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Abstract— This paper presents a new multi-objective evolu-
tionary algorithm (MOEA) which adopts a radial basis function
(RBF) approach in order to reduce the number of fitness
function evaluations performed to reach the Pareto front. The
specific method adopted is derived from a comparative study
conducted among several RBFs. In all cases, the NSGA-II
(which is an approach representative of the state-of-the-art in
the area) is adopted as our search engine with which the
RBFs are hybridized. The resulting algorithm can produce very
reasonable approximations of the true Pareto front with a very
low number of evaluations, but is not able to spread solutions in
an appropriate manner. This led us to introduce a second stage to
the algorithm in which it is hybridized with rough sets theory in
order to improve the spread of solutions. Rough sets, in this case,
act as a local search approach which is able to generate solutions
in the neighborhood of the few nondominated solutions previously
generated. We show that our proposed hybrid approach only
requires 2,000 fitness function evaluations in order to solve test
problems with up to 30 decision variables. This is a very low
value when compared with today’s standards reported in the
specialized literature.

I. INTRODUCTION

Multi-objective optimization problems are of great impor-
tance, since they are very common in a wide variety of disci-
plines. Multi-objective problems have two or more objectives
which are normally in conflict with each other. Therefore,
instead of having a single solution, they normally have a set
of solutions (called the Pareto optimal set) all of which are
equally good among themselves.

Despite the existence of a variety of mathematical pro-
gramming techniques to solve multi-objective optimization
problems, the use of evolutionary algorithms in this area has
become very popular in the last few years [1], [2], mainly
because of their ease of use, and their wide applicability.
However, despite their several advantages, multi-objective
evolutionary algorithms (MOEAs) tend to require an important
number of objective function evaluations, in order to achieve a
reasonably good approximation of the Pareto front, even when
dealing with benchmark problems of low dimensionality. This
issue becomes critical when attempting to solve real-world
problems in which we can only afford performing a very low
number of fitness function evaluations. It has been only until

recently that researchers have started to develop MOEAs that
perform a very low number of fitness function evaluations. The
purpose of this paper is precisely to introduce a new hybrid
approach which combines a MOEA with RBFs in order to
produce a quick (i.e., with a low number of fitness function
evaluations) approximation of the Pareto front. Then, rough
sets are used to diversify the neighborhood surrounding each of
the nondominated solutions produced with this hybrid MOEA,
such that the rest of the Pareto front is reconstructed.

The remainder of this paper is organized as follows. Sec-
tion II provides the required background for the use of Radial
Basis Functions to approximate a function. In Section III, we
provide a brief introduction to rough sets theory and a quick
review of the most relevant previous related work is described
in Section IV. Section V describes our proposed approach. Our
comparison of results is provided in Section VI. Finally, in
Section VII, we provide some of the paths for future research
and the conclusions of this work.

II. FITNESS APPROXIMATION USING RBFS

RBFs were first introduced by R. Hardy in 1971 [4]. This
term is made up of two different words: radial and basis
functions. A radial function refers to a function of the type:

g : R
d → R : (x1, . . . , xd) �→ φ(‖x1, . . . , xd‖2)

for some function φ : R → R. This means that the function
value of g at a point −→x = (x1, . . . , xd) only depends on the
Euclidean norm of −→x :

‖−→x ‖2 =

√√√√ d∑
i=0

x2
i = distance of −→x to the origin

And this explains the term radial. The term basis function is
explained next. Let’s suppose we have certain points (called
centers) −→x 1, . . . ,−→x n ∈ R

d. The linear combination of the
function g centered at the points −→x is given by:

f : R
d �→ R : −→x �→

n∑
i=1

λig(−→x −−→xi) =
n∑

i=1

λiφ(‖−→x −−→xi‖)
(1)
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Type of Radial Function
LS linear splines |r|

TPS thin plate splines |r|2m+1 ln |r|
CS cubic splines |r|3

MQS multiquadrics splines
p

1 + (εr)2

GA Gaussian e−(εr)2

TABLE I

RADIAL BASIS FUNCTIONS

where ‖−→x − −→xi‖ is the Euclidean distance between the
points −→x and −→x i. So, f becomes a function which is in the
finite dimensional space spanned by the basis functions:

gi : −→x �→ g(‖−→x −−→xi‖)
Now, let us suppose that we already know the values of

a certain function H : R
d �→ R at a set of fixed locations−→xi , . . . ,−→xn. These values are named fj = H(−→xj), so we try

to use the −→xj as centers in equation (1). If we want to force
the function f to take the values fj at the different points −→xj ,
then we have to put some conditions on the λi. This implies
the following:

∀j ∈ {1, . . . , n} fj = f(−→xj) =
n∑

i=1

(λi · φ(‖−→xj −−→xi‖))

In these equations, only the λi are unknown, and the
equations are linear in their unknowns. Therefore, we can write
these equations in matrix form:

2
666664

φ(0) φ(‖x1 − x2‖) . . . φ(‖x1 − xn‖)
φ(‖x2 − x1‖) φ(0) . . . φ(‖x2 − xn‖)

.

.

.

.

.

.

.

.

.
φ(‖xn − x1‖) φ(‖xn − x2‖) . . . φ(0)

3
777775

·

2
666664

λ1
λ2

.

.

.
λn

3
777775

=

2
666664

f1
f2

.

.

.
fn

3
777775

(2)

Typical choices for the basis functions g(−→x ) include linear
splines, cubic splines, multiquadrics, thin-plate splines and
Gaussian functions as shown in Table I.

III. ROUGH SETS THEORY

Rough sets theory was proposed by Pawlak [11] as a new
mathematical approach to imperfect knowledge. The basics of
this approach are briefly described next.

Let us assume that we are given a set of objects U called
the universe and an indiscernibility relation R ⊆ U × U ,
representing our lack of knowledge about elements of U (in
our case, R is simply an equivalence relation based on a grid
over the feasible set; this is, just a division of the feasible set
in (hyper)-rectangles). Let X be a subset of U . We want to
characterize the set X with respect to R. The way rough sets
theory expresses vagueness is employing a boundary region
of the set X built once we know points both inside X and
outside X . If the boundary region of a set is empty it means
that the set is crisp; otherwise, the set is rough (inexact). A
nonempty boundary region of a set means that our knowledge
about the set is not enough to define the set precisely.

Then, each element in U is classified as certainly inside
X if it belongs to the lower approximation or partially

(probably) inside X if it belongs to the upper approximation.
The boundary is the difference of these two sets, and the bigger
the boundary the worse the knowledge we have of set X . On
the other hand, the more precise is the grid implicity used to
define the indiscernibility relation R, the smaller the boundary
regions are. But, the more precise is the grid, the bigger the
number of elements in U , and then, the more complex the
problem becomes. Consequently, the goal is obtaining “small”
grids with the maximum precision possible. These two aspects
are called Density and Quality of the grid. If q is the number
of criteria (in our case, the number of objectives), Qi is the
i-th criterion, bi

j is the j-th value of the i-th criterion (we
assume these values are ordered increasingly), then:

Density(G) =
q∑

i=1

|Qi|∑
j=1

xi
j

Quality(G) =
|Low(X)|

|X |
where xi

j is 1 if bi
j is active in the grid and |Low(X)| is the

cardinality of the lower approximation of X .

IV. PREVIOUS RELATED WORK

Currently, there exist several evolutionary algorithms that
use a meta-model to approximate the real fitness function
and reduce the total number of fitness evaluations without
degrading the quality of the results obtained. Note however,
that very few of these approaches are multi-objective. Next,
we will briefly review the most significant work in this area.
Various approximation levels or strategies adopted for fitness
approximation in evolutionary computation are proposed in
[6]. Ong et al. [10] used surrogate models (RBFs) to solve
computationally expensive design problems with constraints.
The authors used a parallel evolutionary algorithm coupled
with sequential quadratic programming in order to find optimal
solutions of an aircraft wing design problem. In this case, the
authors construct a local surrogate model based on radial basis
functions in order to approximate the objective and constraint
functions of the problem. Karakasis et al. [7] used surrogate
models based on radial basis functions in order to deal with
computationally expensive problems. A method called Inexact
Pre-Evaluation (IPE) is applied into a MOEA’s selection
mechanism. Such method helps to choose the individuals that
are to be evaluated using the real objective function, right
after a meta-model approximation has been obtained by the
surrogate. The results are compared against a conventional
MOEA in two test problems, one from a benchmark and
one from the turbomachinery field. Voutchkov & Keane [5]
studied several surrogate models (RSM, RBF and Kriging) in
the context of multi-objective optimization using the NSGA-
II [3] as the MOEA that optimized the meta-model function
given by the surrogate. The surrogate model is trained with 20
initial points and the NSGA-II is run on the surrogate model.
Then, the 20 best resultant points given by the optimization
are added to the existing data pool of real function evaluations
and the surrogate is re-trained with these new solutions. A
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comparison of results is made in 4 test functions (from 2
to 10 variables), performing only 400 real fitness function
evaluations. Knowles [8] proposed “ParEGO”, which consists
of a hybrid algorithm based on a single optimization model
(EGO) and a Gaussian process, which is updated after every
function evaluation, coupled to an evolutionary algorithm.
EGO is a single-objective optimization algorithm that uses
Kriging to model the search landscape from the solutions
visited during the search and learns a model based on Gaussian
processes (called DACE). This approach is used to solve multi-
objective optimization problems of low dimensionality (up to
6 decision variables) with only 100 and 250 fitness function
evaluations.

V. PROPOSED APPROACH

Our proposed approach, is divided in two different phases,
and each of them consumes a fixed number of fitness function
evaluations. In the first phase, our surrogate-based MOEA is
applied for 1000 fitness function evaluations. However, since
several RBFs exist, we decided to perform a comparative study
among several of them, in order to determine which one is
the most appropriate for our purposes. The results of this
comparative analysis are discussed in Section VI.

The results obtained from the first phase led us to conclude
that a local search mechanism was necessary in order to
spread the nondominated solutions previously found, such that
a much better approximation of the entire Pareto front could
be achieved. Thus, the second phase of our algorithm consists
of applying rough sets theory for 1,000 fitness function eval-
uations in order to improve the solutions produced during the
first phase.

A. RBFs-based MOEA

The RBFs-model adopted in our approach is shown in
Figure 1. As can be seen, the NSGA-II [3] is used to optimize
the approximated model generated by the RBFs. Our approach
keeps two populations: the main population (which is used to
select the parents) and a secondary population, that retains
dominated solutions found during the evolutionary process
(this secondary population is needed by the second phase that
uses rough sets).

First, we generate P individuals using Latin-Hypercubes
[9], which is a method that guarantees a good distribution of
the initial population in a multidimensional space. If we do a
simple random sampling of the initial points, where the new
sample points are generated without taking into account the
previously generated sample points, we may not be able to
obtain points in some critical areas from the search space.
Our approximation model requires a good distribution of the
sample points provided, in order to build a good approximation
of the real functions and therefore the importance of adopting
this approach. A Latin cube is a selection of one point from
each row and column of a square matrix. In M dimensions,
the corresponding item is a set of P points, where, in each
dimension, there is exactly one point per column or range

of values. In M dimensions, these objects are called Latin-
Hypercubes. Once a Latin-Hypercube has been created, we
choose the center of each hypercube as the place where the
initial P individuals are chosen. Then, we evaluate these P
individuals with the real objective functions, and train the
meta-model using the RBFs. As we are dealing with multi-
objective problems, we decided to train the multiple objectives
separately. Consequently, we obtain a different RBF per each
objective, so these objectives are still in conflict with each
other as they are an approximate model of the real objectives.
Thus, we now have to solve a different multi-objective problem
based on the different RBF obtained during the training
process.

We use the NSGA-II [3], which adopts a fast nondominated
sorting approach to classify solutions according to levels of
nondomination and a crowding distance operator, which is
responsible for preserving diversity. The NSGA-II is adopted
to optimize the meta-model obtained by the RBFs. From
all the nondominated solutions found by the NSGA-II, we
decided to retain only 20 points. These new points obtained
by the NSGA-II are compared with respect to all the points
in the main population and those that are different with
respect to all the points contained in the main population
are accepted and evaluated using the real objective function
values. All the solutions contained in the main population are
used to re-train the meta-model (using RBFs) and get another
approximation of the real objectives. As it is shown in Figure
1, this procedure is repeated until the number of MaxEval
evaluations is fulfilled. With this procedure, the size of the
main population is increased as the real objective function
evaluations are performed. As the main population becomes
larger, the training process takes more computational time to
do the approximation because the Φ matrix is larger and the
matrix inversion process takes more and more time. So, we
decided to accept a maximum of 500 solutions in the main
population. When this number is reached, we choose only
the 300 best solutions (based on rank & crowding distance
sorting) to continue with the training process. At the end of
the procedure, we select 52 nondominated solutions from the
main population, and we store 100 dominated solutions in
the secondary population, which stores the dominated points
needed for the Phase II. Every removed point from the main
population is included in the secondary population. If this
secondary population reaches a size of 100 points, a rank and
crowding distance sorting is used to keep only 100 points (the
remainder are eliminated).

B. Phase 2: Rough Sets in Multi-Objective Optimization

For our MOPs we will try to approximate the Pareto front
using a rough sets grid. To do this, we will use an initial
approximation of the Pareto front (provided by the main
population obtained from the first phase previously described)
and we implement a grid in order to get more information
about the front which allow us to improve this initial approx-
imation. As indicated before, we need to design a grid that is
not so expensive (computationally speaking) but that offers a
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Fig. 1. RBFs algorithm, which uses the NSGA-II to optimize the meta-model.

Fig. 2. Decision variable space (left) and objective function space (right)

reasonably good knowledge about the Pareto front to be used
to improve the initial approximation. To this aim, we have
to decide which elements of U (that we will call atoms and
are rectangular portions of decision variable space) are inside
the Pareto optimal set and which are not. Once we have the
efficient atoms, we can easily intensify the search over these
atoms as they are built in decision variable space. To create
this grid, as an input we will have N feasible points divided
in two sets: the nondominated points (ES) and the dominated
ones (DS). Using these two sets we want to create a grid to
describe the set ES in order to intensify the search on it. This
is, we want to describe the Pareto front in decision variable
space because then we could easily use this information to
generate more efficient points and then improve this initial
approximation. Figure 2 shows how information in objective
function space can be translated into information in decision
variable space through the use of a grid.

We must note the importance of the DS set since in a rough
sets method the information comes from the description of
the boundary of the two sets. Then, the more efficient points
provided the better. However, it is also required to provide
dominated points, since we need to estimate the boundary
between being dominated and being nondominated. Once
this information is computed, we can simply generate more
points in the “efficient side”. Since the computational cost of
managing the grid increases with the number of points used

to create it, we will try to use just a few points. However,
such points must be as far from each other as possible,
because the better the distribution the points have in the initial
approximation the less points we need to build a reliable grid.
On the other hand, in order to diversify the search we build
several grids using different (and disjoint) sets DS and ES
coming from the initial approximation. To ensure these sets
are really disjoint we will mark each point as explored or
non-explored (i.e., we distinguish if it has been used or not to
compute a grid) and we will not allow repetitions. Algorithm 1
describes a Rough Sets iteration.

Algorithm 1 Rough Sets Iteration
1: Choose NumEff non-explored points of ES.
2: Choose NumDom non-explored points of DS.
3: Generate NumEff efficient atoms.
4: for i = 0 to NumEff do
5: for j = 0 to Offspring do
6: Generate (randomly) a point new in atom i and send to ES
7: if new is efficient then
8: Include in ES
9: end if

10: if A point old in ES is dominated by new then
11: Send old to DS
12: end if
13: if new is dominated by a point in ES then
14: Remove new
15: end if
16: end for
17: end for

VI. DISCUSSION AND RESULTS

As we have mentioned, our main goal is to reduce the
number of fitness function evaluations. Thus, our experimental
design considers that only a few function evaluations are
performed in several multi-dimensional test problems from the
ZDT set [13]. The detailed description of these test functions
was omitted due to space restrictions (see [13] for further
information). However, all of these test functions are biobjec-
tive, unconstrained minimization problems and have between
10 and 30 decision variables. Three performance measures
were adopted in order to allow a quantitative assessment of
our results: (1) Inverted Generational Distance (IGD), which
is a variation of a metric proposed by Van Veldhuizen [12]
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in which the true Pareto is used as a reference; (2) Two Set
Coverage (SC), proposed by Zitzler et al. [13], which performs
a relative coverage comparison of two sets; and (3) Spread
(S), proposed by Deb et al. [2], which measures both progress
towards the Pareto-optimal front and the extent of spread. For
each test problem, 30 independent runs were performed.

This section is divided in two parts: in the first one, we
compare the results obtained by the surrogate-based NSGA-II
with respect to the original NSGA-II. Both approaches perform
1,000 real function evaluations in this case. In the second part,
the Rough Sets Theory algorithm is applied for another 1,000
real function evaluations and the results are compared with
respect to the original NSGA-II performing 2,000 evaluations.

A. First Phase Analysis

The first phase of our approach uses several parameters:
main population size (P = 20), internal NSGA-II population
size (Pnsga2 = 52), internal NSGA-II maximum number of
generations (Gnsga2 = 50), crossover rate = 0.9, mutation rate
= 1/n (n = number of decision variables), ηc = 15, ηm = 20.
The NSGA-II used the following parameters: crossover rate =
0.9, mutation rate = 1/n, ηc = 15, ηm = 20, population size
= 52 and maximum number of generations = 20.

In this study, we perform 1,000 real function evaluations us-
ing different RBFs: Linear (LRBF), Thin Plate (TPRBF), cubic
(CRBF), multiquadrics (MQRBF) and Gaussian (GRBF). They
are all compared to the original NSGA-II. The results reported
in Table II correspond to the mean and standard deviation (σ)
of the performance metrics (IGD, SC and S). We show in
boldface the best mean values per test function of 30 runs
per each test function by all algorithms. We show the plot of
all the nondominated solutions generated by a single run of
the different algorithms in Figures 3, 4 and 5. In all cases,
we generated the PFtrue of the problems using exhaustive
enumeration so that we could make a graphical comparison
of the quality of the solutions produced by our approach.

• LRBF: Using the Linear Radial Basis Function, the
algorithm shows a poor performance dealing with high-
dimensional problems. The NSGA-II outperforms this
approach in all cases except for ZDT1. Graphically, it can
be observed that in all the plots the NSGA-II is closer to
the true Pareto front than the LRBF.

• TPRBF: With Thin Plate Splines, the algorithm shows
the worst performance of the variants studied in this
paper. With respect to the performance measures adopted,
in all cases TPRBF is outperformed by the NSGA-II
and graphically, it can be seen that this approach never
reaches the true Pareto front and stays far away from the
other techniques.

• CRBF: Using the Cubic function, the algorithm outper-
formed the NSGA-II only in ZDT1, ZDT2 and ZDT6.
With respect to the Spread metric, it can be shown that the
results are very poor. The NSGA-II gets better results than
CRBF in Spread in almost all the functions except for
ZDT6 (in which the difference is very low). Graphically,
the performance of the CRBF is almost the same in all the

Fig. 3. Pareto fronts generated by RBFs variants and NSGA-II for ZDT1

test functions as that obtained with the NSGA-II. None
of the approaches was able to reach the true Pareto Front.

• MQRBF: Using a Multiquadric function, the results
shown in Table II are quite competitive with respect to
the NSGA-II in almost all the ZDTs functions, except
for ZDT4 in which MQRBF shows a poor performance.
In Figure 5(a), it can be seen that in ZDT4, MQRBF is
far away from the true Pareto front and from the results
obtained by the NSGA-II.

• GRBF: With the Gaussian RBF, the algorithm shows
the best performance of all the variants, regarding all
the performance measures. GRBF gets the best results in
ZDT1, ZDT2 and ZDT6 from all the variants compared
and also outperforms the NSGA-II. In ZDT3 and ZDT4,
the NSGA-II outperforms GRBF. Graphically, GRBF is
the most competitive method in all cases, showing a good
aproximation to the real Pareto Front in ZDT1, and in
the other test functions, it obtains a reasonably good
approximation.

We can conclude from the results shown in Table III
that the GRBF algorithm is the one that shows the best
overall performance in these particular multi-dimensional test
functions. So, in the second phase of our analysis, we extend
the solutions generated by the GRBF model and we show the
performance of the algorithm when it is hybridized with rough
sets theory.

B. Second Phase Analysis

If we pay particular attention to the plots shown in Figures
3, 4 and 5, corresponding to all the RBFs, it can be seen that
they only get a few solutions on the Pareto front. So, clearly
convergence is achieved at the expense of sacrificing spread
of solutions along the Pareto front. This led us to think that if
we incorporated a local search method such as the rough sets
theory, we could fill up the holes (gaps) and find the solutions
that are missing in these Pareto sets. So, we decided to perform
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IGD Set Coverage Spread
Function SURROGATE NSGA-II SURROGATE NSGA-II SURROGATE NSGA-II

Mean σ Mean σ Mean σ Mean σ Mean σ Mean σ
ZDT1 (LRBF) 0.10288 0.03272 0.20800 0.03104 0.23604 0.34404 0.69013 0.37920 0.66046 0.05919 0.74052 0.06068
ZDT1 (TPRBF) 0.69647 0.08921 0.20800 0.03104 1.00000 0.00000 0.00000 0.00000 0.82493 0.04287 0.74052 0.06068
ZDT1 (CRBF) 0.11771 0.20930 0.20800 0.03104 0.16837 0.32175 0.78346 0.39462 0.56614 0.16527 0.74052 0.06068
ZDT1 (MQRBF) 0.04180 0.04852 0.20800 0.03104 0.00526 0.02834 0.98805 0.05761 0.57483 0.09978 0.74052 0.06068
ZDT1 (GRBF) 0.01897 0.06016 0.20800 0.03104 0.03066 0.16514 0.96666 0.17950 0.48263 0.09297 0.74052 0.06068
ZDT2 (LRBF) 0.81028 0.13745 0.46775 0.08492 0.32425 0.30095 0.01587 0.04487 0.89139 0.06925 0.89369 0.06795
ZDT2 (TPRBF) 1.22407 0.15678 0.46775 0.08492 1.00000 0.00000 0.00000 0.00000 0.89555 0.04259 0.89369 0.06795
ZDT2 (CRBF) 0.42130 0.27687 0.46775 0.08492 0.27473 0.32160 0.52686 0.41170 0.80797 0.14153 0.89369 0.06795
ZDT2 (MQRBF) 0.17984 0.26638 0.46775 0.08492 0.11527 0.29924 0.81726 0.35576 0.66155 0.22242 0.89369 0.06795
ZDT2 (GRBF) 0.10576 0.16785 0.46775 0.08492 0.01333 0.04988 0.94326 0.18007 0.65771 0.20612 0.89369 0.06795
ZDT3 (LRBF) 0.20736 0.04469 0.18475 0.03819 0.96288 0.02922 0.00418 0.01684 0.84313 0.02779 0.76863 0.05741
ZDT3 (TPRBF) 0.62043 0.10131 0.18475 0.03819 0.99791 0.01121 0.00000 0.00000 0.84909 0.05301 0.76863 0.05741
ZDT3 (CRBF) 0.24337 0.1551 0.18475 0.03819 0.31808 0.39346 0.58778 0.43849 0.74887 0.10645 0.76863 0.05741
ZDT3 (MQRBF) 0.20586 0.08155 0.18475 0.03819 0.29712 0.33232 0.58882 0.38307 0.76560 0.07593 0.76863 0.05741
ZDT3 (GRBF) 0.26424 0.10398 0.18475 0.03819 0.55617 0.37069 0.29089 0.38190 0.79371 0.05849 0.76863 0.05741
ZDT4 (LRBF) 15.17009 5.51475 12.34834 3.47526 0.28802 0.30796 0.46673 0.33417 0.98826 0.00945 0.98714 0.01113
ZDT4 (TPRBF) 24.62728 6.10294 12.34834 3.47526 0.95417 0.08144 0.02198 0.05112 0.99180 0.00297 0.98714 0.01113
ZDT4 (CRBF) 29.54019 6.04672 12.34834 3.47526 0.76380 0.24553 0.03269 0.10027 0.99524 0.00311 0.98714 0.01113
ZDT4 (MQRBF) 32.53860 7.58354 12.34834 3.47526 0.71297 0.23332 0.02190 0.05226 0.99533 0.00260 0.98714 0.01113
ZDT4 (GRBF) 18.56345 4.81500 12.34834 3.47526 0.34171 0.33166 0.41920 0.33087 0.99136 0.00584 0.98714 0.01113
ZDT6 (LRBF) 1.58455 0.41908 1.40626 0.20648 0.97790 0.06191 0.00000 0.00000 0.94045 0.03465 0.92336 0.04662
ZDT6 (TPRBF) 2.43238 0.29497 1.40626 0.20648 1.00000 0.00000 0.00000 0.00000 0.91622 0.03926 0.92336 0.04662
ZDT6 (CRBF) 1.28818 0.68509 1.40626 0.20648 0.45890 0.41739 0.33283 0.29411 0.89442 0.05776 0.92336 0.04662
ZDT6 (MQRBF) 0.58939 0.20367 1.40626 0.20648 0.02484 0.09983 0.70901 0.30467 0.88068 0.09220 0.92336 0.04662
ZDT6 (GRBF) 0.51180 0.13866 1.40626 0.20648 0.00333 0.01795 0.76644 0.27833 0.85790 0.04349 0.92336 0.04662

TABLE II

COMPARISON OF RESULTS BETWEEN RBFS ALGORITHM AND THE NSGA-II (1000 EVALUATIONS).

(a) ZDT2 (b) ZDT3

Fig. 4. Pareto fronts generated by RBFs variants and NSGA-II for ZDT2 and ZDT3 test functions.

1,000 more fitness function evaluations, aiming to fill up the
gaps along the Pareto front. The second phase uses three
more parameters: number of points randomly generated inside
each atom (Offspring), number of atoms per generations
(NumEff ) and the number of dominated points consid-
ered to generate the atoms (NumDom). Offspring = 1,
NumEff = 2 and NumDom = 10. The NSGA-II used
the same parameters described in the first analysis except
for the maximum number of generations = 40 instead of 20

(used in the first analysis), so that the NSGA-II performs
2,000 fitness function evaluations in total. This will allow a
fair comparison between both approaches. It can be observed
that in the ZDTs test problems our approach produced the
best results with respect to the SC metric in all cases. The
same applies for the IGD metric, except for ZDT4. Also, our
approach outperformed the NSGA-II with respect to the spread
metric in three cases (ZDT1, ZDT2 and ZDT6). Graphically,
it can be seen that our approach gets closer to the true Pareto
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(a) ZDT4 (b) ZDT6

Fig. 5. Pareto fronts generated by RBFs variants and NSGA-II for ZDT4 and ZDT6 test functions.

front in ZDT1, ZDT2, ZDT3 and ZDT6, but not in ZDT4.
The poor performance of all the approaches in ZDT4 might
be attributed to the bad scalability presented by approaches
based on genetic algorithms such as the NSGA-II.

Our results indicate that the NSGA-II, despite being a highly
competitive MOEA, is not able to converge to the true Pareto
front in most of the test problems adopted when performing
only 2,000 fitness function evaluations. If allowed a higher
number of evaluations, the NSGA-II would certainly produce
a very good (and well-distributed) approximation of the Pareto
front. However, our aim was precisely to provide an alternative
approach that could require a lower number of evaluations
than a state-of-the-art MOEA while still providing a highly
competitive performance. Such an approach could be useful
in real-world applications with objective functions requiring a
very high evaluation cost (computationally speaking).

VII. CONCLUSIONS AND FUTURE WORK

We have presented a Radial Basis Function approach to deal
with multi-objective problems. The specific RBF adopted was
derived from an empirical study in which several variants were
compared when dealing with high dimensional test problems.
From this study, we concluded that the Gaussian RBF was
the most appropriate model for our needs. However, despite
achieving a good convergence, this RBF cannot produce a
good spread of solutions. Thus, we decided to include a
local search procedure based on rough sets theory in order
to intensify the search in the neighborhood of the solutions
previously found by the RBF. This hybrid was found to provide
very competitive results in most of the test problems adopted.
These results, although preliminary, seem to indicate that our
approach could be a viable alternative for real-world applica-
tions in which each evaluation of the fitness function is very

expensive (computationally speaking). In such applications,
we can afford sacrificing a good distribution of solutions for
the sake of obtaining a reasonably good approximation of the
Pareto front with a low number of evaluations.

As part of our future work, we are interested in refining the
interaction mechanism between the RBF and the MOEA, such
that the interleaving of these two approaches maximizes per-
formance. We are also interested in experimenting with other
approximation techniques such as artificial neural networks
and Gaussian processes. We are also interested in studying
the use of regression-based RBFs to improve the problem of
data training overfitting when the number of data increases.
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