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Abstract - Both experimental and theoretical studies 
have proved that classifier fusion can be effective in 
improving overall classification performance. Classifier 
fusion can be performed on either score (raw classifier 
outputs) level or decision level. While tremendous 
research interests have been on score-level fusion, 
research work for decision-level fusion is sparse.  This 
paper presents a particle swarm optimization based 
decision-level fusion scheme for optimizing classifier 
fusion performance. Multiple classifiers are fused at the 
decision level, and the particle swarm optimization 
algorithm finds optimal decision threshold for each 
classifier and the optimal fusion rule.  Specifically, we 
present an optimal fusion strategy for fusing multiple 
classifiers to satisfy  accuracy performance 
requirements, as applied to a real-world classification 
problem. The optimal decision fusion technique is 
found to perform significantly better than the 
conventional classifier fusion methods, i.e., traditional 
decision level fusion and averaged sum rule.  
 
Keywords: Decision level fusion, multiple classifiers 
fusion, particle swarm optimization.  

1  Introduction 
 
Classifier design is a task of developing a classification 
system that optimizes performance with respect to 
requirements. Traditionally, design of classification 
systems is to empirically choose a single classifier through 
experimental evaluation of a number of different ones. 
The parameters of the selected classifiers are then 
optimized so that the specified performance is met.  Single 
classifier systems have limited performance. For certain 
real-world classification problems, this single classifier 
design approach may fail to meet the desired performance 
even after all parameters/architectures of the classifier 
have been fully optimized. In these cases, classifier fusion 
, one of the most significant advances in pattern 
classification in recent years, proves to be effective and 
efficient [2]. By taking advantage of complementary 
information provided by the constituent classifiers, 
classifier fusion offers improved performance, (i.e., they 
are more accurate than the best individual classifier).  
Classifier fusion can be done at two different levels, 
namely, score level and decision level. In score level 
fusion, raw outputs (scores or confidence levels) of the 

individual classifiers are combined in a certain way to 
reach a global decision. The combination can be 
performed either simply using the sum rule or averaged 
sum rule, or more sophisticatedly, using another classifier. 
Decision level fusion, on the other hand, arrives at the 
final classification decision by combining the decisions of 
individual classifiers. Majority voting rule and Chair-
Varshney [13] optimal fusion rule are two examples of 
decision-level fusion schemes. Chair- Varshney [13] 
optimal decision fusion rule is achieved using the 
individual classifier performance indices. The optimal 
fusion rule can be majority-voting rule but is not limited 
to it.  
      There have been very few studies in optimizing fusion 
system performance. At each level of fusion, alternate 
strategies of fusion exist which can be explored to achieve 
the optimal performance across different costs of miss 
classification. In this paper, decision level fusion is 
chosen and optimization of decision level fusion to 
achieve the required performance is presented.  
     In decision level fusion, shown in Figure 1, each 
classifier under binary hypothesis gives its decision 
regarding the class of the observation. The decisions from 
multiple classifiers are fused at the fusion processor. The 
fusion processor uses a fusion rule to fuse the multiple 
decisions and produces a decision.  
      The most important problem for achieving optimum 
performance at decision level fusion becomes the optimal 
setting of individual decision thresholds. There are 22^N 
possible fusion rules for a binary hypothesis and N 
classifier system. Most of the classifier fusion work done 
in the past neglects all the possible rules that can be 
explored at decision level. Also the decision threshold for 
individual classifier is optimally set to minimize the error 
of the classifier [2]. This is done even before the fusion is 
carried out. This typically entails selection of an operating 
point from the Receiver Operating Characteristic (ROC) 
curve for the individual classifier, which will minimize the 
error for given costs of misclassification. Once the 
decision thresholds for individual classifiers are set, 
majority voting rule or the chair-varshney optimal fusion 
rule is used as the fusion rule. This method, however, does 
not guarantee optimum performance after fusion. 
Performance can be defined under Neymen Pearson 
criterion or Bayesian criterion. 
      In this paper the optimal thresholds and the 
corresponding fusion rule which results in optimum 
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accuracy after fusion are found simultaneously. A particle 
swarm optimization based method is applied to achieve 
optimum decision thresholds for individual classifiers and 
the optimal fusion rule. 
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Figure 1. Decision Level Fusion for Multiple Classifier 
Systems 
 
     The rest of paper is organized as follows. In section 2, 
Decision level fusion under binary classification is 
detailed. Alternate decision fusion strategies are detailed 
for a system involving two classifiers. The resulting 
intractable problem is detailed. Particle Swarm 
Optimization is discussed in Section 3. Formulation of the 
particle for this problem, Bayesian cost function, the 
settings of the PSO used are also detailed in this section. 
Section 4 presents a case study for a real-world 
application problem. Results and discussion are given in 
Section 5. Comparisons of the results with the traditional 
decision level fusion and simple averaged sum rule fusion 
are presented in this section.  Section 6 concludes the 
paper. 

2  Decision Level Fusion  
 
Consider a binary hypothesis-testing problem with 
classifiers evaluating observations that are conditionally 
independent, the two hypotheses are  

0H  : Absence of the class  

1H  : Presence of the class 

The two types of errors commonly known as probability of 
false positives and probability of false negatives (miss) are  
                     )/1( 00 HUPPFP ==                            (1) 

                   )/0( 10 HUPPFN ==                          (2) 

Also,   
                          FNTP PP −= 1                                        (3) 

Where 0U  is the decision of the fusion processor, which 

takes in the decisions from the local classifiers and fuses 
them using the fusion rule. In the following sections, these 
error probabilities for fusion involving 2 classifiers and 
fusion involving N classifiers are derived.  

2.1 Decision Fusion of Two Classifiers 
For the fusion of 2 classifiers, there are 16 potential 
decision fusion rules possible as depicted in Table 1. 
 

Table1: Possible Fusion Rules for 2 Classifiers 
 
 
 
 
 
 
 
 
 
 
 
      Binary strings represent the rules, since the decisions 
are binary (i.e. accept or reject the hypothesis). It has been 
shown that an optimum fusion rule must be monotonic so 
all other rules can be ignored [5]. The most commonly 
used rules are f2 (“AND” rule) and f8 (“OR” rule). The 
“AND” rule makes it more difficult for accepting 
hypothesis as both the classifiers should accept the 
hypothesis. The probability that both the classifiers result 
in an error is low and hence this minimizes the overall 
false positive probability. The “OR” rule eases acceptance 
of hypothesis since hypothesis is accepted as long as one 
of the classifiers says so. This reduces the probability of 
false negatives. The “NAND” rule or f9 is rarely of interest 
since it typically performs poorly. This rule accepts the 
hypothesis if both the classifiers reject and reject 
otherwise. In most cases, this rule does not logically make 
sense and leads to poor performance. The f1 rule simply 
rejects the hypothesis irrespective of individual classifiers 
decisions. Similarly, the f16 rule accepts the hypothesis 
irrespective of the individual classifiers decisions. These 
two rules are rarely of interest, however constitute the two 
ends of the receiver-operating characteristic curve.  The 
system can completely ignore one classifier by using the f4 

(classifier 1) or f6 (classifier 2) rules. These six rules 
constitute the monotonic set for two classifiers fusion. 
Number of monotonic rules increase as the number of 
classifiers increase. For example, for three classifiers there 
are 20 monotonic fusion rules. For more information on 
monotonic rules the reader is referred to [5].   

2.2 The AND / OR Dichotomy 
The “AND” and “OR” rules for 2 classifier fusion 
constitute a very important and dichotomous set. As the 
number of classifiers increase the fusion rules are 
constructed from these two operators. The third operator 
in a binary logic is the “NOT” operator which when 
introduced produces non-monotonic rules and lead to 
higher errors.  In this section the dichotomy of “AND”/ 
“OR” rules is detailed. Independence of observations is 
assumed in this section.  
The probability of false positives for 2 classifiers with the 
“AND” rule, becomes 

                                21
FPFPFP PPP ×=                           (4) 

 
and   

129

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)



 
 
 

                   2121
FNFNFNFNFN PPPPP ×−+=               (5) 

where i
FPP is the probability of false positive of the ith 

classifier and i
FNP is the probability of false negatives for 

the ith classifier. 
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Figure 2: AND vs. OR rule for Two Classifiers. 

 
     It is apparent that if the error probabilities are 
improved or smaller for the new classifier this decreases 
global false positives while increasing the global false 
negatives. Thus, global performance improves if the 
decrease in false positives is greater than the increase in 
false negatives for equal costs assigned for both the errors. 
The degradation in false negatives can be significant if the 
two classifiers are not comparable in terms of accuracy. 
The OR rule reverses this effect giving 

                                 21
FNFNFN PPP ×=                        (6) 

and 

                       2121
FPFPFPFPFP PPPPP ×−+=             (7) 

     In Figure 2, the ROCs for these two rules, as applied to 
outputs of classifiers designed to detect pipeline defect is 
shown. Figure 2; support a comparison of the rules’ 
performance. The “AND” rule achieves a much lower 
false positive rate (in percentages) at the expense of 
increasing false negative rate reflected in the decrease of 
True Positive rate on the y-axis.  The “OR” rule however, 
works on improving the true positive rate at the expense of 
higher false positive rate. As can be seen that above the 
cross over line, shown in Figure 2, ROC pertaining to the 
“OR” rule dominates, while below the cross over line the 
“AND” rule ROC dominates. The crossover point is 
related to single classifier accuracy, implying that fusion is 
not required if we intend to operate in this region on ROC. 
On these points it would be beneficial to switch to a more 
accurate classifier. It should be noted here that identical 
thresholds for both the classifiers were set before fusing 
them with “AND” and “OR” rules. In case of 2 classifier 
fusion simultaneous improvements in FPR and TPR are 
impossible to achieve. One must choose to improve one of 
the two performance parameters, either the false positive 
rate or true positive rate. Global performance optimization 

can be done by searching for optimal thresholds for each 
classifier. Such an optimization will result in the 
maximizing the improvement of one error probability 
while minimally affecting the other error probability, 
resulting in a global minimum of a weighted cost function 
described later in Section 2.4, equation (18). Fusion of two 
classifiers is still beneficial than the single classifier 
system as one can argue that for the same false positive 
probability one can achieve higher true positive 
probability. However, the gain is always constrained by 
the less accurate classifier. 
     It should be easy to see how the increase in the false 
negative probability due to “AND” rule applied to 2 
classifiers can be compensated by introducing a third 
classifier with an “OR” rule between it and the other two, 
i.e., (1 AND 2) OR 3. Careful selection of the individual 
thresholds can result in a significant reduction of the false 
negative probability while not affecting the false positive 
probability and hence can result in reduction of both false 
positive and false negative probabilities simultaneously 
when three classifiers are involved in fusion. However, the 
third classifier should be of comparable accuracy and 
should be diverse. Setting each classifier thresholds and 
the fusion rule to achieve this improvement is not trivial 
and becomes more and more complex as the number of 
classifiers involved in fusion is increased. This problem is 
a well-known intractable problem [6]. In this paper a 
particle swarm optimization based approach is used to 
achieve the optimal thresholds and the fusion rule.  
2.3 Decision Level Fusion for N Classifier 
Systems 
In this section the calculation of the error probabilities for 
a N classifier system given the individual thresholds and 
fusion rule is derived. FPP , FNP  of the fused system is 

calculated from the fusion rule and individual classifier 
i

FPP  and i
FNP .  

Table 2: Fusion Rule Formation for Two Classifiers 

1u  2u  f 

0 0 
0d  

0 1 
1d  

1 0 
2d  

1 1 
3d  

For example, with two classifiers the fusion rule consists 
of 4 bits, as represented in Table 2. In Table 2, 1u is the 

first classifier decision, and 2u is the second classifier 

decision. The fusion rule is of length l bits where  
                                      2logl p=                              (8)  

where 22
N

p = , N is the number of classifiers. 

The global decision replaces { 0d , 1d , 2d , 3d } with 0s 

and 1s in their respective locations within f. The global 
error rates can then be computed directly from  

Cross Over Line 
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� ∏                           (9) 
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1 ,       ( 0)

,            ( 1) 
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� − =�= � =��
                (10) 

 

and                            

                  
1

0 1

(1 )
p N

FN i j
i j

P d E
−

= =

� �
= − × � �

� �
� ∏                 (11) 

where  

             
,            ( 0)

1 ,        ( 1) 

j
FN j

j j
FN j

P u
E

P u

� =�= � − =��
                (12) 

i
FPP is the probability of false positives of the ith classifier 

and is given by  

                     0( 1/ )i
FP iP P u H= =                       (13) 

                       0( / )
i

i
FP iP P z H

λ

∞

= 	                             (14) 

and  

                        1( 0 / )i
FN iP P u H= =                        (15) 

                          1( / )
i

i
FN iP P z H

λ

−∞

= 	                         (16) 

where iλ  is the threshold at which the classifier is set. 

iz is the raw output of the classifier conditioned over H1 or 

H0. Hence, FPP  is a function of thresholds (local decision 
rules) of all the classifiers and the optimal fusion rule.   
                     ),..........,( 21 fgP nFP λλλ=                     (17) 

Where iλ  is the decision threshold for the ith classifier 

and ‘f’ is the fusion rule. Similarly PFN is also the function 
of local decision rules and fusion rule. 
 

2.4 Bayesian Error in Decision Fusion  
In this paper an assumption of equal prior probabilities is 
made and an additional cost of making errors are defined, 
which are cost of false positives and cost of false 
negatives. These are often used to evaluate the fusion 
system performances.  The Bayesian cost (error), which 
the paper intends to minimize, is  
                    FNFNFPFP PCPCE ×+×=                     (18) 

Where  

                              FNFP CC −= 2                                (19) 

Eq (18) is a weighted multi-objective function, which is 
minimized by the optimization routine. It is assumed that 
the costs of making an error are given as requirements to 
the system. Note that the cost of true positive and true 
negatives is set to zero in Eq (18). The probability of false 
positives and probability of false negatives in (18) are the 
global false positives and false negative probabilities 
derived in (9), (11). In the previous section the calculation 
of these two for a 2 classifier system were discussed.  
     The aim of the optimization algorithm is to come up 
with the local decision thresholds such that (18) is 
minimized. The problem of optimal setting of local 
decision rules and the optimal fusion rule minimizing the 
total probability of error has been extensively studied. It 
has been shown in [5, 6] that finding optimal decision 
rules for each individual classifiers as well as 
corresponding optimal fusion rule is intractable. Person-
by-Person Optimization (PBPO) has been traditionally 
used and suggested to solve this problem [14]. In PBPO 
approach, optimum decision threshold is found for a 
classifier while keeping others fixed at previously attained 
values. This process is done for each of the classifier and 
is repeated iteratively until convergence or in other words 
equilibrium is achieved. Equilibrium is attained when, for 
a set of such decision thresholds and fusion rule, no 
improvement is obtained by adjusting the decision 
threshold for any given classifier while leaving others 
fixed [4]. These are called person-by-person optimal 
solutions and hence the name PBPO. For any problem 
there maybe multiple equilibrium states. Hence, multiple 
initializations for the problem at the starting of the 
algorithm are required to increase the probability of 
reaching global optima [14]. With large number of 
classifiers the number of multiple initializations required 
also increases. In this paper particle swarm optimization 
algorithm is used to achieve optimal local thresholds and 
the optimal fusion rule.  
 

2.5 Traditional Decision Level Fusion  
Traditional decision level fusion strategies apply 
maximum likelihood ratio test as in (20) to derive the 
optimal threshold for each classifiers measurement. The 
threshold is applied to arrive at a hard decision.  

                

0

1

0

1

( / )
log log

( / )
j FN

j FP

H
P z H C
P z H C

H



�

                (20) 

The hard decisions can be combined using a majority 
voting rule or chair-varshney rule as in   

 

  
( ) ( )

0

1

1

1
log 1 log log

21
j j

j j

N
FPFN FN

j j
FPj FP FP

H
P P C

u u
P CP

H
=

� � �� �− <� � � � � �� �+ −� � � � � �� � > −� �−� � � �� � � �� �
�

  (21) 

where ui is the decision of the ith classifier. In this paper, 
comparisons are done between the optimized decision 
level fusion and the traditional decision level fusion. Note 
that chair varshney (CV) rule assumes independence of 
classifiers.  An equivalent of CV rule is presented for 
correlated classifiers in [15].  
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3  Particle Swarm Optimization  
 
The particle swarm optimization algorithm was originally 
introduced in terms of social and cognitive behavior by 
Kennedy and Eberhart in 1995 [3].  The power in the 
technique is its fairly simple computations and sharing of 
information within the algorithm as it derives its internal 
communications from the social behavior of individuals. 
The individuals, called particles henceforth, are flown 
through the multi-dimensional search space with each 
particle representing a possible solution to the multi-
dimensional problem. Each solution’s fitness is based on a 
multi-objective performance function related to the 
optimization problem being solved.  
The movement of the particles is influenced by two factors 
using information from iteration-to-iteration as well as 
particle-to-particle. As a result of iteration-to-iteration 
information, the particle stores in its memory the best 
solution visited so far, called pbest, and experiences an 
attraction towards this solution as it traverses through the 
solution search space. As a result of the particle-to-particle 
information, the particle stores in its memory the best 
solution visited by any particle, and experiences an 
attraction towards this solution, called gbest, as well. The 
first and second factors are called cognitive and social 
components, respectively. After each iteration the pbest 
and gbest are updated for each particle if a better or more 
dominating solution (in terms of fitness) is found. This 
process continues, iteratively, until either the desired result 
is converged upon, or it’s determined that an acceptable 
solution cannot be found within computational limits.    
The PSO formulae define each particle in the D-
dimensional space as ),....,,( 21 iDiii xxxX = , where the 

subscript ‘i’ represents the particle number and the second 
subscript is the dimension. The memory of the previous 
best position is represented as ),....,,( 21 iDiii pppP =  
and a velocity along each dimension as 

),....,,( 21 iDiii vvvV = . After each iteration, the velocity 

term is updated and the particle is pulled in the direction 
of its own best position, Pi and the global best position, Pg, 
found so far. This is apparent in the velocity update 
equation, [3].  
 

( 1)  t
idV + =

( ) ( ) ( )
1

( ) ( )
2

[0,1] ( )

[0,1] ( )

t t t
id id id

t t
gd id

V U p x

U p x

ω ψ
ψ

× + × × − +

× × −
 .      (22) ����

             )1()()1( ++ += t
id

t
id

t
id VXX                     (23) 

where U [0,1] is a sample from a uniform random number 
generator, t represents a relative time index, 1ψ  is a 

weight determining the impact of the previous best 
solution, and 2ψ  is the weight on the global best 

solution’s impact on particle velocity. For more details of 
the particle swarm optimization algorithm the reader is 
referred to [11]. 
3.1 PSO for Decision Fusion  
Each particle in this problem has ‘N+1’ dimensions, 
where N is the number of classifiers in   the classifier 
ensemble. Each of the N dimensions is a threshold at 
which a particular classifier is set. The ‘N+1’ th 

dimension is the fusion rule, which determines how all the 
decisions from the classifiers are fused. Hence the 
representation of each particle is, 

),..........,( 21 iiniii fX λλλ= . The classifier thresholds 

are continuous. The fusion rule, however, is a binary 
number having a length of p2log  bits, where 

N

p 22= for ‘N’ classifiers, with a decimal value varying 

from 0 ( ) 1dec f p≤ ≤ − .  For binary search spaces, 
the binary decision model as described in [3] is being 
used. Hence the PSO used in the paper is a hybrid of both 
binary PSO and continuous PSO; binary for evolving the 
fusion rule, continuous for thresholds. The two objectives 
for this problem are given by (9), (11). The goal is to 
minimize both the PFP and PFN. At each iteration, the 
particles representing the solution for the problem are 
evaluated for these objectives using the weighted cost 
function (18). The memory of the particle is updated if it 
finds better minima. The particles are moved in the search 
space based on equations (22) and (23) and these steps are 
iteratively repeated till convergence occurs or the 
requirements are fulfilled.  

4  A Real-world Application 
 
To demonstrate the effectiveness of particle swarm 
optimization based decision-level fusion scheme proposed 
in this paper, we apply the fusion scheme to a real-world 
fault detection problem. The real-world application 
concerned in this paper is an automated defect detection 
system for non-destructive inspection. The system 
designed is for determining the conditions (normal or 
defected) of pipelines based on ultrasonic images. For 
classifier design, 5600 examples representing different 
conditions of the target object are used. Of the 5600 
examples, 2600 are for defected condition while 3000 are 
for normal condition. To enhance classification 
performance, 370 features were extracted from the raw 
ultrasonic images using various methods from different 
domains. The classification performance requirement is 
less than 55% false positive rate with the true positive rate 
of greater than or equal to 98%. 
     Ten (10) neural networks are used as the base 
classifiers for classifier fusion. By using 10 networks we 
followed the suggestion of Opitz and Maclin [12] who 
reported that ensembles with as few as 10 base classifiers 
are adequate to sufficiently reduce error. The networks are 
fully connected feed-forward type with a single hidden 
layer. To increase the diversity of those individual 
classifiers, which is important for obtaining improved 
fusion performance, each network uses different number 
of hidden neurons. Additionally, each network uses 
different training data that are obtained by randomly 
sampling, with replacement, from the original data set. 
Furthermore, each network uses different features that are 
selected through a GA-based feature selection process. See 
(Yan et al., 2004) [9] for details on GA-based feature 
selection and the design of the 10 neural networks. 
The conditional density functions, conditioned over 
hypothesis  
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0     :    H No Defect  

1      :  H Defect  

 are formed for the 10 classifiers. These conditional 
density functions can be fitted to some well-known 
distributions and the models can be used to perform the 
optimization using PSO. For example, if it fits well one 
can fit the data to a normal distribution and use error 
functions to optimize the fusion strategy. In this paper, we 
apply the PSO to the actual data since the data size is 
within reach of the computational power used for 

simulation in this paper.  

5  Results and Discussion  
 
We applied the PSO based optimization technique for 
decision level fusion of two, three, five, seven classifiers. 
The thresholds and the corresponding fusion rule were 
generated for the cost (CFP) values ranging from 0 to 2 to 
generate a Receiver Operating Characteristic Curve. The 
ROC curves achieved are shown in Figures 3,4,5,6,7. 
Each point on the ROC curve of the decision level fusion 
corresponds to a different fusion configuration defined by 
the thresholds for the individual classifiers and the fusion 
rule. This is found by PSO, which minimizes (18) for a 
particular cost (CFP). Comparisons are done with the 
traditional decision fusion and averaged sum rule. In 
averaged sum rule all the classifier outputs are averaged 
and a threshold is applied to arrive at the final decision.  
All the outputs from the classifiers are averaged and the 
resulting distribution is subjected to varying decision 
threshold to generate the ROC for the averaged sum rule.  

5.1 Traditional Decision fusion vs. Optimized 
Decision fusion 
The data is split into three parts. One part is used as 
training data to arrive at optimal thresholds and the fusion 
rule. The other two datasets are used to test the fusion 
strategy achieved using the training data.  
The thresholds and fusion rule are achieved using PSO 
and the traditional decision fusion strategies as in (20) and 
(21). The results achieved when applied to the test data are 
presented for different costs of false positives.  
 
Table 3 Traditional Decision Fusion vs. Optimized 
Decision Fusion for CFP=1 

Traditional Decision 
Fusion 

Optimized Decision 
Fusion 

Appr.
/ 
#Clas
sifiers 

Train 
FPR, TPR 

% 

Test 
FPR, TPR % 

Train 
FPR, TPR 

% 

Test 
FPR, TPR % 

Five  12.2, 83.51 13.95, 82.89 12.8, 86.4 13.55, 85.71 

Seven 12.5, 83.65 13.15, 82.96 12.4, 86.67 14.9, 85.85 

 
In table 3, 4, 5 results are presented for traditional 
decision fusion and optimized decision fusion using PSO. 
Table 5 gives the Bayesian error values for the two 
approaches for different costs as applied to the test data. 
The optimized decision level fusion performed better for 
all the three costs. Note that traditional decision fusion has 
extremely biased performance due to the two-step 
optimization procedure adopted.  

5.2 Comparisons with Averaged Sum Rule  
Figure 3, 5, 7 show the comparisons for the 2, 3, 5 
classifier scenario. The decision level fusion with PSO 
produces a dominating ROC when compared to the 
averaged sum rule. In figures 4, 6 the ROC between 96% 
and 99% of TPR is zoomed for 2 classifier and 3 classifier 
system. The performance enhancement by using optimal 
decision fusion strategy as generated by the PSO is seen 
more clearly in these graphs. 
 
Table 4 Traditional Decision Fusion vs. Optimized 
Decision Fusion for CFA=0.1 

Traditional Decision 
Fusion 

Optimized Decision 
Fusion 

Appr. 
/ # 
Classi
fiers 

Train 
FPR, TPR 

Test 
FPR, TPR 

Train 
FPR, TPR 

Test 
FPR, TPR 

Five  88.2, 100 90.1, 99.93 57.3, 99.17 61.05, 98.55 

Seven 91.8, 100 92.75, 99.93 61.2, 99.58 64.1, 98.49 

 
Table 5 Traditional Decision Fusion vs. Optimized 
Decision Fusion for CFP=1.9 

Traditional Decision 
Fusion 

Optimized Decision 
Fusion 

Appr.
/# 
Classi
fiers  

Train 
FPR, TPR 

% 

Test 
FPR, TPR % 

Train 
FPR, TPR % 

Test 
FPR, TPR 

% 
Five  0.2, 19.91 0.1, 20.26 0.5, 41.62 0.85, 40.93 

Seven  0.2, 16.34 0.1, 15.38 0.2, 37.22 0.5, 36.81 

 
Table 5 Bayesian Errors for Traditional Decision Fusion 
vs. Optimized Decision Fusion  (Testing) 

Traditional Decision 
Fusion 

Optimized Decision 
Fusion 

CFA 

Five Seven Five  Seven 

1  0.3106 0.3019 0.2784 0.2905 

1.9  0.8164 0.08652 0.07522 0.07269 

0.1 0.09142 0.09407 0.0886 0.0927 

  
     

 
 

Figure 3: Optimal Decision Level Fusion vs. Averaged 
Sum rule for Two Classifiers 

 
The results shown in the figures are for a TPR > 93%. It 
should be noted that it is very difficult to achieve any 
performance improvements in this region of ROC. Also 
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the output scores of classifiers are highly correlated which 
makes performance enhancements very hard to achieve. 
Also the results presented in this section are derived using 
the entire data as training data. In future work, 
testing/cross validation will be done to establish the 
performance advantages of the optimized decision level 
fusion over averaged sum rule. 

 
 

Figure 4: Optimal Decision Level Fusion vs. Averaged 
Sum rule for Two Classifiers 

 

5.3 Constrained Performance Requirements 
Constrained performance requirements can be specified in 
different forms, depending on which rate (FPR or FNR or 
both) needs to be set to a predetermined level. In this 
paper, we only consider the constrained performance 
requirement as being to minimize FPR while maintaining 
TPR (= 1-FNR) to a predetermined value. Let the 
predetermined large number be α , the constrained 
performance can then be expressed as 
                    )min(FPR  Subject to α≥TPR                (22) 
Alternatively, the constrained performance requirement is 
to minimize the quantity [10] 

 

 
 

Figure 5: Optimal Decision Level Fusion vs. Averaged 
Sum Rule for 3 Classifiers. 

                           
                     )( αλχ −⋅+= TPRFPR                  (23) 

 

where λ is a Lagrange multiplier.  
     Mathematically, the constrained performance 
requirement is a constrained optimization problem that is 
somewhat difficult to solve.  

 
Figure 6: Optimal Decision Level Fusion vs. Averaged 

Sum Rule for 3 Classifiers. 
     In Table 6 results obtained for the constrained 
performance requirements by both the schemes is 
presented. The requirement on True Positive Rate was set 
to 98 % and the objective of fusion was to achieve 
minimum possible false positive rate. The point from the 
ROC of decision level fusion, which resulted in TPR > 
98% was chosen to compare with the same from the 
averaged sum rule. Alternatively, one can modify the PSO 
cost function to reflect the constrained performance 
requirements and search for optimal fusion configuration. 
Such a point may or may not be in the set fusion strategies 
we evolved for different costs of false positives in the 
Bayesian error cost function (18). However, in this paper 
we ran PSO for costs of 1.6 to 2.0 in discrete steps of 0.1 
and chose a strategy, which satisfied the performance 
requirements. The results achieved below show the 
performance enhancement using the PSO for the decision 
level fusion over the simple averaged sum rule. 
 
Table 6. Meeting performance Requirements  

Fusion Strategy TPR(>98 %) FPR 

2 Classifiers Averaged Sum rule  98.17 54.67 

2 Classifiers Decision Level fusion  98.2143 53.9667 

3 Classifiers Averaged Sum rule 98.03 51.17 

3 Classifiers Decision Level fusion 98.0311 50.2333 

    
As can be seen from the above table decision level fusion 
with a PSO based optimization technique achieved better 
results in both the cases. When 2 classifier fusion is 
employed the decision level fusion achieved a perfectly 
dominating point i.e., TPR (DLF-PSO) > TPR(ASR)  and 
FPR(DLF-PSO) < FPR (ASR). We achieved a significant 
performance improvement of 0.7 % in FPR while also 
improving the TPR by 0.04 %.  
Also when three classifiers are employed the achievements 
have improved when compared to the 2-classifier system. 
An improvement of 0.94% was achieved in FPR while 
also improving the TPR by 0.0011 %. The aim here was to 
achieve a lower FPR for a TPR above 98%. Hence to 
summarize the improvements have been 0.7% for 2-
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classifier system and 0.94 % for a 3-classifier system 
which are significant improvements for this application. 

30 40 50 60 70 80 90
93

94

95

96

97

98

99

100

FPR-->

TP
R

 --
>

Optimal Decision Level Fusion vs. Averaged Sum Rule 

Averaged Sum Rule
Optimal Decision Level Fusion Using PSO

 
Figure 7: Optimal Decision Level Fusion vs. Averaged 

Sum Rule for 5 Classifiers. 
      

6  Conclusions 
 
The results presented in this paper show the performance 
advantage of using a decision level fusion scheme. The 
optimized decision level fusion is found to be performing 
better than the traditional decision level fusion. Often 
decision level fusion techniques are considered as 
suboptimal when compared to other fusion approaches. 
Such suboptimal performance is due to the two-layered 
optimization approach adopted by researchers while using 
decision fusion. 
Also results presented show a promise of decision level 
fusion as compared to averaged sum rule. Also it is 
interesting to find that the combination of highly 
contrasting fusion rules as “AND” and “OR” result in 
better performance than the averaged sum rule. Particle 
swarm optimization problem is used to achieve the 
optimal decision fusion strategy, which is an intractable 
problem.  
     A similar fusion scheme can be devised at score level 
using the min and max rules. In future work a fusion 
scheme will be devised at the score level using a 
combination of min, max rules which are analogous to 
“AND” and “OR” rules.    
Cross validation will be performed to establish the 
performance advantages due to optimization of decision 
fusion using PSO. The algorithm will also be applied to  
classifiers involving multiple modalities.    
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