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Abstract— In this paper, nonlinear dynamic system identifi-
cation by using multiobjectively selected RBF network is con-
sidered. RBF networks are widely used as a model structure
for nonlinear systems. The determination of its structure that
is the number of basis functions is prior important step in
system identification, and the tradeoff between model complexity
and accuracy exists in this problem. By using multiobjective
evolutionary algorithms, the candidates of the RBF network
structure are obtained in the sense of Pareto optimality. We
discuss an application to system identification by using such
RBF networks having Pareto optimal structures. Some numerical
simulations for nonlinear dynamic systems are carried out to
show the applicability of the proposed approach.

I. INTRODUCTION

Mathematical model of an actual system has important roles

in the engineering problems such as control system design,

fault detection and diagnosis, signal processing, time series

prediction and so on. Though the system model is often con-

structed based on the physical or chemical laws of the target

system, it is hard to build such model for stochastic, large

scale, nonlinear or complex systems. System identification i.e.

building mathematical model based on the observed input and

output data of the system is a promising approach to model

such system, so that system identification is a fundamental

issue of engineering problem [1].

System identification techniques have been developed for

the stochastic linear dynamic systems. However, almost actual

existing systems have inherent nonlinear properties such as

dead zone and saturation. Hence, the linear system models are

not enough to represent such dynamics of nonlinear systems.

Nonlinear system identification for the particular objective

systems has also studied and a lot of identification algorithms

have been developed in the recent two decades [2]. Most

of these approaches are ad-hoc because it is not easy to

describe wide class of nonlinear properties by the specific

model structure.

Artificial neural networks are widely used as model struc-

tures to learn a nonlinear mapping based on the training data

set in many kinds of application field due to their powerful

nonlinear mapping ability. The use of artificial neural networks

is also being studied to nonlinear system identification [3],

[4]. The primary importance in applying neural networks to

the nonlinear system identification is in selecting its structure

rather than the connection weights learning algorithms and

the network structure is characterized by the number of hidden

layer, the number of hidden layer’s unit, and the response func-

tion. However, a general method of the structure determination

has not established, because the optimum structure depends on

a class of the objective system and learning algorithm. So the

network structure is generally determined by trial and error or

a heuristic method.

In addition, there exists tradeoff between model accuracy

and complexity in the identification problem. The system

model optimized under the specific criterion is not always the

optimal model because there are usually several demands to a

system model. For example, it required that the model should

be easy to handle and well explainable for the modeling data

set contaminated by observation noise, but these properties are

mutually exclusive. However, almost identification techniques

give one best model under the criterion given by using prior

knowledge or information. The system identification method-

ology based on the multi-objective optimization will be useful,

however there are few studies from this point of view [5]- [7].

On the other hand, the multi-objective optimization prob-

lem is a common problem in real world. Pareto optimality

is important concept in such problem that has ambivalent

objectives. Multi-objective evolutionary algorithms are much

being studied as efficient technique to providing the Pareto

optimum solutions with a single run [8], [9]. Nonlinear system

identification by using multi-objective evolutionary algorithms

have been proposed, these approaches deal with polynomial

dynamic system model and give the optimal model set con-

cerning model accuracy and complexity [10], [11].

From this viewpoint, we consider in this study a multi-

objective optimization based nonlinear system identification by

using multi-obejectively selected RBF (Radial Basis Function)

networks, which is a kind of artificial neural networks. RBF

network has in their hidden layer a number of basis function

which responds locally in input space. The network output is

the linear sum of the basis function values. If the parameters

of RBF networks, i.e. the number of basis functions and the

widths and centers of each basis function, are determined,

output layer weights can be calculated with the training

data [12]. Therefore we consider the structure determination

problem of RBF networks as a multi-objective optimization
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problem that concerns with the model accuracy, the model

complexity and the output layers’ weights. Then a method of

obtaining the candidates of model as a Pareto optimal set based

on evolutionary algorithms is proposed [13]. The designers

will be able to select one model from the Pareto optimal model

set obtained by the proposed method according to their use or

a specific criterion. Alternately by introducing the concept of

ensemble learning [14], [15] and neural network ensembles

based on Pareto set [16], [17], [18], one RBF network can

be obtained by constructing the obtained Pareto optimal RBF

networks. Kondo et. al. applied Pareto optimal RBF networks

to pattern classification problem [19]. Then, for the nonlinear

regression, multi-objective identification of static nonlinear

input output relation by using RBF network was proposed by

Hatanaka et.al. [20].

From this viewpoint, we consider nonlinear system identi-

fication based on the multi-objective optimization using the

evolutionary algorithms. In this paper, we deal with the

dynamic nonlinear system modeling by using RBF network,

and then we propose an identification technique using the

Pareto optimum RBF network ensemble. Numerical simulation

studies are carried out to show the applicability of the proposed

technique to nonlinear system identification.

II. MULTI-OBJECTIVE GENETIC ALGORITHMS AND

PARETO RBF NETWORKS

A. Genetic Algorithm

GA (Genetic algorithm) is one of the stochastic search or

optimization methods, originally proposed by Holland [21],

which has been invented based on the natural genetics and

evolution. The outline of simple GA procedure is a following

way. Initially, the initial population of individuals having

a string as the “chromosome” is generated randomly. Each

element of the chromosome is called “gene”. The “fitness”,

which is a measure of adaptation to environment, is evaluated

for each individual. Then, “selection” operation leaving indi-

viduals to next generation is performed based on the fitness

value, and “crossover” and “mutation” are operated on the

selected individuals to generate a new population by trans-

forming chromosomes into offspring’s ones. This procedure

is continued until the terminate condition is satisfied. This

algorithm is conforming to the mechanism of evolution, in

which the genetic information changes for every generation

and the individuals which adapt to environment better survive

preferentially. Since GA is a stochastic parallel search and GA

requires only fitness value based on the objective functions,

GAs are attracting attentions as a solver of multi-objective

optimization problems due to parallel search.

B. Multi-objective Optimization

In the actual optimization problems, there generally exists

tradeoff among the objective functions. And so two concept,

“domination” and the “Pareto optimum,” are considered in

multi-objective optimization.

Let’s consider the multi-objective optimization problem such

as

max f1(x), · · · , fn(x)
subject to gj(x) ≥ 0, j = 1, 2, · · · , k

where, x represents m dimensional decision variable x =
(x1, x2, · · · , xm)T and fi(x), i = 1, 2, · · · , n denote n
objective functions. gi(x), i = 1, 2, · · · , k are the constraint

conditions.

First, x1 is said to “dominate” x2, if and only if

∀i = 1, 2, . . . , n fi(x1) ≤ fi(x2)

and

∃j = 1, 2, . . . , n fj(x1) < fj(x2).

Then, x0 which is not dominated by any other x is called

“Pareto optimal solution”. Pareto optimal solution is consid-

ered to be the best solution comprehensively and many Pareto

optimal solutions exist simultaneously, in general. Considering

tradeoff among the objective functions, on multi-objective op-

timization problems it is important to obtain a Pareto optimal

solution set.

C. Multi-objective GA based on rank

A parameter rank is introduced in order to apply the

concepts of domination and Pareto optimum to GA. Though

there are some ranking methods such as Fonseca’s ranking

method [8]. According to Fonseca’s ranking, a rank of an

individual xi on a generation t is:

rank(xi, t) = 1 + p
(t)
i

where pi is the total number of individuals which dominate xi.

By evaluating rank for each individual and selecting based on

Fig. 1. Fonseca’s ranking method

it, a population can evolve toward a Pareto optimal solution set.

Since GA is a multi-point search algorithm, GA is expected

to find a Pareto optimal set in a single simulation run.

D. RBF Network

RBF (Radial Basis Function) network is constructed of three

layers as shown in Fig.2 and has basis functions which respond
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locally in the input space. Basis function φj(x) in this study

is defined by Gaussian function,

φj(x) = exp

(
− (x − cj)T (x − cj)

2σ2
j

)
(1)

Here, x is input variable, cj is center vector, and σ2
j is a

parameter which decides function width. Using this φj(x),

RBF network is constructed as:

u(x) = w0 +
m∑

j=1

wjφj(x) (2)

Here, m is the number of hidden units, i.e., the basis functions,

and wj are the output layer weights. RBF network will be

determined if the parameters m, cj , σj , and wj are estimated

based on the data observed from the system. In this study,

these parameters are estimated by two GAs. The parameters

σj are assumed to be constant value for simplicity.

Fig. 2. RBF network

E. Genetic Representation

Multi-objective GA is applied to structure selection of RBF

network. The problem of network structure selection is to

determine the number of basis functions and their center

positions. Here we assume that the center of basis function

is the position of the training data points. The chromosomes

of GA population indicate that each data point is employed

as a center of basis functions or not. That is “1” represents

that a basis function is located at the corresponding training

data point, as shown in Fig.refchromo. By this setting, the

length of the chromosome becomes equal to the number of

training data, the number of “1” gene in the chromosome

indicates the number of basis functions and the locus of the

“1” shows the center position of the basis functions. Then, the

connection weights are estimated by real-coded GA, in which

each individual represents straightforward the weight vectors

consisted by wj , (j = 0, 1, . . . , m).

Thus, two stage GAs are used to give Pareto optimal RBF

network set in this method, the first one is real coded GA

estimating the connection weights for the candidate of RBF

network, the second GA is multi-objective binary coded GA

to examine the structure candidates of the RBF networks. The

overall flow diagram is shown in Fig.4.

Fig. 3. Chromosome representation

Fitness evaluation
Based on observation data

Structure selection  
by NSGA-II (bit string GA)

Terminate?

No

Initial population

Connection weight estimation 
by UNDX (real coded GA) for 

each individual in NSGA-II

Yes
end

Fig. 4. Overall flowchart of the proposed approach

After estimating all the parameters of the network, rank is

assigned for each individual by the concept of multi-objective

optimization problem, in which the objective functions are

to be optimized. Then Pareto optimal individuals will be

obtained.

III. NONLINEAR SYSTEM IDENTIFICATION BY PARETO

ENSEMBLE NETWORK

A. Problem Statement

Here we consider the following single output single input

nonlinear ARX model (Auto Regressive model with eXoge-

nous input),

yt = g(φt) + et (3)

φt = (yt−1, . . . , yt−ny
, ut−1, . . . , ut−nu

)T (4)

where, g(·) represents an unknown nonlinear function, yt ∈ �
and ut ∈ � are system output and input, respectively, and et ∈
� indicates noise term with zero mean and infinite variance. φt

is called as a regression vector composed of delayed inputs and

outputs, ny is unknown maximum delay of output and nu is

unknown maximum delay of input. The overall flow of system

identification is shown in Fig.6 [1]. The proposed method

performs two steps of “model structure determination” and
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System

Model

Noise e(t)

Input u(t) Output y(t)

Fig. 5. System identification

“parameter estimation” simultaneously under the multi criteria.

The criteria are selected by considering model accuracy and

complexity.

Model structure 
determination

Experiment design

Data

Choose criteria

Parameter estimation

Validate Model

Prior Knowledge

OK : Use it

No Good : Revise

Fig. 6. Overall flow of system identification

B. Fitness Evaluation

It is generally demanded that the mathematical models not

only can explain the relationship between input and output

enough but also is simple in order to have the generalization

ability. Then in this study three evaluation criteria are set

for the evaluation of NSGA-II which determines the network

architecture.

The first fitness is the number of basis function. This fitness

indicates the complexity of the model. The second fitness is

log MSE which indicates the extent of a fit of the model to

the training data. MSE(Mean Squared Error) is defined as :

MSE =
1
n

n∑
i=1

{yi − ŷi}2 (5)

Here, yi is the observed output, ŷi is the model output. The

third fitness is the sum of the absolute value of weights

and represents the smoothness of the network. These three

evaluation criteria are to be minimized. Then, the uniform

crossover and the bit reversal mutation are used as genetic

operations in NSGA-II.

In real-coded GA, about genetic operation, UNDX (Unimodal

Normal Distribution Crossover) [22] is applied in the proposed

method. UNDX generates two offsprings by normal random

numbers which is determined by three parents, as shown in

Fig. 7. Basically offsprings are generated by normal distribu-

tion around segment connecting two parents. The third parent

is used to determine the standard deviation of normal distribu-

tion. MSE is used for evaluation in UNDX to estimates the

connection weights.

Fig. 7. UNDX

MGG[23] is adopted as the generation alternation model of

real-coded GA used in the proposed method. MGG is said to

have an ability to preserve the diversity of population. MGG

procedure is as follows.

1) Plurality of real number vector is generated at random

as the initial population.

2) Two parents are selected at random from population.

3) 2nc offsprings are generated by applying UNDX to two

parents nc times. Here the third parent which determines

the standard deviation of normal distribution is selected

from population.

4) Fitness values of each offspring are calculated, then two

individuals are selected from the set which is composed

of two parents and all offsprings, then two parents are

replaced by the selected two individual. The individuals

selected here are elite and the individual selected by

roulette selection in which the elite was pruned.

5) Continue 2–4 until the end condition is met.

C. Pareto RBF Network Ensemble

Various models based on the above mentioned three crite-

rion can be obtained by the proposed method, so the designers

will be able to select one model flexibly. On the other hand,

there are the demand to obtain one model with good gener-

alization ability. For instance, model selection by information

criteria has been studied.

Recently the ensemble learning is receiving much attentions

in the field of machine learning. In the ensemble learning, a

monolithic model is constructed by combining several models.

While some learning methods to make models constructing

ensemble have been proposed, in this study an model ensemble

is constructed by Pareto optimal models obtained by the

proposed method.

Suppose that the number of Pareto models is L and the

output of j-th network is yj(x), then the output of ensemble

network yEN (x) is :

yEN (x) =
L∑

j=1

αjyj(x) (6)
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Here, alphaj is the weight on the output of j-th network. In

the following numerical simulations, alphaj is assumed to be

1/L for each j, for simplicity.

Input ensemble output…

Fig. 8. RBF network ensemble

IV. NUMERICAL EXAMPLES

To show the effect of the proposed approach we show the

following two examples.

In the first simulation, we assume that the true system is

described by

yt = f(yt−1, yt−2, yt−3, ut−1, ut−2) + et. (7)

Where,

f(x1, x2, x3, x4, x5) =
x1x2x3x5(x3 − 1) + x4

1 + x2
2 + x2

3

, (8)

and ey indicates observation noise with mean 0 and variance

σ2
ε . Then, ut, (t = 1, 2, · · · ) are sampled by uniform distri-

bution over [−1, 1] we obtained 50 set of input and output

observation data. Here, assume that the maximum delay ny

and nu are known for simplicity.

The control parameters for genetic algorithms are listed in

the TableI, we carried out simulation runs in the case of σ2
ε =

0.1 for three level widths of RBF function.

TABLE I

CONFIGURATIONS FOR TWO GAS

multi-objective GA UNDX
crossover rate 0.7 –
mutation rate 0.1 –
population size 50 30

The MSE values are shown in the Table. II and the

trajectories of the observed output and the predicted output

by using an ensemble model (6) are indicated in Fig.9, 10 and

11.

TABLE II

NUMERICAL SIMULATION RESULTS (1)

Number of generations
RBF width (σ2) 5 50

1.0 0.201851 0.202434
2.0 0.198471 0.201319
5.0 0.210963 0.214082

Then, we assume that the true system is described by

yt = −0.5yt−2 + 0.7ut−1yt−1 + 0.6u2
t−2

+0.2y3
t−1 − 0.7u2

t−2yt−2.
(9)
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Fig. 9. Trajectories of observed output and one step prediction by the
provided model (σ2 = 1.0)
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Fig. 10. Trajectories of observed output and one step prediction by the
provided model σ2 = 2.0
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Fig. 11. Trajectories of observed output and one step prediction by the
provided model σ2 = 5.0

We carried out simulation runs with same condition as Sim-

ulation 1, but the maximum delay ny and nu are assumed 2

and 3, respectively. The MSE values are shown in the Table.

III and the trajectories of the observed output and predicted

output by using an ensemble model (6) are indicated in Fig.12,

13 and 14.

As shown above two results, the proposed method has ap-

plicability to nonlinear dynamic system identification. Though

the user’s preference for tradeoff or specific setting of the

ensemble weights are not discussed, it will be selected by

means of the purpose of identification.

TABLE III

NUMERICAL SIMULATION RESULTS (2)

Number of generations
RBF width (σ2) delay 5 50

1.0 2 0.179057 0.189671
3 0.251702 0.250289

2.0 2 0.169839 0.169682
3 0.213453 0.212877

5.0 2 0.197117 0.192981
3 0.223191 0.218099
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(a) ny = nu = 2
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(b) ny = nu = 3

Fig. 12. trajectories of observed output and one step prediction by the
provided model σ2 = 1.0
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(b) ny = nu = 3

Fig. 13. trajectories of observed output and one step prediction by the
provided model σ2 = 2.0
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Fig. 14. trajectories of observed output and one step prediction by the
provided model σ2 = 5.0

V. CONCLUSIONS

In this study, we have shown a method of obtaining a

Pareto optimal RBF network set based on multi-objective

evolutionary algorithms. Then we have constructed an ensem-

ble network by the Pareto optimal RBF networks applying

them to nonlinear system identification, and a performance

of the ensemble network as a nonlinear system model has

been also considered. Numerical simulation results indicate

that the ensemble network has an ability to identify nonlinear

systems without specific prior knowledge or information about

the objective systems.

The proposed method has applicability to nonlinear dynamic

system identification. To find the user’s preference for tradeoff

and appropriate settings of the ensemble weights are the

further issues. These may depend on the application field or

the purpose of identification. Reduction of the computational

costs, improvement of the ensemble technique and comparison

to the conventional approaches are also the future works and

they are under investigation.
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