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Abstract—In multi-objective optimization not only fast con-
vergence is important, but it is also necessary to keep enough
diversity so that the whole Pareto-optimal front can be found. In
this work four variants of Differential Evolution are examined
that differ in the selection scheme and in the assignment of
crowding distance. The assumption is checked that the variants
differ in convergence speed and amount of diversity. The
performance is shown for 1000 consecutive generations, so that
different behavior over time can be detected.

I. INTRODUCTION

In contrast to single-objective optimization that tries to
determine one global best solution for an optimization prob-
lem, generally several trade-off solutions are generated in
multi-objective optimization. These solutions should fulfil
the following goals: They should be as close to the Pareto-
optimal front as possible and furthermore they should have
a good diversity, meaning that the extent of non-dominated
solutions is as large as possible and the distribution of non-
dominated solutions is as uniformly as possible. In this work
four variants of a multi-objective Differential Evolution (DE)
algorithm are examined that differ in the selection scheme
and in the calculation of crowding distance. The variants
are expected to result in different convergence speed and in
different amounts of diversity. In former work the variants
were tested using only one performance measure besides
visual examination, and furthermore results were checked for
only two generation numbers. In this work the performance
of the DE variants is evaluated in dependence on the number
of generations to allow a more complete assessment of
their behavior, based on several well known bi-objective
test functions. More informative performance measures were
applied to make a more thorough discussion possible.

This work is organized as follows: Section II gives an
overview about Differential Evolution, including a descrip-
tion of the here used variants. The experimental settings are
explained in Section III. Results are given in Section IV and
conclusions are presented in Section V.

II. DIFFERENTIAL EVOLUTION

DE was developed in 1995 for unconstrained single-
objective optimization [1]. Because of the demands of real-
world problems that often include constraints and multiple
objectives, several enhancements have been done by various
researchers, expanding DE for constrained optimization of
single-objective [2], [3], [4] and multi-objective problems
[5], [6], [7]. In the following first the basic single-objective
algorithm is described. Afterwards, the four variants for
handling multi-objective optimization problems are specified.
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A. Basic Single-Objective Differential Evolution

Using DE the population members are randomly initialized
in the beginning of an optimization run. The individuals are
evolved by employing the operators mutation, recombination
and selection which are described in the following. In this
work variant DE/rand/1/bin [8] is used that employs three
randomly chosen population members for mutation:

�vi = �xr1 + F · (�xr2 − �xr3) (1)

The individuals are real-valued vectors with dimension D
that equals the number of objective function parameters.
The factor F is a user-defined control parameter that is
usually chosen from the interval F ∈ [0, 1]. The indices
r1, r2, r3 denote three mutually different population members
that are also unequal to the currently regarded individual �x i.
Mutation is conducted for every individual of the population
(i ∈ {0, NP −1} where NP is the population size that has
to be chosen by the user).

Each mutated vector �vi is recombined with the correspond-
ing target vector �xi to build the trial vector �ui:

ui,j =

{
vi,j if randj ≤ CR or j = k

xi,j otherwise
(2)

CR is the third control parameter of DE. It is chosen from the
interval CR ∈ [0, 1]. Based on the comparison with a random
variable randj from the same interval, it is decided from
which vector the trial vector inherits its components. It is
ensured that the trial vector differs from the target vector in at
least one component by randomly determining k ∈ {0, D−1}
for every population member in each generation.

In unconstrained single-objective optimization, vectors for
the subsequent generation G + 1 are selected based on their
objective function value. Each trial vector is compared with
the respective target vector and the one with the lower
objective function value (for minimization problems as in
this work) is chosen for the next generation.

B. Multi-Objective Differential Evolution

Mutation and recombination can be conducted in the same
way for single-objective and multi-objective optimization.
However, the selection process has to be modified for multi-
objective optimization because now multiple objectives exist.
For this purpose the dominance relation can be used. A vector
�x dominates a vector �y if

∀i ∈ {0, . . . , D−1} : xi ≤ yi (3)

∃i ∈ {0, . . . , D−1} : xi < yi (4)

The dominance relation can also be extended for con-
strained problems [9]. However, in this work only uncon-
strained multi-objective test problems are used.
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1) Selection Procedures: When designing a multi-
objective optimization algorithm on the basis of DE, and
the advantages of NSGA-II1 [9] should be exploited, several
techniques can be adopted like fast non-dominated sorting
and diversity preservation based on crowding distance. How-
ever, a characteristic of single-objective DE is the direct
comparison of target vector and trial vector during the
selection procedure that is not present in NSGA-II. The
question arises which technique is better: Adding all newly
generated vectors to the population as it is done in NSGA-II
or keeping the direct comparison between target vector and
trial vector and only adding vectors if target and trial vector
are non-dominated. Therefore, both methods are compared to
each other in this work. Variant 1 is similar to the original DE
selection scheme, meaning that the trial vector �u i instantly
replaces the corresponding target vector �x i if �ui dominates
�xi. The trial vector is discarded if �xi dominates �ui. If the
vectors are non-dominated, the trial vector is added to the
population for later sorting. Variant 2 is closer to NSGA-
II by abandoning the direct comparison of trial and target
vectors and instead adding all trial vectors to the population.

DE is an elitist algorithm because in a comparison of
two vectors always the one with the better properties wins.
However, elitism is even more pronounced in the second
variant compared to the first variant. This is due to the fact
that the direct comparison between target vectors and trial
vectors allows discarding of individuals which are relatively
good in comparison to the whole population but worse than
the competitor. In contrast, only the best NP individuals are
kept using variant 2. Therefore, it is assumed that the second
variant will converge faster, but the first variant will be more
successful for complex problems due to a higher diversity.

2) Assignment of Crowding Distance: Using variant 2, the
population size equals 2 ·NP after applying the evolutionary
operators. Depending on the number of non-dominated target
and trial vectors, the population size will be in {NP, 2 ·NP}
for variant 1. The population size is set back to NP by a
procedure based on non-domination and crowding distance.
Crowding distance is a measure for the closeness of individ-
uals. For the outermost solutions of the non-dominated front
it is set to infinity because the extent of fronts should be as
large as possible. For other vectors it is calculated as follows:

dist�xi
=

m−1∑
j=0

(fj,i+1 − fj,i−1)
(fj,max − fj,min)

(5)

where fj corresponds to the jth objective function, m equals
the number of objective functions and the population is sorted
according to the mth objective function value, respectively.

In order to set the population size back to NP , first a fast
non-dominated sorting is conducted as in NSGA-II [9]. The
population is ordered into non-dominated fronts F 0 . . .Fl, so
that members of one front are non-dominated by each other
and F0 contains the best non-dominated solutions. The next
generation is built by subsequently adding fronts beginning

1Non-dominated Sorting Genetic Algorithm II

at F0. Generally, there will be a front Fa with a ∈ {0, l} that
cannot be added completely to the next generation without
exceeding NP . Therefore, individuals from Fa featuring the
largest crowding distances are chosen for the next generation.

For the calculation of crowding distances often only mem-
bers of front Fa are regarded (this is also done in variant A
here). This approach may be unfavorable if an individual is
far away from members of its own front but very close to an
individual of another front F i with 0 ≤ i < a, so as a result
this individual is considered to contribute much to diversity
using variant A when in fact it does not. Furthermore, the
outermost individuals of front Fa are always kept using
variant A regardless of how near other solutions are because
of their crowding distance of infinity that they get in order
to facilitate a large extent of the front. However, there may
be solutions in other fronts that already provide an extent of
equal or even larger size, so it may not be necessary to keep
the outermost solutions of front Fa. Therefore, an algorithm
variant B is examined that also includes individuals of other
fronts Fi with 0 ≤ i ≤ a during the calculation of crowding
distances for individuals from front Fa.

If only one front exists, variants A and B are equal. In other
cases, variant B is expected to result in a higher diversity.
In [10] an example is given that shows a situation for which
variant B avoids gaps in the distribution of individuals that
would have been caused by using variant A. The effect is
assumed to be especially pronounced in the beginning of an
optimization run because there will be many fronts. In [11] it
is stated that it may be disadvantageous if algorithms first try
to reach the Pareto-optimal front and only afterwards work on
finding a good spread of solutions. Using algorithm variant
B, this unfavorable behavior is expected to be prevented.

III. EXPERIMENTAL SETTINGS

For the multi-objective DE algorithm two different selec-
tion schemes and two different ways of calculating crowding
distances were introduced. In the following these properties
are combined to form four algorithm variants that will be
evaluated in this work (no comparison with NSGA-II is done
here because the competitiveness of multi-objective DE with
NSGA-II was already shown elsewhere, see e.g. [7]):

• 1A: Trial vectors and corresponding target vectors are
compared directly (original DE selection scheme), cal-
culation of crowding distance like in NSGA-II.

• 1B: Trial vectors and corresponding target vectors
are compared directly (original DE selection scheme),
adapted calculation of crowding distance.

• 2A: All trial vectors are added to the population, calcu-
lation of crowding distance like in NSGA-II.

• 2B: All trial vectors are added to the population, adapted
calculation of crowding distance.

In former work [10] the four algorithm variants were
examined using test functions CONSTR, SRN and TNK from
[9]. However, these functions are considered to be rather
easy to optimize, so there was the need to do examinations
with more difficult problems. Furthermore, besides visual
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comparisons only the spacing metric was used to evaluate
the performance of the algorithm variants in [10]. As this
performance measure is able to make statements about the
distribution of solutions but not about convergence proper-
ties, other performance measures are also used in this work.
Moreover, performance measures are not only shown for
some selected generations but continuously over time.

Because algorithm variants should be compared, the set
coverage metric C (A, B) [12] is used as performance mea-
sure here. This metric determines the percentage of members
of a set B that are dominated by members of set A:

C (A, B) =
|b ∈ B|∃a ∈ A : a � b|

|B| (6)

Generally C (A, B) �= 1 − C (B, A), so both C (A, B) and
C (B, A) have to be considered. The set coverage metric
results in values C (A, B) ∈ [0, 1] where C (A, B) = 1 means
that all vectors of B are dominated by vectors of A or they
are equal to each other, and C (A, B) = 0 means that no
vectors of B are dominated by or equal to vectors of A.

Hypervolume is a commonly used performance measure
that evaluates both the closeness to the Pareto-optimal front
as well as diversity [13]. The volume of a hypercube limited
by the obtained non-dominated solutions and a reference
point is calculated in objective space. For the reference point
usually a vector is built whose components are equal or worse
than the worst objective function values that were found.
A better performance is indicated by a larger hypervolume.
Because objective functions can have a different range of
values, it is ensured that no objective function is favored
by normalizing all values using the minimum and maximum
objective function values that were found in all optimization
runs. In this work all values are scaled to the interval [0,1]
and the reference point is set to (1.1, 1.1).

The spacing metric as described in [13] was also checked
but due to lack of space the results are not shown here. The
same holds for the maximum spread metric (also specified
in [13]). However, none of these metrics revealed significant
differences between the algorithm variants.

Some of the most widely used multi-objective test func-
tions are T1, T2, T3, T4 and T6 [14], so they are used as
basis for this examination. The first three functions have a
dimension of D = 30 whereas the dimension of the latter
two functions is D = 10, respectively. All optimization
problems are bi-objective. 100 independent runs are con-
ducted for every algorithm variant and each optimization
problem where the initial population is equal for all four
variants, respectively. For the control parameters standard
settings of F = 0.7, CR = 0.9 and NP = 100 are used and
no effort was made to tune the parameters for the examined
test problems. Because it can be assumed that the behavior
of the algorithm variants differs over time, e.g. convergence
may be faster for certain variants, averages of all performance
measures are shown over time up to Gmax = 1000 genera-
tions, similar as in [15]. Standard deviations of performance
measures were also calculated as a function of the generation
G, but they are not displayed due to lack of space.

Another possibility to evaluate the performance of mul-
tiple runs apart from calculating averages of performance
measures is to join the obtained Pareto-optimal solutions of
all runs at a specific generation and compute performance
measures for the combined Pareto-optimal set [16]. In this
case diversity measures like spacing do not make sense, but
the set coverage metric and hypervolume can be evaluated.

IV. RESULTS

For functions T1, T2, T3 and T6 the Pareto-optimal fronts
as shown in [14] were successfully generated. In Figs. 1-4 the
combined non-dominated solutions of all independent runs
are shown for three chosen generations. There are noticeable
differences between the algorithm variants regarding the non-
dominated solutions after 100 generations, and especially for
T6 still after 200 generations, but after 1000 generations all
algorithm variants have converged to the Pareto-optimal front
and no differences can be seen any more.

For function T4 not enough diversity was generated (the
population converged to one point in the search space), so
the results for T4 are not shown. One possible reason for this
behavior could be unsuitable parameter settings.

In Table I the largest and smallest objective function values
are shown that were found during all optimization runs.
They were used for the normalization of objective function
values before calculating the average hypervolume shown in
Figs. 5(a)-8(a). Unfortunately, almost no differences can be
seen between the algorithm variants. It is assumed that the
scaling may be unsuitable, so for some chosen generations
the average hypervolume is also shown using only objective
function values of non-dominated solutions of the respective
generation for normalization (Figs. 5(b)-8(b)). Apart from the
average hypervolume also the hypervolume of the combined
non-dominated solutions of all 100 independent runs is
shown in Figs. 5(c)-8(c) for some chosen generations. Again,
only objective function values of non-dominated solutions of
the respective generations are used for the normalization. The
hypervolume of combined solutions over time is not shown
due to lack of space. However, it looks very similar to the
average hypervolume over time. Due to lack of space the

TABLE I

MAXIMUM AND MINIMUM OBJECTIVE FUNCTION VALUES

Function f1,min f1,max f2,min f2,max

T1 0 1 0.00430141 6.51019
T2 0 1 0.00813649 7.00497
T3 0 0.901791 -0.75995 6.47247
T6 0.280775 1 0.00998032 9.3748

maximum and minimum objective function values that were
used for the normalization before calculating hypervolume
for Figs. 5(b)-8(b) and Figs. 5(c)-8(c) are not shown here.
However, it should be noted that for each given genera-
tion different values were used for normalization, thus the
hypervolume shown in the figures can be smaller for later
generations than for earlier generations although in fact the
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hypervolume increases over time if the same normalization
is used, see Figs. 5(a)-8(a). Although the normalization
of solutions was changed, still only small differences can
be seen between the algorithm variants when hypervolume
is used as a performance measure. For T6 it is indicated
that variant 2B converges faster than the other variants
but otherwise no definitive statements can be made. Two
different conclusions are possible from these results: Either
the hypervolume metric in the form applied here is unsuitable
to detect differences for this examination or there are no
or only small differences to observe. In the following it is
checked if the set coverage metric is able to clarify the matter.

In Figs. 9-12 the average set coverage metric is shown
for all combinations of algorithms. Often the differences
between algorithm variants are rather small, so it is difficult
to draw conclusions from these results. For T1 1A is better
than 1B in a certain range of generations, furthermore 2B
better than 2A, 1A better than 2A, and 1B better than 2A
(for the latter two combinations the reverse relations hold
in earlier generations), but for most of the other functions
the algorithm variants show different behavior. The most
pronounced differences can be seen for T 6 where 2A and 2B
are inferior to 1A and 1B (however, again the first generations
show different relations than later stages).

The development of the set coverage metric for the com-
bined solutions of all independent runs (see Figs. 13-16) is
less smooth than for the average set coverage metric, and
more differences between the algorithm variants can be seen.
This is due to the fact that regarding the combined non-
dominated solutions means that only the best solutions of 100
independent runs are shown, so runs with bad performance
are not included here, but they affect the average set coverage
metric. Based on the set coverage metric of combined
solutions, variant 2B is mostly better than 2A, especially in
early stages (Figs. 13(a)-16(a)). For the comparison of 1A
and 1B the results differ for different optimization problems
as well as the considered generation (Figs. 13(a)-16(a)), thus
it cannot be decided which is better. Furthermore, variant 1B
is generally preferable to 2A, and variant 1A is mostly better
than 2A (Figs. 13(b)-16(b)). For most functions variant 1A
is better than 2B, only for T3 opposed behavior is shown
(Figs. 13(c)-16(c)). The comparison of variants 1B and 2B
is mostly inconclusive with the exception of T6 for which
1B is better than 2B (Figs. 13(c)-16(c)).

V. CONCLUSIONS

In this work four variants of multi-objective Differential
Evolution have been compared that differ in the selection
scheme and the assignment of crowding distance. Instead of
showing results of only few discrete generations, the perfor-
mance of the algorithm variants is continuously monitored
over 1000 generations. Taking the set coverage metric of
combined solutions as basis, the results of variants 1A and 1B
are generally better than the results of 2A and 2B, indicating
that it is preferable to use the original DE selection scheme
instead of adding all trial vectors to the population. As 2B
is generally better than 2A but no conclusive statements can

be made regarding variants 1B and 1A, it is not clear if the
adapted crowding distance calculation brings advantages. For
future work the multi-objective DE could be further improved
e.g. by considering methods like the improved pruning in
[17] or by addressing lateral diversity issues like in [18].

Unfortunately, the hypervolume metric did not provide
conclusive results here. The reasons for this will be further
investigated in future work.

REFERENCES

[1] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient
Adaptive Scheme for Global Optimization over Continuous Spaces,”
International Computer Science Institute, Berkeley, Tech. Rep. TR-95-
012, 1995.

[2] J. Lampinen and R. Storn, “Differential Evolution,” in New Optimiza-
tion Techniques in Engineering, G. C. Onwubolu and B. Babu, Eds.
Berlin Heidelberg: Springer-Verlag, 2004, pp. 123–166.

[3] T. Takahama and S. Sakai, “Constrained Optimization by the ε
Constrained Differential Evolution with Gradient-Based Mutation and
Feasible Elites,” in Proceedings of the Congress on Evolutionary
Computation, 2006, pp. 308–315.

[4] R. L. Becerra and C. A. Coello Coello, “Optimization with Constraints
using a Cultured Differential Evolution Approach,” in Proceedings of
the Conference on Genetic and Evolutionary Computation, 2005.

[5] K. Parsopoulos, D. Tasoulis, N. Pavlidis, V. Plagianakos, and M. Vra-
hatis, “Vector Evaluated Differential Evolution for Multiobjective Opti-
mization,” in Proceedings of the IEEE 2004 Congress on Evolutionary
Computation, 2004.

[6] H. A. Abbass, “The Self-Adaptive Pareto Differential Evolution Al-
gorithm,” in Proceedings of the IEEE Congress on Evolutionary
Computation, 2002.
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Fig. 1. Non-dominated solutions for T1
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Fig. 2. Non-dominated solutions for T2
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Fig. 3. Non-dominated solutions for T3
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Fig. 4. Non-dominated solutions for T6
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Fig. 5. Hypervolume for T1
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Fig. 6. Hypervolume for T2
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Fig. 7. Hypervolume for T3
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Fig. 8. Hypervolume for T6
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Fig. 9. Average set coverage metric for T1
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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Fig. 10. Average set coverage metric for T2
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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(c) Comparison of 1B and 2B; also 1A and 2B

Fig. 11. Average set coverage metric for T3
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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Fig. 12. Average set coverage metric for T6
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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(c) Comparison of 1B and 2B; also 1A and 2B

Fig. 13. Set coverage metric of combined solutions for T1
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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(c) Comparison of 1B and 2B; also 1A and 2B

Fig. 14. Set coverage metric of combined solutions for T2

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

generations

C

C(1B,1A)
C(1A,1B)
C(2B,2A)
C(2A,2B)

(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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(c) Comparison of 1B and 2B; also 1A and 2B

Fig. 15. Set coverage metric of combined solutions for T3
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(a) Comparison of 1A and 1B; also 2A and 2B
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(b) Comparison of 1B and 2A; also 1A and 2A
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(c) Comparison of 1B and 2B; also 1A and 2B

Fig. 16. Set coverage metric of combined solutions for T6
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