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Abstract— The most successful multi-objective metaheuris-
tics, such as NSGA II and SPEA 2, usually apply a form
of elitism in the search. However, there are multi-objective
problems where this approach leads to a major loss of popula-
tion diversity early in the search. In earlier work, the authors
applied a multi-objective metaheuristic to the problem of rule
induction for predictive classification, minimizing rule com-
plexity and misclassification costs. While high quality results
were obtained, this problem was found to suffer from such
a loss of diversity. This paper describes the use of both linear
combinations of objectives and modified dominance relations to
control population diversity, producing higher quality results in
shorter run times.

I. INTRODUCTION

In earlier work, the authors [1], [2], [3], [4] applied a range
of multi-objective metaheuristics to the problem of partial
classification, endeavoring to find accurate descriptions of
subsets of a class of interest in a database. This work in
descriptive data mining was extended by applying NSGA II
[5] to the generation of rules in the form of expression trees
to act as predictive classifiers for two class problems [6].
Considering this as a two objective problem, minimizing rule
complexity and misclassification costs, produced useful rules
with different tradeoffs between the two objectives. However,
preliminary investigations revealed a major loss of population
diversity early in the search process.

At this point, it should be noted that research into diversity
in multi-objective optimization can be divided into two areas.
In the first, diversity refers to the spread of solutions across
the Pareto-front, with emphasis being on the presentation of
a solution set to the client. In this case, research may focus
on how diversity is maintained in an external archive [7], [8]
or on the application of crowding techniques after ranking
solutions using dominance [9], [10]. In the second area of
research, diversity refers to the range of genetic material in
the population that may be usefully combined to create new
solutions, with emphasis being on the quality of the search
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process [11], [12]. Throughout this paper, the term diversity
is used in this second sense

This paper discusses two approaches for better manage-
ment of population diversity. The first involves the use of
three objectives: rule complexity and two carefully selected
linear combinations of the number of false positives and the
number of false negatives. Such an choice of objectives is
suitable when the client is unsure of the precise cost of a
false positive compared with a false negative. However, it
will also be shown that through adaptive modification of the
objectives used, three objectives can be used to control the
amount of diversity in the population, resulting in a more
effective search even when the client knows precisely how
to calculate misclassification costs.

The second approach to diversity management requires
no additional objectives but uses a modification to the
dominance relation, where rules that would previously have
been dominated are given a degree of leeway. Again, adaptive
modification of the amount of leeway results in improved
performance.

Sections II–IV provide a brief summary of previous work
applying NSGA II to the problem of optimizing expression
trees for predictive classification, with section II describing
the problem and section III discussing the application of
NSGA II. Section IV gives a sample of the results and leads
into a discussion of the population diversity throughout the
search.

Section V discusses, in general terms, the relationship
between the dominance relation and the balance between
search intensity and population diversity. It proposes a reason
for the loss in diversity and suggests that NSGA II is likely
to suffer a similar loss of diversity on other multi-objective
optimization problems.

The use of three objectives when the client is unsure
of the misclassification costs is described in section VI.
Analysis of the results of this section leads into the use of
three adaptive objectives to manage diversity is outlined in
section VII. The alternative method of managing diversity,
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using two objectives and modifying the dominance relation,
is the subject of section VIII. The paper finishes with some
conclusions in section IX and a discussion of further research
in section X.

II. MULTI-OBJECTIVE PREDICTIVE CLASSIFICATION

In previous work [6], NSGA II was applied to optimize
rules in the form of expression trees. A typical expression
tree is shown in figure 1. Here the internal nodes contain

Cap. Gain ≥ 5178

Cap. Loss ≥ 1816 Cap. Loss ≤ 2001

Edu. Years ≥ 13

Mar. status = Civilian Spouse

AND

OR

AND

OR

Fig. 1. A typical expression tree.

boolean operators, which are restricted to be ‘AND’ or ‘OR’
in this paper, while the leaf nodes contain simple attribute
tests. In this work, an attribute test (AT) on a categorical
field may indicate that a matching record is either of a
particular category or not, e.g. sex = male or color 6=
red, while an AT on a numeric field supplies a simple bound
on the field value, e.g. age ≥ 29. (See previous work [1],
[6] for more details about ATs and alternative AT types.)

Expression trees are used to predict when a record belongs
to a class of interest to the client. Any record not matching
the rule represented are assumed to not belong to the class
of interest. The aim is to create expression trees that are ac-
curate on unseen data but also relatively simple for a human
to comprehend. Therefore two objectives were minimized:

• Misclassification cost on training data: Different
forms of misclassification cost, calculated from the
number of false positives and the number of false
negatives, were used as one of the objectives. This
included the simple error rate and the balanced error
rate. Note that the costs on the training data provide, at
best, an estimate of the misclassification costs on unseen
data.

• Rule complexity: Rule complexity could also be mea-
sured in different ways. In this paper, a simple count of
the number of ATs is used, though one could use a count
of ATs in the equivalent rule set or a more complex but
realistic measure that takes into account the number and
type of the internal nodes [6]. While minimizing rule
complexity is a goal in its own right, it is also likely to
reduce the problem of overfitting [13].

A contrasting approach is that taken by Ishibuchi et al.
[14], [15], [16], where a set of simpler rules is generated
and a multi-objective metaheuristic is used to select a subset
to act as a predictive classifier. However, both approaches
aim to optimize both rule simplicity and accuracy.

III. APPLYING NSGA II

NSGA II was selected because it has not only been shown
to be effective for multi-objective optimization in general,
but also when optimizing classification rules [2], [3], [4],
[1]. In order to apply it to the optimization of rules in the
form of expression trees, it was necessary to determine how
to represent ATs and how to apply genetic operators to the
rules produced.

A. Attribute Test Representation

Values occuring in each field of the dataset are stored
in reference arrays. The AT representation uses indices into
these arrays, as shown in figure 2, rather than the original

Numeric fields

0: Age

1: Children

2: Height (cm)

3: Weight

Values

0: 150

1: 152

2: 155

3: 156

4: 157

5: 159

6: 160

Height ≥ 156cm2 3 ≥

Fig. 2. Representation of an AT providing a bound on a numeric field.

field values. This reduces redundancy in the representation
of numeric ATs. For example, height ≥ 151cm and
height ≥ 152cm will match precisely the same records
in the dataset, since no record has a height of 151cm.
Restricting the bound on height to those values that occur in
the dataset ensures that only the latter of these ATs can be
generated,

B. Genetic Operators

• Initialization: The population is initialized with random
balanced trees of depth two, where the root node is at
depth zero.

• Mutation: When mutation is applied, there is a 50%
chance that a random AT is mutated. Categorical ATs
are mutated by changing the category index to a random
value, while numeric ATs have the bound index changed
by up to 20% of the number of values in the database
for the field in question. There is a 25% chance that an
AT and its parent node is removed and a 25% chance
that a random AT and parent node are inserted.

• Crossover: Subtree crossover [17] is used, which se-
lects two nodes at random in the tree and swaps the
associated subtrees. Note that when a new rule is
created, either crossover or mutation is applied, but not
both.

C. Rule Simplification and the Rule Size Constraint

As rule evaluation is expensive, rules should be simplified
if possible in order to reduce the number of ATs that need
to be evaluated. A limited amount of rule simplification is
performed after the application of crossover or mutation, as
described in previous work [6].
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While both rule simplification and the use of rule com-
plexity as an objective help to keep rule sizes down, they are
not sufficient to entirely remove the problem of bloat [18].
As an additional measure to keep rule complexity within
sensible bounds, a constrain on the number of ATs in a rule
is imposed. In the reported experiments, this bound is set
at 20 ATs. If a rule, after simplification, is found to exceed
this limit, ATs and their parent nodes are removed at random
until the constraint is satisfied.

IV. USING TWO OBJECTIVES

The algorithm was applied to find rule trees for a number
of datasets from the UCI machine learning repository [19].
Here we summarize the results obtained using the Adult
dataset. 80% of the original training set was used to train the
expressions trees, with the remaining 20% used as validation
data to give the (hypothetical) client some idea of how well
the rules might generalize. The rule selected by the client
was tested on the original test set. The simple error rate was
used as the misclassification costs, with the number of ATs
representing rule complexity.

Using a population size of 100 and a crossover rate of 30%
— settings found previously to produce good performance
[6] — and running the algorithm 30 times produced the
results summarized in figure 3. Here the error bars give the
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Fig. 3. Training performance of the best rule of up to n ATs, after 200
and 2000 generations.

standard deviation.
If, after 2000 generations, the rules are presented to the

client and the client selects the rule with the lowest error rate
on the validation data, the rule selected gives, on average,
a 14.45% error rate on the test data (standard deviation:
0.12%), which compares favorably with other algorithms.
However, run times are approximately 1000 seconds on
a 2GHz processor. Since applying the algorithm to larger
datasets leads to a reduction in the number of generations
that are practicable, performance after fewer generations is
also of interest. If only 200 generations are permitted, a
significant drop in performance is observed. If the client
selects a rule as before, the testing error rate produced is
15.98% (standard deviation: 0.70%). The average complexity
of the rule selected is also significantly lower after 200
generations (5.8 ATs) than after 2000 (19.1 ATs).

More detailed analysis of the performance of the algorithm
reveals a major loss in population diversity early in the
search process. Suppose we use the information entropy of

the population as a measure of the its diversity. Here, entropy
is defined as:

H = −
∑

k

pk log
2
pk

where k represents a unique solution in the population and
pk is the probability that solution selected at random is
solution k. So, if the population contains 100 copies of the
same solution, the population entropy is 0. If the population
contains 100 unique solutions, the entropy is:

−

100∑

k=1

0.01 log
2
0.01 = − log

2
0.01 ≈ 6.644.

For the purposes of calculating this entropy, a recursive
equality operator is defined for the rules. Two expression
trees are considered equal if both the root nodes and the
subtrees are equal, regardless of the ordering of the subtrees.

Notice that this is a fairly crude measure of population
diversity, since it does not take into account how similar
two rules are when not identical and does not consider the
diversity of subtrees or attribute tests contained in the rules.
However, it is sufficient to demonstrate the loss in population
diversity. Figure 4 shows the evolution of population entropy,
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Fig. 4. Plotting population entropy against time reveals a major loss in
population diversity, followed by a slow increase due to fortunate mutations.

averaged over 30 runs. The average minimum entropy of
the thirty runs was 0.176, with several runs reaching the
point of having 99 identical solutions in a population of 100.
Alternative methods for population initialization have been
tried, for example creating rules of random depths, but this
loss of population diversity occurs regardless.

It is to be expected that such a drastic loss of diversity
would impair the performance of the algorithm, especially
over shorter runs when there is insufficient time to reintro-
duce diversity through mutation. It is therefore necessary to
look at techniques for preventing or reducing this effect.

V. POPULATION DIVERSITY IN MULTI-OBJECTIVE GAS

Typically, a multi-objective problem has the property that
a set of solutions contains a reasonable number of non-
dominated solutions, contrasting with the case in single
objective optimization. The result is that a genetic algorithm
performs a less focused search in a multi-objective envi-
ronment but has little difficulty in maintaining population
diversity. In both NSGA II and SPEA 2, elitist measures
(such as keeping high quality solutions from generation
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to generation and eliminating all but the best solutions
according to dominance) are used to correct the balance
between exploiting promising areas of the search space and
maintaining population diversity, providing additional focus
to the search.

Early in the search for good expression trees, the algorithm
tends to favour smaller rules, since the algorithm has not
had the time to build the good subtrees from which a more
accurate and larger tree can be built. It is relatively simple
to find a single AT with a reasonable error rate, but building
larger rules with better error rates is a more complicated
matter. The result is that, early in the search, few unique
solutions (indeed often only one) are non-dominated. Hence
it is no longer possible to rely on the presence of large
numbers of non-dominated solutions to provide population
diversity and NSGA II and SPEA 2 become too elitist,
converging prematurely.

This is unlikely to be an issue solely for the problem of
expression tree optimization. For example, applying these
algorithms to problems such as the optimization of corre-
lated multi-objective minimum spanning trees [20] can be
expected to result in the same loss of diversity, due to the
correlation between the objectives in the early stages of the
search. Optimizing one objective results in the optimization
of the other, resulting in few non-dominated solutions in the
population.

Much of the remainder of this paper illustrates how
the fraction of non-dominated solutions can be artificially
increased in order to counteract this loss of diversity, by
modifying the objective functions used. It will be shown that,
perhaps surprisingly, better performance can be obtained by
using these modified objective functions than by using the
true objectives.

VI. USING THREE OBJECTIVES

Up until now, it has been assumed that the client knows
precisely how to calculate the misclassification costs, i.e. the
client knows the relative costs of a false negative and a false
positive. However, in reality the client may be in some doubt
as to how to calculate this cost. In such a case it makes sense
to treat the problem as having three objectives. This section
describes this in more detail, but also describes how the use
of three carefully selected objectives can result in improved
performance on the two objective problem.

A. The Client is Unsure of Misclassification Costs

When the client is unsure about how misclassification
costs should be calculated, it is tempting to simply revert to
a three objective problem, minimizing rule complexity, the
number of false positives and the number of false negatives.
This is appropriate if the client has absolutely no idea how
misclassification costs are calculated. However, in practice,
the client is likely to have a rough idea and this knowledge
should be used to improve the search.

Misclassification costs are typically of the form λFP +
µFN , where FP and FN indicate the number of false
positives and false negatives respectively. The client may

know that µ/λ should take a value between 2/3 and 3/2.
In this case, the following three objectives should be used:

• Rule complexity,
• 0.4FP + 0.6FN ,
• 0.6FP + 0.4FN .

This ensures that rules that are possibly optimal with regards
to the true misclassification cost and rule complexity, and
only these rules, are Pareto-optimal. Alternatively, the client
may indicate how much he is willing to pay in terms of
one objective for a specified improvement in the other.
This similarly leads to the use of linear combinations of
objectives.

The effect of using linear combinations in this way is
illustrated in figure 5. This figure shows a slice through the
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Fig. 5. Dominated areas when minimizing FP and FN and when
minimizing 0.8FP + 0.2FN and 0.2FP + 0.8FN .

objective space at constant rule complexity. The first graph
indicates how much of the objective space is dominated
according to the basic objectives, while the second indicates
how much is dominated if the client has merely indicated that
µ/λ should be between 0.25 and 4. The modified objectives
ensures that the client is presented with only those solutions
that he is likely to find interesting and also provides an added
push towards the Pareto-front.

B. Using Three Objectives to Maintain Diversity

The algorithm was reapplied to the adult dataset using the
same parameter settings but with different sets of three ob-
jectives. In each case, one objective was the rule complexity.
The two remaining objectives were λFP + (1− λ)FN and
(1−λ)FP +λFN , with λ equal to 0, 0.1, 0.2, 0.3 and 0.4.
A value of zero indicates that the algorithm is using the three
basic objectives, while a value of 0.5 is effectively the same
as minimizing rule complexity and the simple error rate.
Thirty runs were performed for each choice of objectives.

After performing these experiments, the non-dominated
rules under the original two objectives of error rate and rule
simplicity were extracted. It might be expected that there
would be a drop in performance compared with the two
objective algorithm, since the algorithm no longer singles out
the error rate to be optimized. Figure 6 shows a comparison
of the results obtained after 200 generations. The results
are scaled with respect to those obtained using just two
objectives to improve clarity. Note that using the three basic
objectives of number of false positives, number of false
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Fig. 6. Comparison of results at 200 generations using different combina-
tions of objectives. Training error rates are scaled with respect to the two
objective case (λ = 0.5).

negatives and rule complexity (λ = 0) resulted in rules
that performed similarly to those obtained with just two
objectives (or λ = 0.5) when compared on rule complexity
and error rate, with better performance on rules of size 2 and
3. Furthermore, using linear combinations for the objectives
resulted in better performance across all rule sizes.

Figure 7 shows a comparison of performance at 2000
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Fig. 7. Comparison of results at 2000 generations using different com-
binations of objectives. Training costs are scaled with respect to the two
objective case (λ = 0.5).

generations, including 95% confidence intervals. Here the
two objective approach outperforms all of the three objective
approaches, with the exception of λ = 0.4, for the larger
rules. However, using three objectives still results in better
performance for the smaller rules.

The hypothesis is that the use of three objectives reduces
the loss of diversity that occurs early in the search. This loss
of diversity severely reduces the effectiveness of the search
when using only two objectives. However, using the basic
set of three objectives provides insufficient direction to the
search to find the best large rules under error rate and rule
simplicity. Using two cost objectives close enough to the
true error rate to provide direction but different enough to
maintain diversity produces improved results. Figure 8 shows
how population entropy varies with time for the different
sets of objectives, confirming that the use of three objectives
reduces the drop in population diversity.
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Fig. 8. Population diversity during the search using different combinations
of objectives.

VII. USING ADAPTIVE OBJECTIVES

Results obtained using three objectives suggest that when
attempting to minimize error rate and rule complexity, three
objectives should be used early in the search, with the two
cost objectives some distance from the true error rate, in
order to encourage diversity in the population. However,
later in the search, the cost objectives should be closer (or
identical) to the true error rate, in order to push the search
towards the true Pareto-front. Two approaches have been
considered.

• Fixed objective schedule: A schedule giving the ob-
jectives to be used at each stage in the search could
be provided in advance. A suitable schedule results in
additional emphasis on population diversity and explor-
ing the search space in the early parts of the search and
more emphasis on exploitation of good solution features
later on, much like in simulated annealing. However, it
is not obvious how to create a suitable schedule.

• Adaptive objectives: The approach taken in this paper
is to use the population diversity measure — in this
work, the entropy — to determine when it is necessary
to move cost objectives away from the true cost in order
to increase diversity or when it is possible to move
the objectives towards the true cost without too great a
loss of diversity, guiding the search more towards those
solutions that are truly of interest.

In the experiments reported, the search starts with λ set
to zero. The entropy of the population is measured at each
iteration and λ is increased by 0.01, up to a value of 0.5,
whenever the entropy is greater than five and decreased by
0.01, provided it is greater than zero, whenever the entropy
is less than three.

Figure 9 shows a comparison of the results obtained after
2000 generations using two objectives and using adaptive
objectives. For clarity, results have been scaled to emphasize
the difference between algorithms rather than the differ-
ence between rule sizes. It can be seen that the use of
adaptive objectives results in a significant improvement in
performance. If the client selects the rule with the lowest
validation error rate, the use of adaptive objectives gives an
improvement from a mean error rate of 14.45% (standard
deviation: 0.12%) to 14.17% (standard deviation: 0.15%).
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Fig. 9. Mean error rates on training data, obtained using 2000 generations
using either two objectives or three adaptive objectives. Results rates are
scaled with respect to those obtained for two objectives and error bars give
95% confidence intervals.

The improvement obtained after only 200 generations can
be clearly seen in figure 10 without any scaling of the
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Fig. 10. Mean error rates on training data, obtained after 200 generations
using either two objectives or three adaptive objectives, with 95% confidence
intervals.

objectives. If the client selects the rule with the lowest
validation error rate, the use of adaptive objectives gives an
improvement from a mean error rate of 15.98% (standard
deviation: 0.70%) to 15.00% (standard deviation: 0.25%).

VIII. MODIFYING THE DOMINANCE RELATION

While the techniques of the previous two sections have
proved to be successful at maintaining diversity and im-
proving the quality of the expression trees produced, there
remains the question of how widely these techniques can be
applied, since they requires the ability to break one objective
into two or more parts. With ingenuity, this may be possible
more frequently that appears at first sight. For example, when
solving multi-objective minimum spanning tree problems, an
objective can be split by randomly partitioning the edges
of the graph and taking the sum of the edge costs in each
partition. However, this will not always be the case.

An alternative is to retain the original objectives and
modify the dominance relation in a way that might encourage
population diversity. The approach taken here is to allow a
certain amount of leeway in the misclassification cost of a
rule, as shown in figure 11. The resulting dominance relation

Rule complexity
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Fig. 11. Modifying the dominance relation to allow some leeway of rule
misclassification cost.

states that rule r1 dominates rule r2 if and only if:

cost(r1) < cost(r2) − ε and comp(r1) ≤ comp(r2) or
cost(r1) ≤ cost(r2) − ε and comp(r1) < comp(r2),

where cost represents the misclassification costs and comp

is the rule complexity.
Note that this use of a leeway works in the opposite

way to ε-dominance [8], [21]. When using ε-dominance, a
solution is permitted to dominate more of the objective space,
including solutions that may have slightly better values for
one or more objectives. This is typically used to control the
spread — across the Pareto-front — of solutions stored in
an external archive. Here, however, we wish to increase the
number of non-dominated solutions to maintain population
diversity, so solutions are permitted to dominate less of the
objective space.

Figures 12 and 13 show the effect of different leeway
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Fig. 12. Comparison of results at 200 generations, using different amounts
of leeway, ε. Training costs are scaled with respect to the case when there
is no leeway (ε = 0).

sizes on the results obtained at 200 and 2000 generations
respectively. Here, the value for ε indicates the leeway size
in terms of the number of extra false outcomes permitted on
the training data. These results are broadly similar to those
obtained when encouraging diversity through the use of three
objectives. Furthermore, the drop in population diversity is
also affected in a similar way, as shown in figure 14.

As before, these results suggest giving a lot of leeway
early in the search, in order to encourage diversity, but
less in later stages of the search, to focus the search on
the rules that are truly of interest. Therefore, the value
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Fig. 14. Population diversity during the search using different degrees of
leeway, ε.

of ε was initialized at 100 false outcomes, reduced by
two false outcomes whenever the entropy exceeded five
and increased by two false outcomes whenever the entropy
dropped below three. Figures 15 and 16 show a comparison
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Fig. 15. Comparison of results obtained after 200 generations, using
either the standard dominance relation (ε = 0) or the adaptive dominance
relation. Training error rates are scaled with respect to those obtained with
the standard dominance relation. Error bars show 95% confidence intervals.

of the results obtained after 200 and 2000 generations. The
use of an adaptive leeway has resulted in improved results
at both 200 and 2000 generations, though the improvement
is less marked than when three adaptive objectives were
used. If the client selects the rule with the lowest validation
error rate, the use of an adaptive leeway produces a mean
error rate of 14.25% (standard deviation: 0.19%) after 2000
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Fig. 16. Comparison of results obtained at 2000 generations, either the
standard dominance relation (ε = 0) or the adaptive dominance relation.
Training error rates are scaled with respect to those obtained with the
standard dominance relation. Error bars show 95% confidence intervals.

generations and 15.41% (standard deviation: 0.34%) if only
200 generations are performed.

IX. CONCLUSIONS

When optimizing expression tree based rules using NSGA
II, there is a severe loss of population diversity early in the
search process. At this stage in the search, there is little
reason to expect a large rule to have lower misclassification
costs, with the result that one small rule with low costs
can dominate most and sometimes all of the remaining
population. The resultant lack of an appreciable number of
non-dominated solutions results in NSGA II being too elitist.

This reduction in population diversity can also be expected
whenever a multi-objective problem has few, positively cor-
related objectives, since optimizing one objective will tend
to optimize the others early in the search. Again, the result
is that there are few non-dominated solutions.

We have illustrated two methods for maintaining pop-
ulation diversity, each of which can be applied without
making major changes to the algorithm being applied. The
first splits an objective into two component parts, each
of which can be separately optimized. By using different
linear combinations of the new objectives, a balance between
search intensity and population diversity can be maintained.
In the example problem, this approach has an additional
advantage: the new non-dominated solutions are those that
might be truly non-dominated if the client is unsure of the
misclassification costs. In any case, such rules are likely to
contain useful subtrees that might otherwise be eliminated
from the population.

While it may not always be apparent how to apply this first
approach to a multi-objective problem, the second approach,
in which the dominance relation is modified in order to
give solutions a little leeway in terms of one objective, is
applicable to any multi-objective problem. Both approaches
provide a parameter that may be adjusted depending on the
amount of diversity in the population, resulting in a feedback
control mechanism that permits increased control of popu-
lation diversity. The result is the production of algorithms
showing significant improvements in performance.
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X. FURTHER RESEARCH

There are a number of areas for further research:

• The results presented were all obtained using the same
values for population size and crossover rate. These
settings were those found to produce the best results
using the standard two objective algorithm. However,
the severe loss of diversity is likely to have influenced
the values for these parameters. For example, the rela-
tively low crossover rate may be partly due to the fact
that crossover will be ineffective when the population
consists primarily of many copies of one solution. When
population diversity is maintained, improved results
might be obtained with a higher crossover rate.

• We have performed little experimentation with how
the feedback mechanisms in the adaptive algorithms
work. For example, a preliminary examination of the
progress of the three objective algorithm, with adaptive
objectives, suggests that the effect of changing λ by 0.01
is greater when λ is closer to 0.5. This might suggest
the use of smaller step sizes in this case.

• Similarly, the entropy values at which λ and ε change
were chosen intuitively. Research and experimentation
into the ideal range of population entropy, and how
this range changes with population size and problem
type, would be useful. Also, it has been noted that the
entropy measure used was fairly crude; research into
more suitable measure of population diversity would be
useful.

• The effects of population diversity loss in other problem
domains should be studied. The diversity maintenance
techniques described and others should be applied in
those domains where loss of population diversity ap-
pears to be a problem.
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