
  

  

Abstract—Two industrial deployments of multi-criteria 

decision-making systems at General Electric are reviewed from 

the perspective of their multi-criteria decision-making component 

similarities and differences. The motivation is to present a 

framework for multi-criteria decision-making system 

development and deployment. The first deployment is a financial 

portfolio management system that integrates hybrid multi-

objective optimization and interactive Pareto frontier decision-

making techniques to optimally allocate financial assets while 

considering multiple measures of return and risk, and numerous 

regulatory constraints. The second deployment is a power plant 

management system that integrates predictive modeling based on 

neural networks, optimization based on multi-objective 

evolutionary algorithms, and automated decision-making based 

on Pareto frontier techniques. The integrated approach, 

embedded in a real-time plant optimization and control software 

environment dynamically optimizes emissions and efficiency while 

simultaneously meeting load demands and other operational 

constraints in a complex real-world power plant. 
 

Index Terms — Financial portfolio, hybrid optimization, 

industrial control, evolutionary algorithms, Pareto frontier, 

neural networks, multiple objectives, decision-making. 
 

I. INTRODUCTION 

E review two industrial deployments of multi-criteria 

decision-making systems at General Electric from the 

perspective of their constituent components. The deployments 

highlighted represent extreme points of a framework for the 

structured development, deployment, and update of multi-

criteria decision-making systems. The eight principal system 

components considered are: 
 

- Runtime requirements 

- Deployment architecture 

- Response evaluation, 

- Search method, 

- Objectives and constraints complexity, 

- Uncertainty management, 

- Decision-making needs and method, and  

- Update requirements for solution fidelity. 
 

The first deployment [1] is a financial portfolio management 

 
 

system that integrates hybrid multi-objective optimization and 

interactive Pareto frontier decision-making techniques to 

optimally allocate financial assets while considering multiple 

measures of return and risk, and numerous regulatory 

constraints. The hybrid multi-objective optimization approach 

combines evolutionary computation with linear programming 

to simultaneously maximize these return measures, minimize 

these risk measures, and identify the efficient frontier of 

portfolios that satisfy all constraints. The method combines a 

novel interactive graphical decision-making method that 

allows the decision-maker to quickly down-select to a small 

subset of efficient portfolios. The approach has been tested on 

real-world portfolios with hundreds to thousands of assets, and 

is currently being used for investment decision-making in 

industry. 
 

The second deployment [2] is a power plant management 

system that integrates predictive modeling based on neural 

networks, optimization based on multi-objective evolutionary 

algorithms, and automated decision-making based on Pareto 

frontier techniques. The predictive models are adaptive, and 

continually update themselves to reflect with high fidelity the 

gradually changing underlying system dynamics. The 

integrated approach, embedded in a real-time plant 

optimization and control software environment has been 

deployed to dynamically optimize emissions and efficiency 

while simultaneously meeting load demands and other 

operational constraints in a complex real-world power plant. 
 

In each of these deployments, we leverage, represent, and 

incorporate domain knowledge for robust problem solving and 

decision-making (see [3] for a deeper exposition on this 

concept). 
 

The rest of this paper is organized as follows: Section II 

presents background on topics relevant to this paper; Section 

III presents a comparative review of the multi-criteria 

decision-making components of these two deployed systems. 

We conclude in Section IV. 
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II. BACKGROUND 

In this section, we present background in multi-objective 

evolutionary algorithms, portfolio optimization, neural 

networks, and model-predictive optimization and control. 
 

A. Multi-objective Optimization 

Most real-world optimization problems have several, often 

conflicting objectives.  Therefore, the optimum for a multi-

objective problem is typically not a single solution—it is a set 

of solutions that trade-off between objectives. The Italian 

economist Vilfredo Pareto first generally formulated this 

concept in 1896 [4], and it bears his name today. A solution is 

Pareto optimal if (for a maximization problem) no increase in 

any criterion can be made without a simultaneous decrease in 

any other criterion. The set of all Pareto optimal points is 

known as the Pareto frontier or alternatively as the efficient 

frontier.  
 

A review of mathematical programming-based optimization 

methods for multi-objective problems is presented in [5]. 

These techniques generally require multiple executions to 

identify the Pareto frontier, and may in several cases be highly 

susceptible to the shape or continuity of the Pareto frontier, 

restricting their wide practical applicability. Evolutionary 

algorithms have received much attention for use in numerous 

practical single objective optimization and learning 

applications. The area of evolutionary multi-objective 

optimization has grown considerably, starting with the 

pioneering work of Schaffer [6].  Since evolutionary 

algorithms inherently work with a population of solutions, they 

are naturally suited for extension into the multi-objective 

optimization problem domain, which requires the search for 

and maintenance of multiple solutions during the search.  This 

characteristic allows finding an entire set of Pareto optimal 

solutions in a single execution of the algorithm.  Additionally, 

evolutionary algorithms are less sensitive to the shape or 

continuity of the Pareto front than traditional mathematical 

programming-based techniques. In the past decade, the field of 

evolutionary multi-objective decision-making has been 

significantly energized, due in part to the multitude of 

immediate real-life applications in academia and industry.  

Several researchers have proposed evolutionary multi-

objective optimization techniques, overviews, and their 

comparisons (e.g. [7]-[8]). 
 

B. Multi-objective Portfolio Optimization 

Modern Computational Finance has its historical roots in the 

pioneering portfolio theory of Markowitz [9]. This theory is 

based on the assumption that investors have an intrinsic desire 

to maximize return and minimize risk on investment. Mean or 

expected return is employed as a measure of return, and 

variance or standard deviation of return is employed as a 

measure of risk. This framework captures the risk-return 

tradeoff between a single linear return measure and a single 

convex nonlinear risk measure. The solution typically 

proceeds as a two-objective optimization problem where the 

return is maximized while the risk is constrained to be below a 

certain threshold. Varying the risk target and maximizing on 

the return measure obtains the well-known risk-return efficient 

frontier. This framework however is unsuitable for practical 

portfolio design where it is important to consider measures 

beyond the mean and variance of returns, as portfolio 

managers are also concerned with measuring and optimizing 

the risk of losing all or most of a portfolio’s value due to 

catastrophic events. In a normal situation, a portfolio’s value 

fluctuates around its mean due to market volatility and other 

risk drivers. However, a portfolio may lose a significant 

amount of its value from a low-probability-high-impact event. 

A suitable measure—Value at Risk (VaR), which captures this 

risk aspect, is typically nonlinear but also nonconvex. Portfolio 

managers may also deal with an optimization problem that 

involves multiple return measures, as while some may be 

concerned with accounting incomes as well as economic 

returns, others may be concerned with long-term as well as 

short-term returns. 
 

While return measures are typically linear, risk measures are 

typically nonlinear and often nonconvex. In a portfolio design 

problem with strictly linear objectives and constraints, a linear 

programming solution approach is the best fit. However, if one 

or more of the objectives are nonlinear, alternative approaches 

are required. For high-dimensional portfolio design problems 

with linear constraints where the return measure is linear, and 

the risk measure is nonlinear but convex, Chalermkraivuth et 

al. [10] developed a novel Sequential Linear Programming 

algorithm for rapidly identifying the efficient frontier. The 

method proceeds by initially solving a relaxation of the 

problem without regard to risk, and later sequentially applying 

tighter linear constraints obtained by the linearization of the 

nonlinear convex risk function to generate the efficient risk-

return frontier. At each sequential step, the return function is 

maximized subject to satisfaction of linear constraints. 

However, when one or more of the measures are nonconvex, 

an alternative optimization approach is required. 
 

C. Relevant Work in Evolutionary Portfolio Optimization 

An early approach to evolutionary portfolio optimization was 

presented in [11]. Chang et al. [12] present a comparison of 

Tabu Search, Simulated Annealing, and Evolutionary 

Algorithms on the Markowitz mean-variance portfolio 

optimization problem. Ehrgott et al. [13] use neighborhood 

search, Tabu Search, Simulated Annealing, and a Genetic 

Algorithm for a portfolio optimization problem with objectives 

aggregated via user-specified utility functions. This, and the 

previous evolutionary portfolio optimization approaches have 

solved the inherently multi-objective optimization problem 

using single objective optimization techniques. Elicitation of 
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relative weights or utility functions to aggregate the multiple 

objectives can often be very difficult, and restricts flexibility to 

changing decision-maker preferences. Streichert et al. [14] 

have proposed an evolutionary multi-objective optimization 

approach to a Markowitz mean-variance portfolio optimization 

problem. Though in this approach the authors have attempted 

to solve a portfolio optimization problem with realistic 

constraints, they have optimized over only two objectives—

one linear return objective, and one convex nonlinear risk 

objective. In contrast to these prior attempts, our approach is 

able to handle multiple measures of return and risk in a truly 

multi-objective optimization sense. Our problem formulation 

includes multiple linear and nonlinear measures of risk and 

return, and a large number of real-world linear allocation 

constraints including the basic knapsack additive requirement 

(i.e. sum of all fractional allocations must equal 1). This latter 

constraint characteristic is a key differentiator to earlier 

formulations such as in [13] wherein the knapsack additive 

requirement is the principal constraint with some additional 

constraints to bound allocation fractions. Recently, 

metaheuristic and hybrid evolutionary techniques have been 

applied to the portfolio optimization problem [15]-[16].  
 

We have developed [1] a novel hybrid evolutionary multi-

objective portfolio optimization algorithm that integrates 

evolutionary computation with linear programming for 

portfolio design problems with multiple measures of risk and 

return, where the measures may be nonlinear and nonconvex. 

We have also developed a novel interactive graphical 

decision-making method that allows a decision-maker to 

quickly down-select to a small subset of efficient portfolios via 

iterative constrained selections of portfolios represented as 

points projected in two-dimensional graphs over the 

combinations of the various return and risk measures utilized. 

In contrast to prior approaches, importantly, our approach 

incorporates a systematic approach for portfolio decision-

making, which has thus far been lacking in the literature. 
 

D. Predictive Modeling 

Predictive models are routinely used in a variety of business, 

industrial, and scientific applications.  These models could be 

based on data-driven construction techniques, based on 

physics-based (e.g. lumped parameter models) construction 

techniques, or based on a combination of these techniques. 

Typically, data-driven modeling is applied for modeling 

complex systems for which the physics is not well understood, 

or for which a physics-based model is very difficult to develop 

and maintain at the accuracy levels required of the application. 

Physics-based models may as well have approximation issues 

due to simplification of the model structure and uncertainties 

involved in parameter estimations. 

 

Neural network modeling is a well-known instance of data-

driven predictive modeling, and utilizes computational 

structures/systems composed of many simple interconnected 

but parallel functional and gain elements [17]. Such structures 

are modeled on structures in biological nervous systems. Their 

computational paradigm is one of “parallel distributed 

processing,” and such structures are capable of multivariable, 

nonlinear, non-parametric modeling. They are also universal 

approximators [18]. Such data-driven models are trainable 

using mathematically well-defined algorithms (e.g., learning 

algorithms). That is, such models may be developed by 

training them to accurately map system inputs onto system 

outputs based upon measured or existing process data.  This 

training requires the presentation of a diverse set of several 

input-output data vector tuples to the training algorithm.  The 

system’s historical operational data is first subject to extensive 

cleansing and filtering to make it suitable for deriving input-

output relationships. The trained models may then accurately 

represent the input-output behavior of the underlying 

processes. As a result, neural networks have been widely used 

for modeling, classification, and prediction across a wide 

spectrum of scientific and engineering applications. They also 

have a rich history of application in the modeling and control 

of dynamic systems [19]. 
 

E. Model-predictive Optimization and Control 

Model-predictive control of industrial processes has a rich 

research and applications history (e.g. [20]-[24]), so the 

interested reader is referred to these articles for further study. 

In this approach, a forward-looking predictive system model is 

probed by an optimization algorithm to identify and deploy a 

control strategy or system inputs (setpoints) as a function of 

time and operational needs. 
 

Prior work in the space of model-predictive control 

techniques that leverage neural networks for modeling and 

single-objective evolutionary algorithm methods for 

optimization that probe these models to identify an optimal 

input vector, appear in (e.g. [25]-[29]). When multiple 

objectives need to be considered, these approaches apply a 

linear or nonlinear aggregation function over the objectives. 
 

We now review prior work in the space of model-predictive 

techniques that leverage neural networks for modeling and 

multi-objective evolutionary algorithms for optimization. This 

concept has been applied to the control of robot arms [30], to 

robot path planning [31], and to a simplified model of a single-

input single-output nonlinear system [32]. Compared to these 

prior approaches, ours is a development and deployment of 

these concepts for a complex real-world application such as an 

industrial process or a power plant. 
 

In our approach [2], predictive models are interfaced with 

an optimizer once it is determined that they are capable of 

faithfully predicting various system outputs, given a set of 

inputs. This determination may be accomplished by comparing 
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predicted versus actual values during a validation process 

performed on the models.  Various methods of optimization 

may be interfaced, e.g., evolutionary algorithms (EAs), which 

are optimization techniques that simulate natural evolutionary 

processes, or gradient-descent optimization techniques.  The 

predictive models coupled with an optimizer may be used for 

realizing a process controller (e.g., by applying the optimizer 

to manipulate process inputs in a manner that is known to 

result in desired model and process outputs). For example, for 

a power plant, the inputs are the various controllable and 

ambient variables, and the outputs may include emissions 

characteristics such as NOx and CO, efficiency characteristics 

such as Heat Rate (inversely related to efficiency), and 

operational characteristics such as Load.  

III. MULTI-CRITERIA DECISION MAKING FRAMEWORK 

COMPONENTS REVIEW 

In this section, we review the two multi-criteria decision-

making deployments at General Electric from the perspective 

of their constituent components. The deployments represent 

extreme points of a developing framework for multi-criteria 

decision-making systems. Such a framework allows us to 

decompose and reason about the core components necessary to 

develop and deploy multi-criteria decision-making systems.  

First, we present high-level remarks on system characteristics, 

followed by a more extensive discussion. Table 1 presents a 

comparative summary of the principal characteristics of these 

two deployed systems.  

Table 1: Summary of multi-criteria decision-making 

component characteristics of the two deployed systems. 

 Portfolio 

management 

system 

Power plant 

management 

system 

Performance 

requirements 

Off-board (batch) On-board      

(real-time) 

Deployment 

architecture 

Centralized Distributed 

Response 

evaluation 

Mathematical 

description of 

responses 

Data-driven 

computation of 

responses 

Search method Hybrid multi-

objective 

optimization 

Evolutionary 

multi-objective 

optimization 

Objectives and 

constraints 

complexity 

Multiple 

objectives, multiple 

constraints 

Two objectives, 

two constraints 

Uncertainty 

management 

Uncertainty 

measures implicitly 

captured in 

objectives 

Explicit externally 

driven uncertainty 

management 

Decision-

making needs 

and method 

Interactive 

graphical with 

human in loop 

Automated 

decision-making 

via constraints and 

weights 

Update 

requirements 

for solution 

fidelity 

Implicit via update 

of problem 

descriptors in 

database 

Explicit via 

periodic retraining 

of data-driven 

models 
 

A. Portfolio Management System 

1) Runtime Requirements  

Figure 1 shows the block diagram of the portfolio management 

system. The principal modules in the system address 

identification of the search space boundaries using linear 

programming, optimization using multi-objective evolutionary 

algorithms, strategic densification of the Pareto frontier, and 

finally interactive portfolio selection.  The system is deployed 

as an off-board application in a front-end web-based 

interactive environment, and is geared for use by portfolio 

managers.  

2) Deployment Architecture 

This application uses a centralized architecture. A back-end 

database maintains information on available assets, portfolio 

characteristics, and a variety of asset performance indices. The 

database also stores the results of optimization and decision-

making runs. Our portfolio management approach is currently 

in use at General Electric Asset Management, General Electric 

Insurance, and Genworth Financial. 
 

 

Figure 1: Block diagram of architecture. 

 

3) Response Evaluation 

In asset-liability management (ALM) applications, surplus 

variance is used as a measure of risk. We compute portfolio 

variance using an analytical method based on a multifactor risk 

framework [33]-[34]. In this framework, the value of a security 
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can be characterized as a function of multiple underlying risk 

factors. The change in the value of a security can be 

approximated with the changes in the risk factor values and 

risk sensitivities to these risk factors. The portfolio variance 

equation can be derived analytically from the underlying value 

change function. The portfolios have assets and liabilities that 

are affected by the changes in common risk factors. Since a 

majority of the assets are fixed-income securities, the dominant 

risk factors are interest rates. In addition to maximizing return 

or minimizing risk, portfolio managers are constrained to 

match the characteristics of asset portfolios with those of the 

corresponding liabilities to preserve portfolio surplus due to 

interest rate changes. Therefore, the ALM portfolio 

optimization problem formulation has additional linear 

constraints that match the asset-liability characteristics when 

compared with the traditional Markowitz model. We use the 

following ALM portfolio optimization formulation: 
 

Maximize  Portfolio Expected Return 

Minimize  Surplus Variance 

Minimize  Portfolio Value at Risk 

Subject to:  Duration mismatch ≤ target1                 (1) 

Convexity mismatch ≤ target2; and 

     Linear portfolio investment constraints 
 

From the many available metrics, we use Book Yield, 

Variance, and Simplified Value at Risk (SVaR) as the 

respective metrics for Portfolio Expected Return, Surplus 

Variance, and Portfolio Value at Risk. Portfolio Book Yield 

represents its accounting yield to maturity and is defined as: 

∑

∑
=

i

i

i
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                                     (2) 

Portfolio Variance is a measure of its variability and is defined 

as the second moment of its value change ∆V: 
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Portfolio Simplified Value at Risk is a measure of the 

portfolio’s catastrophic risk and is defined in detail in [35]. 

These metrics define the 3-D optimization space. Now, we 

analyze its constraints. The change in the value ∆V of a 

security can be approximated by a second order Taylor series 

expansion given by: 
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The first- and second-order partial derivatives in this equation 

are the risk sensitivities, i.e. the change in the security value 

with respect to the change in the risk factors Fi. These two 

terms are typically called delta and gamma, respectively [34]. 

For fixed-income securities, these measures are duration and 

convexity. The duration and convexity mismatches, which 

constrain our optimization space, are the absolute values of the 

differences between the effective durations and convexities of 

the assets and liabilities in the portfolio respectively. Though 

they are nonlinear (because of the absolute value function), the 

constraints can easily be made linear by replacing each of them 

with two new constraints that each ensure that the actual value 

of the mismatch is less than the target mismatch and greater 

than the negative of the target mismatch respectively. The 

other portfolio investment constraints include asset-sourcing 

constraints that impose a maximum limit on each asset class or 

security, overall portfolio credit quality, and other linear 

constraints. 
 

4) Search Method 

The dashed block in Figure 1 shows the search components of 

our approach.  We generate an initial Pareto front in a three-

objective space defined by Book Yield, Variance, and 

Simplified Value-at-Risk (SVaR), using a Pareto Sorting 

Evolutionary Algorithm (PSEA).  We further enhance the 

quality of the Pareto Front by using a Target Objectives 

Genetic Algorithm (TOGA), a non-Pareto non-aggregating 

function approach to multi-objective optimization. Unlike the 

PSEA, which is driven by the concept of dominance, the 

TOGA finds solutions that are as close as possible to a pre-

defined target for one or more criterion. Details on the PSEA 

and TOGA methods may be found in [1]. We used TOGA to 

fill potential “gaps” in the Pareto front. We initialize the PSEA 

with a Randomized Linear Programming (RLP) algorithm, 

which stochastically identifies a sample of the boundaries of 

the search space by solving thousands of randomized linear 

programs. The key idea of the RLP is the generation of the 

initial population for the PSEA with potential solutions that 

would satisfy the constraints defined in the problem 

formulation. We utilize the RLP to stochastically sample the 

boundaries of the search space, so the evolutionary search 

within that space can proceed without concern of constraint 

satisfaction issues. 
 

5) Objectives and Constraints Complexity  

While the portfolio optimization problem has multiple linear 

and nonlinear measures of return and risk, the key challenge in 

solving the portfolio optimization problem is presented by the 

large number of linear allocation constraints. The feasible 

space defined by these constraints is a high dimensional real-

valued space (1500+ dimensions), and is a highly compact 

convex polytope, making for an enormously challenging 

constraint satisfaction problem. We leveraged our knowledge 

on the geometrical nature of the feasible space by designing a 

Randomized Linear Programming algorithm that robustly 

samples the boundary vertices of the convex feasible space. 

These extremity samples are seeded in the initial population of 

the PSEA and are exclusively used by the evolutionary multi-

objective algorithm to generate interior points (via 

interpolative convex crossover) that are always geometrically 

feasible. 
 

6) Uncertainty Management 

The goal of portfolio optimization is to manage risk through 

diversification and obtain an optimal risk-return tradeoff. Risk 
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measures play a crucial role in portfolio optimization via the 

capture of the inherent uncertainty in the asset allocation 

decisions, and are used to quantify various aspects of portfolio 

uncertainty. Therefore, uncertainty management is implicitly 

achieved via optimization over risk measures. 
 

7) Decision Making 

Optimal portfolio selection is characterized by multiple 

objectives, measuring different types of return and risk, which 

need to be optimized or at least satisfied simultaneously.  The 

decision maker (DM) needs to search for the non-dominated 

solutions in this objective space, while aggregating his/her 

preferences over multiple criteria. Since these objectives 

cannot be satisfied simultaneously, we need to accept 

tradeoffs. We incorporate the decision-maker’s preferences in 

the return-risk tradeoff to perform our selection—the goal 

being the reduction of thousands of non-dominated solutions 

into a much smaller subset (of ~10 points), which could be 

further analyzed for a final portfolio selection. After obtaining 

a 3-D Pareto front, we augment this space with three additional 

metrics, to reflect additional constraints for use in the tradeoff 

process.  This augmented 6-D space was used for the down-

selection problem. To incorporate progressive ordinal 

preferences, we used a graphical tool as shown in Figure 2 to 

visualize 2-D projections of the Pareto front—in this case the 

projections being (Book-yield, Risk1), (Book-yield, Risk2), 

(Risk2, Risk1), and (Book-yield, Duration-weighted-market-

Yield).  After applying a set of constraints to further refine the 

best region, we used an ordinal preference, defined by the 

order in which we visited and executed limited, local tradeoffs 

in each of the available 2-D projections of the Pareto front. In 

this approach, the decision-maker can understand the available 

space of options and the costs/benefits of the available 

tradeoffs.  
 

 
Figure 2: Four 2-D projections of the Pareto Front 

containing 479 interactively down-selected points. 
 

 

The use of progressive preference elicitation provides a natural 

mechanism to identify a small number of the good solutions. 

Essentially, the interactive decision-making method allows the 

decision-maker to specify preferences for regions within 

portfolio performance space projections to select portfolios for 

further iterative down-selection. Pareto dominance in each 

performance space 2-D projection may further be utilized in 

this filtering. Selection preferences are interactively specified 

over the augmented 6-D performance space, rather than over 

the optimized 3-D Pareto front. In problems with a large 

number of objectives, a more formal preference elicitation 

method [36] may be applied in conjunction with our graphical 

methods. 
 

8) Update Requirements 

The portfolio management system has little or no internal 

update requirements for continued high-fidelity performance. 

Only inputs corresponding to defining and creating a portfolio 

optimization scenario are subject to change and update. Once a 

problem is setup, there is no requirement to frequently 

maintain or update the response computations, as they are all 

defined mathematically, and do not degrade as a function of 

time. 
 

B. Power Plant Management System 

1) Runtime Requirements 

 

 
Figure 3: Architecture of model-predictive multi-objective 

optimization. 

 

Figure 3 shows a high-level architecture of the power plant 

management system. Nonlinear neural-network models are 

used to represent mappings between the inputs space of control 

variables and time variable ambient uncontrollable variables, 

and the various outputs (objectives and constraints) of interest. 

First-principles-based methods and domain-knowledge are 

used to identify the relevant model inputs. The evolutionary 

multi-objective optimizer generates test inputs/setpoints and 

receives as feedback the corresponding output performance 

metrics after transformation by suitable objective 

(performance) functions. The multi-objective optimizer uses 

this feedback to generate and identify the Pareto-optimal set of 

input-output vector tuples that satisfy operational constraints. 

A decision function is superimposed on this Pareto-optimal set 

of input-output vector tuples to identify a deployable input-

output vector, which is then dispatched to the underlying plant 

control system, or recommended to the operator for execution. 
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A Pareto-optimal front that jointly minimizes NOx and Heat 

Rate (inversely related to efficiency) for a 400MW target load 

demand in a 400MW power plant is shown in Figure 4. In this 

figure, the circles show the range of historical operating points 

from a NOx—Heat Rate perspective. The stars and inter-

connecting line show the optimized Pareto frontier in the 

NOx—Heat Rate space. Each point not on this frontier is a 

sub-optimal operating point—the goal being the operation of 

the plant or process at a Pareto optimal point at all times. 

Moving the system operation from the interior of the decision 

space to the Pareto frontier results in a large operational 

savings opportunity. 

 
Figure 4: Pareto tradeoff between NOx emissions and 

Heat Rate (inversely related to efficiency) for a 400MW 

power plant. The knee of the frontier is shown connected 

based on the identified Pareto optimized setpoints. 
 

Our integrated approach to plant management is embedded 

in a real-time plant optimization and control software 

environment. This has been deployed as an on-board 

application to dynamically optimize emissions and efficiency 

while simultaneously meeting load demands and other 

operational constraints in a complex real-world power plant. 

The plant management system front-end interfaces with the 

plant control system at the back-end. 
 

2) Deployment Architecture 

Multiple versions of this system could be developed and 

deployed for different plants, using a distributed, loosely 

connected architecture.  The historical data of each plant 

would be used to train and customize each system. The global 

performance of all systems could be used to fine-tune the 

tradeoffs between efficiency and emissions.  
 

3) Response Evaluation 

Nonlinear neural-network models are used to represent 

mappings between the inputs space of control variables and 

time variable ambient uncontrollable variables, and the various 

outputs (objectives and constraints) of interest. For example, 

for a power plant, the inputs are the various controllable and 

ambient variables, and the outputs may include emissions 

characteristics such as NOx and CO, efficiency characteristics 

such as Heat Rate, and operational characteristics such as 

Load. First-principles-based methods and domain-knowledge 

are used to identify the relevant model inputs. This is an 

iterative process that requires a combination of domain 

knowledge and information analysis techniques to select the 

minimal set of inputs that can be used to suitably model each 

output of interest. Each of the models must meet a domain 

specified threshold in predictive performance. Typically, each 

such model must be capable of a highly robust forward 

prediction and a very low misprediction rate (about 0.1% to 

3%). Validation of the prediction performance of the models 

may include metrics such as the Mean Absolute Error (MAE), 

which is the average of the absolute prediction errors, and 

serves as a measure similar to the standard deviation of 

prediction errors: 
 

∑
=

−=
n

i

ii yy
n

MAE
1

ˆ
1

          (5) 

 

where yi is an actual i
th

 sample value, and iŷ is the predicted 

value of the i
th

 sample of the n samples tested. The MAE is a 

reliable bound on the most likely range for mispredictions; a 

model with a low MAE is therefore desirable. 
 

4) Search Method 

A multi-objective evolutionary optimizer is employed to 

identify the Pareto frontier among the objectives of interest. 

However, for any of the inputs generated by the optimizer, 

certain constraints may be violated by those inputs settings if 

they were to be deployed. If any constraint is violated, we 

apply penalty function-based adjustments to the objectives 

over which the optimization is performed, so that those input 

vectors that lead to constraint violation will be automatically 

discarded as part of the evolutionary search. As an example, if 

Load is a constraint, and NOx, and Heat Rate are objectives to 

be optimized, then if a certain input vector exceeds or falls 

below the desired Load by a certain amount the NOx and Heat 

Rate values associated with that solution are respectively 

adjusted by penalty function factors. 
 

5) Objectives and Constraints Complexity  

The power plant management system is based on the use of 

two objectives (NOx, Heat Rate) and two constraints (Load, 

CO) that require predictive models. There is a set of global 

range constraints applied to the inputs space, and those 

correspond to the physical limits of the input variables. 
 

6) Uncertainty Management 

In order to do model based optimization, it is necessary to 

have accurate and reliable models over the operational range 

of interest. For physics-based models, it is possible in principle 

to be accurate for any combination of parameters. However, 

empirical data-driven models are only known to be accurate in 

the neighborhood of the training data. While empirical models 

may by chance be accurate in regions of parameter space 
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where there is no data, generally they are inaccurate in those 

regions. Either way, there is no way to know which is the case 

- we can have no confidence of any empirical model far from 

region of data it was built on. This is because nonlinear data-

driven prediction models are generally very good at 

interpolation, i.e. they are very good predictors in inputs 

spaces where sufficient training data surrounds that space. 

Such predictive models can also tolerate moderate 

extrapolation, i.e. they can stretch to make predictions in 

inputs spaces that are proximal to regions of training data. 

However, they are poor in extrapolative prediction in inputs 

spaces that are far from where training data exists.  
 

Given the above problem, a first step in applying the 

optimizer to the models is specification of the search space 

constraints (ranges for each of the input variables). The search 

constraints are typically computed based on the respective 

input variable ranges from the historical data, and specify the 

exploration ranges for the optimizer. However, implementing a 

search simply based on such inputs-space exploration ranges 

will almost certainly not ensure high confidence in the 

predictions. Thus, when optimizing a complex system with 

highly constrained controls based on an empirical model, it is 

necessary to arrive at solutions that are near existing data. One 

way to solve this problem is to obtain data that covers the 

entire operational space of interest. However, in most practical 

situations this is an infeasible goal as the dimensionality of the 

inputs space for the modeling is typically large, and this 

precludes the generation and gathering of such well-distributed 

data. Often times, even the cost of executing a set of select 

experiments that probe the extremes of the feasible inputs-

space is exorbitant. 

 

A solution to this practical problem is to restrict the search 

to areas close to the regions of the available historical data. 

Over time, deploying new setpoints that are close to the 

available historical data will push the envelope of the historical 

data, and lead to enhanced model-based prediction 

capabilities. An efficient method to enable such a restricted 

search is to scan the historical data for operating points that 

were deployed when the ambient conditions were “close” to 

the current operating conditions. For instance, if the current 

load demand is 350MW and the ambient temperature is 70
o
 F, 

then it would be appropriate to scan the historical database for 

setpoints that were deployed when operating conditions were 

close (within specifiable bounds of the current load demand 

and current ambient temperature), and use these setpoints as 

seed points to initiate a restricted search. 
 

Additionally, model performance could be significantly 

improved through the use of a committee of models and 

intelligent fusion of their predictions. Fusing the outputs from 

an ensemble of models in an effective way can often boost 

overall model accuracy. This concept is further developed in 

[37] wherein we present a novel method called locally 

weighted fusion, which aggregates the results of multiple 

predictive models based on local accuracy measures of these 

models in the neighborhood of the probe point for which we 

want to make a prediction. This fusion method may be applied 

to develop highly accurate predictive models. The locally 

weighted fusion method boosts the predictive performance by 

20~40% over the baseline single model approach for the 

various prediction targets. Relative to this approach, fusion 

strategies which apply averaging or globally weighting only 

produce a 2~6% performance boost over the baseline.  
 

The use of approximate or meta models for fitness 

evaluation in evolutionary optimization (of computationally 

expensive problems) is increasing in importance. A survey of 

this topic has been published recently [38]. 

 

7) Decision Making 

The multi-objective optimizer in conjunction with the 

predictive models and the decision function solve a decision 

problem as a function of time. Control of the transition of the 

plant or process state to achieve the recommendation is 

delegated to the underlying plant control system. In a 

supervisory mode of deployment, a recommendation is 

transmitted to an expert human operator who then programs 

the recommendations in the plant control system, while in an 

automated mode of deployment, the recommendations are 

directly transmitted to the plant control system. Such use cases 

necessitate the use of automated down-selection to a solution 

from the Pareto frontier, for execution. This down- selection is 

part of the multi-objective decision-making step. 
 

The Pareto frontier in NOx—Heat Rate space identified 

from the multi-objective search is clipped by the systematic 

application of profit-based and operational-need constraints 

for each of NOx and Heat Rate. Next, a solution from this 

reduced frontier that is closest in inputs space to the current 

plant state is selected and transmitted to the plant control 

system. Such an approach minimizes the state deviations while 

achieving Pareto-optimal operation. 
 

Figure 5 shows the performance gains that may be achieved 

in NOx emissions using this decision-making approach. When 

a decision-making function is used which simultaneously 

considers a tradeoff Pareto point at each instant, roughly 18% 

improvement in NOx emissions may be achieved (upper figure 

half). However, if the optimization favors a NOx minimization 

that satisfies a given Heat Rate constraint, more significant 

NOx emissions improvement is possible (lower figure half). 

Similarly, 1-2% improvements in Heat Rate are possible. In a 

typical power plant setting, such savings in NOx and Heat 

Rate are very significant and could lead to operational savings 

of hundreds of thousands to millions of dollars per year. 
 

The decision-making approach further highlights the 

inherent flexibility of Pareto frontier techniques whereby the 

entire efficient set of solutions is first identified without regard 

to situation specific down-selection, and later a flexible 

decision function is superimposed to identify a deployable 

input set (or setpoint). 
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Figure 5: Pareto frontier tradeoff optimization of NOx 

and Heat Rate and NOx only optimization. 
 

8) Update Requirements 

In real-world applications such as the power plant 

management system, before we can use a model in a 

production environment we must address the model’s entire 

life cycle, from its design and implementation, to its 

validation, tuning, production testing, use, monitoring and 

maintenance. By maintenance we mean all the steps required 

to keep the model vital (e.g., non-obsolete) and able to adapt 

to changes.  Two reasons justify the focus on maintenance. 

Over the life cycle of the model, maintenance costs are the 

most expensive for software. Secondly, when dealing with 

mission-critical software we need to guarantee continuous 

operations or at least fast recovery from system failures or 

model obsolescence to avoid lost revenues and other business 

costs [39].  Models derived from combination of first 

principles, domain knowledge and field data need to be 

constantly monitored and updated to take into account changes 

that might occur in standard operating and maintenance 

procedures, in configuration upgrades, and in sensor failures 

and repairs. Furthermore, design assumptions regarding 

variability in process inputs and environmental variables must 

be monitored for significant changes. Due to this changing 

systems dynamics the underlying predictive models need to be 

monitored and continually updated via retraining. There will 

be situations in which the models should not be used, as they 

fall outside of the original design scope.  There will also be 

situations in which the models should be retrained and retested 

before their respective new versions are re-deployed. In the 

first case, the monitoring system alerts the operator and 

terminates the use of the models for prediction and 

optimization.  In the second case, the monitoring system alerts 

the operator indicating the detected changes occurring in the 

plant operation. 

C. Degree of Difficulty Associated with the Multi-criteria 

Decision-making Components 

In Table 2 below, we summarize the degree of difficulty 

associated with each of these system components 

corresponding to the two deployed systems. The degree of 

difficulty notionally represents both the computational and 

development complexities.  
 

Table 2: Degree of difficulty of the multi-criteria decision-

making components for the two deployed systems. 

Degree of difficulty Portfolio 

Management 

System 

Power Plant 

Management 

System 

Runtime 

requirements 

Low-Medium Medium-High 

Deployment 

architecture 

Low Low-Medium 

Response evaluation Low High 

Search  High Low 

Objectives and 

constraints 

High Low 

Uncertainty 

management 

Low High 

Decision-making  High Low 

Update for solution 

fidelity 

Low Medium-High 

 

IV. CONCLUSIONS 

In the previous section, we described two applications with 

rather different requirements, which present interesting 

MCDM challenges.  In the case of the Portfolio Management 

System, the key challenges were searching in a high-

dimensional space, derived by very long chromosomes, and 

performing decision in a high-dimensional performance 

space, derived from multiple metrics used to evaluate risk and 

return. We addressed the first challenge by fusing multiple 

meta-heuristic search methods to generate a better-sampled 

Pareto surface. We solve the second challenge by using an 

interactive visualization system to enable the decision-maker 

to attach ordinal preferences to pairs of performance metrics. 

In the case of the Power Plant Management System the key 

issues were the uncertainty embedded in the response 

evaluation, and the updating of the models performing such 

evaluation. We addressed the first challenge by using multiple, 

diverse models and performing a customized fusion based on 

local weights.  We solved the second challenge by using a 

dynamic learning method to update the neural networks that 

implemented such models.    

There are many other combinations of MCDM requirements 

that pose equally interesting challenges, such as the 

autonomous updating of distributed models used for response 

evaluation; the concept of partial (or fuzzy) dominance of a 

solution point over another one, caused by the uncertainty or 

vagueness of their evaluations; the explicit uncertainty 

management/reduction of such evaluations, human factor 

issues that influence decision-making consistency and quality 

etc. Many of these challenges are further described in [40]. 
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