � ����.

Following step 4, the maxmin problem, (11), are solved
by GADSCRRSU. For the obtained optimal solution �

�

�,
�
�

�
, corresponding objective function values and membership

function values are calculated as �����

�
, ��

�
� � �����	, �����

�
,

�
�

�� � ���	��, ��������

���
�

��� � ��
���, ��������

���
�

��� �
��
�	�. Then, the ratio of satisfactory degrees � is equal to
������. Since DM� is not satisfied with this solution, DM� sets
the minimal satisfactory level �Æ for ������������� to ����.

In step 5, (12) for �Æ � ���� is solved by GADSCRRSU.
Then, the ratio of satisfactory degrees for the optimal solution
is calculated as � � ������.

Following step 6, DM� judges if he is satisfied with the
solution obtained in step 5. Since the ratio of satisfactory
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TABLE III

INTERACTION PROCESS

Interaction 1st 2nd 3rd
�Æ ���� ���� ����

��������� ��
�

�
�� ����	� ������ �����
 ������

��������� ��
�

�
�� ������ ���		� ���	�� ����

������ ��
�

�
� ���	�� ������ ����� ������

������ ��
�

�
� ������ ����� ������ ������

� ����� ����		 ����� ���	

degrees � is greater than ���� � ����, DM� can not be
satisfied with it and he updates the minimal satisfactory level
�Æ from ���� to ����.

Again in step 5, (12) for �Æ � ���� is solved by GAD-
SCRRSU. Then, the ratio of satisfactory degrees for the
optimal solution is calculated as � � ��	���.

In step 6, since the ratio of satisfactory degrees � is less
than ���� � ����, DM� can not be satisfied with it and he
updates the minimal satisfactory level �Æ from ���� to ����.

Again in step 5, (12) for �Æ � ���� is solved by GAD-
SCRRSU. Then, the ratio of satisfactory degrees for the
optimal solution is calculated as � � ����
�.

In step 6, since the ratio of satisfactory degrees � exists
in the interval ������ ����� and DM� is satisfied with it, the
satisfactory solution is obtained and the interaction procedure
is stopped.

VII. CONCLUSIONS

In this paper, focusing on two-level integer programming
problems involving random variable coefficients, we presented
interactive fuzzy programming based on a probability maxi-
mization model. Since several integer programming problems
in the proposed interactive fuzzy programming approachand
showed its feasibility have to be solved, we adopt the genetic
algorithm with double strings using continuous relaxation
based on reference solution updating (GADSCRRSU) [10].
Furthermore, we showed its feasibility for a simple numerical
example. As future problems, we are going to consider other
stochastic programming models such as the expectation opti-
mization model, the variance minimization model and so forth,
and two-level integer programming problems involving fuzzy
random variable coefficients.

REFERENCES

[1] R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment,
Management Science, Vol. 17, pp. 141–164, 1970.

[2] A. Charnes and W.W. Cooper, Chance constrained programming, Man-
agement Science, Vol. 6, pp. 73–79, 1959.

[3] G.B. Dantzig, Linear programming under uncertainty, Management
Science, Vol. 1, pp. 3–4, 1955.

[4] D.E. Goldberg R. and Lingle, Alleles, loci, and the traveling salesman
problem, in: Proceedings of the 1st International Conference on Ge-
netic Algorithms and Their Applications, Lawrence Erlbaum Associates,
Publishers, New Jersey, pp. 154–159, 1985.

[5] J.-P. Leclercq, Stochastic programming: an interactive multicriteria ap-
proach, European Journal of Operational Research, Vol. 10, pp. 33–41,
1982.

[6] M.K. Luhandjula, Multiple objective programming problems with pos-
sibilistic coefficients, Fuzzy Sets and Systems, Vol. 21, pp. 135–145,
1987.

[7] I.M. Stancu-Minasian, Overview of different approaches for solving
stochastic programming problems with multiple objective functions, R.
Slowinski and J. Teghem (eds.): Stochastic Versus Fuzzy Approaches to
Multiobjective Mathematical Programming Under Uncertainty, Kluwer
Academic Publishers, Dordrecht/Boston/London, pp. 71–101, 1990.

[8] H. Rommelfanger, Fuzzy linear programming and applications, European
Journal of Operational Research, Vol. 92, pp. 512–527, 1996.

[9] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization,
Plenum Press, New York, 1993.

[10] M. Sakawa, Genetic Algorithms and Fuzzy Multiobjective Optimization,
Kluwer Academic Publishers, 2001.

[11] M. Sakawa, K. Kato and H. Katagiri, An interactive fuzzy satisficing
method through a variance minimization model for multiobjective linear
programming problems involving random variables, KES2002, Part 2,
pp. 1222–1226, 2002.

[12] M. Sakawa, K. Kato and I. Nishizaki, An interactive fuzzy satisfic-
ing method for multiobjective stochastic linear programming problems
through an expectation model, European Journal of Operational Re-
search, Vol. 145, pp. 665–672, 2003.

[13] M. Sakawa, K. Kato, I. Nishizaki and M. Yoshioka, Interactive decision
making for fuzzy multiobjective linear programming problems involving
random variable coefficients, Proceedings of The Fourth Asian Fuzzy
Systems Symposium, Vol. 1, pp. 392–397, 2000.

[14] M. Sakawa, K. Kato, H. Sunada and T. Shibano, Fuzzy programming
for multiobjective 0-1 programming problems through revised genetic
algorithms, European Journal of Operational Research, Vol. 97, pp. 149–
158, 1997.

[15] M. Sakawa, I. Nishizaki and Y. Uemura, Interactive fuzzy programming
for multi-level linear programming problems, Computers and Mathemat-
ics with Applications, Vol. 36, pp. 71–86, 1998.

[16] M. Sakawa, I. Nishizaki and Y. Uemura, Interactive fuzzy programming
for multi-level linear programming problems with fuzzy parameters,
Fuzzy Sets and Systems, Vol. 109, pp. 3–19, 2000.

[17] M. Sakawa, H. Yano and T. Yumine, An interactive fuzzy satisficing
method for multiobjective linear-programming problems and its applica-
tion, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-
17, pp. 654–661, 1987.

[18] K. Shimizu, Y. Ishizuka and J.F. Bard, Nondifferentiable and Two-Level
Mathematical Programming, Kluwer Academic Publishers, Boston,
1997.

[19] R. Slowinski (ed.), Fuzzy Sets in Decision Analysis, Operations Research
and Statistics, Kluwer Academic Publishers, Dordrecht/Boston/London,
1998.

[20] J. Teghem Jr., D. Dufrane, M. Thauvoye, and P. Kunsch, STRANGE:
an interactive method for multi-objective linear programming under
uncertainty, European Journal of Operational Research, Vol. 26, pp. 65–
82, 1986.

[21] H.-J. Zimmermann, Fuzzy programming and linear programming with
several objective functions, Fuzzy Sets and Systems, Vol. 1 pp. 45–55,
1978.

84

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)


