
  

Abstract—In safety critical systems, especially in nuclear power 
plants (NPPs), human error has been introduced as one of the 
serious causes of accidents. In order to prevent human errors, 
many efforts have been made to improve main control room 
(MCR) interface designs and to develop decision support systems 
that allow convenient MCR operation and maintenance. In this 
paper, an integrated decision support system to aid the cognitive 
process of operators is proposed for advanced MCRs in future 
NPPs. This work suggests support system design considered an 
operator’s cognitive process. Various kinds of support systems for 
advanced MCRs have been developed or are in development. 
Therefore, a design basis regarding what kinds of support systems 
are appropriate for MCR operators is necessary. The proposed 
system supports not merely a particular task, but also the entire 
operation process based on a human cognitive process model. It 
supports the operator’s entire cognitive process by integrating 
support systems that support each cognitive activity. Furthermore, 
two decision support systems are developed. The fault diagnosis 
advisory system is to make the task of fault diagnosis easier and to 
reduce errors by quickly suggesting likely faults based on the 
highest probability of their occurrence. The operation validation 
system is to provide an advisory function to supervise and validate 
the operator’s actions during abnormal environments. 

I. INTRODUCTION 

A. Background 

In safety critical systems, especially in nuclear power plants 
(NPPs), human error has been introduced as one of the serious 
causes of accidents. From 80s, the importance of human error 
in NPPs has been considerably concerned. In an analysis of 
abstracts of 180 significant events reported to have occurred in 
the United States, it was found that 48% of the incidents were 
attributed to human factor failures [1]. In order to prevent 
human errors, many efforts have been made to improve main 
control room (MCR) interface designs and to develop decision 
support systems that allow convenient MCR operation and 
maintenance. The decision support of operational performance 
is needed to assist the operator, particularly in coping with plant 

anomalies, so that the failures of complex dynamic processes 
can be managed as quickly as possible with minimum adverse 
consequences. 

B. Objectives 

In order to design useful decision support systems, a design 
basis and a systematic frame are needed. Various decision 
support systems have been developed, and others are in 
development. As MCRs evolve, more decision support systems 
will be adapted to them. However, according to the evaluation 
results for decision support systems in several papers, a 
decision support system does not guarantee an increase in an 
operator’s performance [2,3]. Some support systems could 
degrade an operator’s situational awareness capability and 
could increase an operator’s mental workload. When several 
kinds of decision support systems are used, a design basis is 
necessary to solve problems regarding what kinds of decision 
support systems are most efficient, what kinds are most 
appropriate. 

This paper proposes an integrated decision support system to 
aid the cognitive activities of operators (INDESCO). The 
objective of the INDESCO is to design an integrated decision 
support system for advanced MCRs by suggesting decision 
support systems to aid operators’ cognitive processes and by 
integrating these support systems into one system based on the 
human cognitive process. In this paper, an operator’s operation 
processes were analyzed with respect to the human cognitive 
process, and systems that support each activity of the human 
cognitive process were suggested. Furthermore, two kinds of 
decision support systems were developed as components of the 
INDESCO.  

II. COGNITIVE PROCESS MODEL FOR OPERATORS IN 
NPPS 

In this paper, major cognitive activities for NPP operations 
underlying A Technique for Human Error Analysis 
(ATHEANA) [4],[5] are used. The major cognitive activities 
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for NPP operations underlying ATHEANA are: (1) monitoring 
and detection, (2) situation assessment, (3) response planning, 
and (4) response implementation. 

Decision support systems to improve operators’ performance 
can be categorized into two approaches [6]. One approach is 
the improvement of the displays of MCRs, which can be called 
“indirect support.” Improved display systems using integrated 
graphic displays, configurable displays, and ecological 
interface designs and information systems, such as an alarm 
system, are some of the indirect support systems. They improve 
the operators’ perceptions and awareness abilities. If indirect 
support systems are added, operators can perceive the plant 
status more easily and quickly using the information provided 
by the improved display system and obtain the digested data 
from the information system. Therefore, indirect support 
systems can improve the performance of the monitoring and 
detection activity in the operators’ cognitive process. The other 
approach is the development of decision support systems, 
which can be called “direct support.” These include intelligent 
advisors, alarm systems, computer-based procedures, fault 
diagnostic systems, and computerized operator support systems, 
which are based on expert systems or knowledge-based 
systems. These direct support systems support other three 
cognitive activities. For example, as shown in Fig. 1, several 
indirect and direct support systems can be added as part of the 
advanced HMI.  

 

Fig. 1. NPP operation process with the indirect and the direct support systems 

III. INTEGRATED DECISION SUPPORT SYSTEM TO AID 
OPERATOR’S COGNITIVE ACTIVITIES  

The main idea of the INDESCO is to suggest decision 
support systems to aid operators’ cognitive activities and to 
integrate these support systems into one system. The 
INDESCO is not a system which helps a task or supports one or 
two cognitive activities. It supports every major cognitive 
activity by integrating support systems that support each 
cognitive activity. Since the INDESCO can perform the same 
operation process as operators’ in order to support the cognitive 
process of the operators, it is possible to detect human errors in 
operation processes. The system is a kind of advisory system 
for preventing human errors. 

Various indirect or direct support systems can be added to 
human machine interfaces (HMIs) to support the activities of 
cognitive processes. There are various indirect and direct 
support systems, and all of them support activities of the 
operator’s cognitive process. Among these many systems, 
appropriate support systems could be selected based on the 
cognitive process, thus enhancing operational efficiency. For 
example, several kinds of support systems are selected, and 
their related cognitive activities are shown in Fig. 2. A display 
system, which is one of the indirect systems, is to support the 
monitoring and detection activity. A fault diagnosis system, a 
computerized procedure system, and an operation validation 
system are kinds of direct systems supporting three other 
cognitive activities. In addition, there are an alarm 
prioritization system, an alarm analysis system, a 
corresponding procedure suggestion system, and an adequate 
operation suggestion system. Since the latter four systems can 
be implemented as sub-systems of the former four systems, the 
former four systems could be classified into main support 
systems.  

 

Fig. 2. Operator support systems based on human cognitive process model 

Firstly, a display system supports the monitoring and 
detection activity. The display system is for an efficient display 
and interface design, and it involves the improvement of the 
integrated graphic displays, configurable displays, and an 
ecological interface design. The display systems also improve 
the operators’ perception and awareness abilities: operators can 
perceive the plant status more easily and quickly using the 
information from the improved display system and can obtain 
the digested data from the information system. Additionally, an 
alarm system supports the monitoring and detection activity.  

Secondly, a fault diagnosis system is suggested to support 
the situation assessment activity. The fault diagnosis system 
detects faults and informs the operators of the results; therefore, 
it makes the situation assessment easier by quickly supplying 
the diagnosis results. Fault diagnosis systems have been 
developed using knowledge bases [7], neural networks [8],[9], 
genetic algorithms [10], and other means.  

Thirdly, a computerized procedure system supports the 
response planning activity. Operators in NPPs generate plans to 
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operate and maintain NPPs according to written operating 
procedures. Thus, a computerized procedure system can be 
helpful for response planning activity. Since the content of the 
paper based operating procedure is written in fixed format in 
natural language, sometimes the information would be 
overwhelming and become difficult to continuously manage 
the steps. Because of the deficiencies of the paper based 
operating procedure, the developments and implementations of 
computerized procedure system have been begun since 80s. In 
a computerized procedure system, information about 
procedures and steps, relations between the procedures and 
steps, and the parameters needed to operate the plant are 
displayed [11],[12].  

Lastly, for response implementation activity, the operation 
validation system validates the actions performed by the 
operators. If the actions that are taken by the operators are in the 
operation candidate list, and are reasonable, then the actions 
will be performed without interruption. However, if the actions 
are obviously inadequate for the current situation, the operation 
validation system interrupts the actions and warns the operators. 
This system gives operators a chance to check and to confirm 
their actions. Several research papers have addressed operation 
validation systems [13].  

Based on the aforementioned main support systems, several 
sub-systems are suggested. The alarm prioritization system 
allows operators to focus on the most important alarms. It 
supports the monitoring and detection activity. The alarm 
analysis system could be one kind of fault diagnosis system or a 
sub-function of a fault diagnosis system. It identifies or 
diagnoses the current situation by analyzing alarms. It supports 
the situation assessment activity. The corresponding procedure 
suggestion system and the adequate operation suggestion 
system may be advanced functions of the computerized 
procedure system. In abnormal situations, the fault diagnosis 
system identifies faults. After identifying the faults, an 
appropriate operating procedure necessary to manage the 
current situation is selected by the corresponding procedure 
search system based on the diagnosis results. Operators can 
recognize which operating procedure should be performed by 
the system, and errors of incorrect procedure selection can be 
reduced. Adequate actions for the following operations are 
listed on an operation candidate list by the adequate operations 
suggestion system. Operators can decide which operations are 
needed from the list.  

Several support systems are suggested as appropriate to 
support the cognitive process efficiently. They facilitate the 
operator’s whole operation process: monitoring plant 
parameters, diagnosing the current situation, selecting 
corresponding actions for the identified situation, and 
performing the actions. As main support systems for cognitive 
activities, four support systems are selected: the display system, 
the fault diagnosis system, the computerized procedure system, 
and the operation validation system. 

IV. FAULT DIAGNOSIS SYSTEM 

A fault diagnosis system is a kind of decision support system. 
The objective of a fault diagnosis system is to make the task of 
fault diagnosis easier, to reduce errors, and to ease the 
workload of operators by quickly suggesting likely faults based 
on the highest probability of their occurrence. During the first 
few minutes after a fault occurrence, operators in an MCR must 
perform highly mentally workloaded activities. The operators 
may be overworked and disorder may result. Information 
overload and stress may severely affect the operators’ 
decision-making ability just when it is required most [14]. In 
such situations, using a fault diagnosis system will be very 
helpful in that it will enhance operators’ decision-making 
ability and reduce their workload. 

In this paper, the fault diagnosis advisory system (FDAS) is 
developed [8]. In order to perform better than other fault 
diagnosis systems, the FDAS proposed here has three main 
objectives. The first objective is to analyze the plant status and 
show a fault list in real time. Reasonable results should be 
generated using information up to the current time through 
analysis of dynamic trends. The second objective is to perform 
fault diagnosis in more detail. Most existing fault diagnosis 
systems are able to tell operators what the fault is but cannot 
provide details on fault size or location. The third objective is to 
consider and handle both analogue and digital inputs. To satisfy 
these three objectives, two kinds of neural networks that 
consider time factors are used in this work. 

For a more accurate and detailed diagnosis, both digital and 
analogue inputs are considered in the FDAS using two kinds of 
neural networks. Digital inputs such as alarms, trip parameters, 
statuses of valves, and statuses of devices are handled by the 
modified dynamic neural network (MDNN), while analogue 
inputs such as values of instruments are handled by the 
dynamic neuro-fuzzy network (DNFN). First, inputs are 
clustered according to their types. Next, the two neural 
networks generate each output using clustered inputs. Finally, 
results and their reliabilities are generated by combining the 
results of these two neural networks. The process is a 
duplicated calculation in which quite a few variables of 
analogue and digital inputs represent the same things. Alarms 
are turned on and off according to their related instruments. 
When systems like the safety injection or valves like the steam 
generator isolation valves are operated, the values of related 
instruments will change and we can perform fault diagnoses 
using just one type of input. However, we may be able to get 
more certain results using both neural networks as the two can 
complement each other.  

One of the critical issues for fault diagnosis systems is their 
level of reliability because, without a high level of reliability, 
operators will not trust their fault diagnosis system. When a 
fault diagnosis system gets the wrong inputs because of failed 
instruments or devices, undesirable outputs could be generated. 
Also, an unexpected situation could lead to the misdiagnosis of 
a fault. If operators must always consider such misdiagnoses, 
the fault diagnosis system is meaningless. The FDAS proposed 
here increases the reliability of the diagnosis result by using 
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two independent neural networks. As mentioned above, the 
MDNN and the DNFN in the FDAS perform independent fault 
diagnoses using different inputs, thereby complementing each 
other and generating a more reliable result. When the results of 
the MDNN and the DNFN differ, operators can see the 
discrepancy and can double-check the results.  On the other 
hand, if the results of both neural networks are very close, then 
operators can be confident that the results are accurate and 
reliable. After each neural network generates results, final 
results are calculated based on the results of the two neural 
networks, and their reliabilities are also calculated according to 
the similarity between the results of the MDNN and the DNFN. 

A. Modified Dynamic Neural Network 

The MDNN handles digital inputs and identifies faults by 
analyzing the occurrence sequences of alarms and their patterns. 
The faults have quite different alarm patterns according to their 
positions or sizes. In order to diagnose faults using alarm 
patterns, three things should be considered. The first is noisy 
inputs. Because lots of inputs are used for fault diagnosis, noisy 
inputs caused by certain plant conditions or failed instruments 
are likely. Because such noisy inputs can adversely affect 
results, efforts must be made to prevent noisy inputs from 
influencing the output. An ability to handle noisy inputs or 
informal inputs is necessary. Secondly, fault analyses are not 
performed in a fixed time because there is no time limit. An 
ability to generate reasonable results with only information up 
to the current time step is also necessary. The last is the time 
deviation problem. For a fault diagnosis system using alarm 
patterns, the time deviations of alarm patterns are quite 
important. An input of training scenarios will not be the same 
as that of real faults at exactly the same time step. Time 
deviations in alarm occurrences will probably exist. If inputs 
delayed a few time steps affect the output, the output will be 
quite different from the desired result. In a fault diagnosis 
system, even a small input deviation may propagate and 
eventually cause incorrect results because many faults have 
very similar input patterns. Therefore, the fault diagnosis 
system should be able to handle this kind of time deviation 
problem.  

Neural networks can handle the first problem because they 
are able to deal with noisy inputs and informal inputs. The 
second problem can be solved by using dynamic neural 
networks because these networks consider time factors and can 
perform real-time analysis. However, the third problem cannot 
be solved by conventional neural networks or by existing 
dynamic neural networks because neither has the necessary 
functions to solve the time deviation problem. Therefore, in this 
work, a MDNN is proposed to solve that problem. 

Basically, the MDNN suggested in this work is based on the 
multi-layer Perceptron but the MDNN has three distinct 
features: time-varying weight factors and offsets, a final output 
layer, and a calculation method to obtain outputs. The structure 
of the MDNN is shown in Fig. 3.  

 

Fig. 3. Output calculation process at time step ‘t’ 
 

Firstly, in the MDNN, all weight factors and offsets are the 
functions of time that have different values at each time step. 
That is, the MDNN can be regarded as an assembly of many 
static neural networks for each time step. The values of weight 
factors and offsets are independent of the values at other time 
steps. Secondly, the multi-layer Perceptron does not have the 
final output layer that is a function of the MDNN.  The units in 
hidden layer and output layer have the time functions for 
offsets and the units in final output layer have offset values. 
While the analysis for each time step is performed in the former 
two layers, the final decision is made regardless of the time step 
in the latter layer. If one or more alarm signals are incorrectly 
generated at some time steps, the output values will probably be 
incorrect as well. These undesirable values can propagate 
through the iterative process, and can cause an inaccurate final 
result; moreover, if these incorrect values affect the final output 
values, an incorrect decision will be made. To prevent this, the 
consistency of values of the output layer should be considered 
in the final output. Lastly, in the MDNN, the output of the 
current time step is obtained considering networks of not only 
the current time step but also of the previous and the next time 
step. An input of training scenarios will not be the same as that 
of real faults at exactly the same time step. Time deviations for 
alarm occurrences will probably exist, so the MDNN should 
consider the deviations. Therefore, to obtain an output in the 
MDNN, networks of previous and next time steps are also used. 
The calculation process is shown in Figure 11. Outputs of these 
networks are calculated by a sigmoid function that gives 
relative importance to the outputs, and finally the maximum 
value is selected. Equation (1) represents the sigmoid function 
used in this system.  
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where 
x: difference between a current time step and a target time 
step 
w: considering range 
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B. Dynamic Neuro-Fuzzy Network 

Another neural network used in the FDAS is the DNFN. In 
the previous section, we said the time deviation problem is one 
of the most serious problems. However, the time deviation 
problem is not important for the analogue input analysis. For 
digital inputs, delayed inputs can seriously influence outputs 
because they have discrete values: all or nothing. Since 
analogue input is continuous, delayed inputs are not as 
important as digital inputs. Therefore, we just used feedbacks 
of outputs to analyze dynamic processes. In order to consider 
the values of instruments, the DNFN is used to an advantage. 
For a relatively small fault, it can take several minutes for the 
first alarm to be triggered.  However, we can detect the fault 
before the first alarm is triggered by performing trend analyses 
of instruments. 

The DNFN analyzes dynamic processes. Feedbacks at the 
previous step are used for part of the inputs at the current step. 
The DNFN contains four layers as shown in Fig 4: an input 
layer, a fuzzification layer, a fuzzy function layer, and a 
defuzzification layer.  

 

 
Fig. 4. Structure of the DNFN 

 
Basically, the DNFN is based on the neuro-fuzzy network 

shown in Fig. 5, so the equations used in the DNFN are same 
and calculation processes are also same as those of the 
neuro-fuzzy network. In the DNFN, variables used in the 
neuro-fuzzy network are converted into time functions, and 
equations for the feedbacks are added. 

 

Fig. 5. Structure of the neuro-fuzzy network 
 
If x1(t) isAi1(t) AND…AND xL(t) is AiL(t) AND u1(t) is Bi1(t) 
AND…AND uM(t) is BiM(t),   
then  yi(t) is fi (t,x1,….,xL,u1,….,uM) 
where 

jx (t) : jth input at time step t 
ku (t) : kth feedback at time step t 

))(,( txtA jij
: antecedent membership functions of each input for the ith 

rule at time step t 

))(,( tutB kik : antecedent membership functions of each feedback for the 
kth rule at time step t 

iy (t) : output of the ith rule at time step t 
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where  

ijc (t):  peak position of the membership function for the ith rule 
and jth input at time step t 

ijσ (t): sharpness of the membership function for the ith rule 
and jth input at time step t 

ikc' (t): peak position of the membership function for the ith rule 
and kth feedback at time step t 

ik'σ (t): sharpness of the membership function for the ith rule 
and kth feedback at time step t. 

V. OPERATION VALIDATION SYSTEM 

The objective of developing the operation validation system 
(OVS) is to provide an advisory system to supervise and 
validate the operator’s actions during abnormal environments 
(i.e., to reduce operators’ commission errors). The system 
imbedded in a virtual simulated operational environment 
provides for operational validation and quantitative 
evaluations. 

 The function of operational validation provides a checking 
mechanism for operators, when they want to do some 
operations which are not included in operating procedures. All 
operators’ actions in simulated environment are classified into 
three levels according to their different potential threat as 
shown Fig. 6:  

Level 1. The operations not permitted by plant’s safety 
system: the operations are considered to be with strong 
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potential threats to the safety of NPPs that must be directly 
denied.  

Level 2. The operations not included in operating 
procedure: the operations are considered to be 
inappropriate for current situations so that corresponding 
confirmations from operators are needed. Operators can 
choose to confirm or cancel their operations according to 
the possible results of the operation simulated by the OVS. 

Level 3. The necessary operations included in operating 
procedure: the operations are considered to be currently 
needed and directly permitted. Nevertheless, operators can 
still choose to validate the operation to check the possible 
influence of the operation. 

 

Fig. 6. Algorithm of operation validation 
 

The OVS provides both qualitative and quantitative effects 
analysis of operators’ action. They are used for different 
purposes: quantitative evaluation would be shown 
simultaneously with the confirmation inquiry to operators. 
Therefore, operators can examine the possible results of their 
expected operations and accordingly perform confirmation or 
cancellation. On the other hand, the quantitative evaluation 
provides more detailed information to operators. The trend of 
some key plant parameters under operators’ action is generated. 
The quantitative evaluation is an optional function because the 
operator may not need to know the long time trend of specified 
plant parameter in order to make decisions. 

In the prototype development, only four kinds of transients 
were generated and used for training: LOCA, FLB, SGTR, and 
SLB. After training, the neural networks were stored by types 
in the database and only will be selected to use when it obtained 
the information from the FDAS. The FDAS provides 
comparatively accurate information about transients’ type, 
severity and location to operators. This information is used as a 
reference for choosing trained neural networks from the 
database. After the specified neural networks were selected, the 
initialization for running the OVS was finished. 

The main algorithm for system operation is shown in Figure 7. 
After system initialization is finished, the current plant status 
parameters are imported to the system. Parameters are first 
normalized and inputted to the input layer of the trained neural 
network. The operational results are calculated according to the 
operator’s action. The time for generating qualitative report and 
quantitative evaluation is different. For the qualitative report, 
only one neural network (T = 200 sec) is used, thus the time for 
calculation is nearly negligible. For the quantitative evaluation, 
much more neural networks (T=current time+1 sec to 
T=current time+200 sec) are used and the results are 
incorporated from all the outputs. Therefore the time for 
calculation is much more than the one for generating qualitative 
report. Hence the quantitative evaluation is developed as an 
optional function for operator’s reference. 

 
Fig. 7. Operation of analysis function 

VI. SUMMARY AND CONCLUSION 

Operational tasks in MCRs are mentally taxing activities, 
and human error has been identified as the most serious cause 
of accidents in NPPs. For advanced MCRs, which are fully 
digitalized and computerized systems, improving HMIs and 
developing an operator support system can help prevent human 
errors. In this paper, an integrated decision support system to 
aid operator’s cognitive activities has been suggested as a 
design basis of support systems for advanced MCRs. The main 
idea of our research is to suggest appropriate support systems to 
aid every activity of the human cognitive process and to 
integrate the support systems into one system to obtain better 
performance. The INDESCO supports not merely a particular 
task, but also the entire operation process based on a human 
cognitive process model. The operators’ operation processes 
are analyzed based on the human cognitive process model and 
the optimum support systems that support each activity of the 
human cognitive process are suggested. In terms of the human 
cognitive process, the major cognitive activities for NPP 
operations derived from ATHEANA are used. Based on this 
analysis, several systems supporting the major cognitive 
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activities are suggested. All of the suggested systems are 
integrated into one system and work together. They facilitate 
the operator’s whole operation process: monitoring plant 
parameters, diagnosing the current situation, selecting 
corresponding actions for the identified situation, and 
performing the actions.  

Furthermore, two decision support systems were developed 
in this paper. The FDAS is a fault diagnosis system based on 
two kinds of dynamic neural networks. The FDAS can analyze 
the plant status and show an fault list in real time. The results of 
these two neural networks can complement each other and 
generate a more reliable result. When the results of the MDNN 
and the DNFN differ, operators will doubt the results and will 
double-check them. On the other hand, if the results of the two 
neural networks are very similar, then operators can be quite 
confident of the results. The prototype of the FDAS showed 
good performance for all four kinds of test cases: a trained case, 
an untrained case, a trained case with a failed instrument, and 
an untrained case with a failed instrument. In order to make a 
more reliable and efficient fault diagnosis system, many more 
situations, variables, and unexpected situations should be 
considered. When the FDAS is extended to more diverse 
situations and to more various inputs, it is expected to be able to 
obtain more reliable results. Another system is the OVS for 
operation validation. The OVS provides two important 
functions for operators: validated check of operations, and 
qualitative and quantitative effects analysis of operations. 
Human errors, including omission errors and commission 
errors, significantly threaten the safety of NPPs, especially in 
abnormal environments that suitable actions to assess and 
relieve the situation must be performed by operators. The 
computerized procedure system provides a checking scheme so 
that operators’ omission errors can be considerably reduced. 
The OVS provides an additional function for the control panel 
to supervise and validate operator’s actions. Thus the 
operators’ commission errors can be expected to be effectively 
reduced. Since the FDAS is the prior system of the OVS, The 
accuracy of the OVS is strongly related to the FDAS (i.e., if 
FDAS could not provide correct type of the transient, then the 
OVS’s results would be incorrect). The analysis of the 
reliability of the developed systems should be further studied. 
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