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Abstract.  An interactive multiple criteria decision making 
method is developed to aid decision makers in public 
sector planning and management.  The method integrates 
machine learning algorithms along with multiobjective 
optimization and modeling-to-generate-alternatives 
procedures into decision analysis.  The implicit preferences 
of the decision maker are elicited through screening of 
several alternatives.  The alternatives are selected from 
Pareto front and near Pareto front regions that are 
identified first in the procedure.  The decision maker’s 
selections are input to the machine learning algorithms to 
generate decision rules, which are then incorporated into 
the analysis to generate more alternatives satisfying the 
decision rules.  The method is illustrated using a municipal 
solid waste management planning problem.  
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I INTRODUCTION 

Many public sector planning and management problems 
still pose challenges and complexities due to their 
computational requirements, multiple criteria nature, and 
sociological impacts.  Especially the environmental control, 
management and policy problems typically require the 
consideration of numerous conflicting criteria including cost, 
public health, social acceptability, political feasibility, equity 
and environmental performance such as emissions, energy 
consumption and impact. 

Multiple Criteria Decision Making (MCDM) methods are 
designed to help decision makers (DMs) in searching for the 
best compromise solution.  The extensive use of MCDM 
methods in public decision making applications has been 
limited by the complexities involved in eliciting the 
preferences of the decision maker (DM).  In the traditional 
MCDM methods, the preference elicitation techniques include 
pair-wise comparisons and/or ranking of alternatives to obtain 
utility functions of a DM [1, 2] or to utilize outranking 
approaches [3].  As number of alternatives to be compared 
increases, the combinations of pair-wise comparisons increase 
as well.  Unfortunately, this situation results in an increase in 
cognitive load imposed on the DM.  Thus, the likelihood of 
making inconsistent or irrational decisions increases.   

Recently, to elicit the DM’s preferences easily, more and 
more nonclassical techniques are being utilized and seen in the 

literature.  One of the preference modeling approaches is the 
decision rule approach [4].  The preferences can be modeled 
in the form of “if…, then…” structure.  This structure is called 
a decision rule.  Initially, the concept of the decision rules in 
MCDM literature was first introduced by [5] through the 
rough set theory.  The theory is based on inductive thinking 
and analyzes the logical relations among the selected 
alternatives.  Some applications include, but not limited to, the 
generation of the decision rules to be utilized in manufacturing 
process control applications [6, 7].  

Machine learning is a well-known computer science 
discipline that is concerned with the development of the 
algorithms and the techniques to allow computers to “learn”.  
In general terms, there are two types of learning and 
reasoning, namely inductive and deductive.  The machine 
learning techniques utilize inductive learning and reasoning 
concepts around data or examples to extract unknown and/or 
hidden patterns and trends. [8] 

More specifically, data mining and knowledge discovery 
field was formed to develop specific algorithms for finding 
meaningful and useful patterns in large databases. The 
patterns can be represented in the form of association rules 
[9].  Most of the algorithms are designed to relate attributes or 
features of each data entry with the rest of the data set.  This 
field combines methods from statistics, information retrieval, 
machine learning and pattern recognition.  The use of data 
mining and knowledge discovery methods promises effective 
applications to public as well as private multiple criteria 
decision problems.   

One way to represent the trends and the patterns in a data 
set is to generate a decision tree.  Consequently, each branch 
in the decision tree would represent a decision rule.  
Algorithms are designed to prune the decision tree effectively 
to generate the most meaningful list of the decision rules.  
These rules are then incorporated into models that would 
predict the value of a new data entry [10].   

References [11] and [12] looked at the customer 
interactions to discover association rules for the purchasing 
behaviors of the customers.  The preference information of the 
DM, which is represented by the decision rules of the “if…, 
then…” structure, are incorporated into the decision making 
process.  For example, if a DM is frequently selecting an 
attribute during the decision making process, then the machine 
learning algorithm will create a decision rule to include that 
attribute into the model.   
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During the decision making process, the applicability of the 
resultant decision vector of solutions from the Pareto front 
region is often left to be scrutinized at the end of the search 
process.  Identification of the final solution should, however, 
consider not only its performance in the objective space, but 
also the values of the decision variables that constitute the 
final solution.  The examination of decision space would help 
evaluate subjective or unquantifiable issues such as 
practicability and feasibility. Further, some objectives and 
criteria cannot be captured via mathematical modeling due to 
insufficient mathematical representation, incomplete 
information, or qualitative nature of the objective.  Most 
public sector planning decisions are compounded by these 
complexities as they involve consideration of political 
feasibility, sociological concerns, equity among different 
interest groups, and cost and benefits of each action.  In 
addition to the complexities in the preference elicitation 
techniques, the applicability of the MCDM methods in public 
sector planning is limited by the complexities while 
considering the qualitative objectives.   

In a multiobjective problem when additional objectives are 
introduced, the original best compromise solution is no longer 
noninferior, and the new best compromise solution would lie 
in the inferior region of the original objective space [13].  The 
best compromise solution on the Pareto front may deem 
inadequate to address the unmodeled issues, and therefore 
consideration of near noninferior solutions that have 
maximally different decision variable values may be needed.   

The modeling-to-generate-alternatives (MGA) method [14] 
is used to generate alternative solutions on and near the Pareto 
front region. These alternative solutions are selected from 
maximally different regions in the decision space while 
ensuring them to be similar within a small deviation from the 
best compromise solution in the objective space.  As these 
alternatives are likely to represent distinct solution 
characteristics, they are expected to perform differently with 
respect to unmodeled or qualitative objectives that a DM may 
consider during the decision making process.   

An interactive MCDM method is developed to bridge the 
gap in existing methods.  The method incorporates search in 
the Pareto front along with the search in the decision space.  
At each iteration, the objective values and the values of the 
corresponding decisions variables of the solution are 
examined simultaneously.  Utilization of machine learning 
algorithms, more specifically data mining algorithms is being 
investigated to enable easy extraction of the DM’s preference 
information.  Based on what solutions are selected by the DM 
as acceptable or not, the relations and the associations are 
constructed among the objectives and the decision variables.   

Next section describes the new MCDM method.  In section 
3, the results from an application of the new MCDM method 
to a real public sector planning case study are presented.   

 
II METHODOLOGY 

An interactive MCDM method is developed to aid decision 
makers involved with public sector planning and management 
problems.  The method integrates data mining algorithms 

along with multiobjective optimization and MGA procedures 
into decision analysis.   

The method searches for the best compromise solution by 
exploring selective solutions from Pareto front while the DM’s 
preferences are elicited and incorporated into the analysis.  
The utilization of data mining algorithms is being investigated 
to enable easy extraction of the preference information.  Based 
on the preference to accept or not accept each alternative 
solution, the relations and the associations are constructed 
among the objectives and the decision variables of the 
problem.   

The method is decomposed into two phases.  In the first 
phase of the procedure, the analyst and the DM assess the 
preferences on the Pareto front.  In the second phase of the 
procedure, the preferences in the decision space are assessed 
while the preferences in the objective space are still reflected 
and preserved at each iteration.  The iterations continue until 
the best compromise solution is attained.   

The tradeoffs among conflicting objectives and the payoff 
matrix are generated in the first phase.  An ideal point is 
identified from the payoff matrix.  Many methods have been 
developed to generate the Pareto front region or to find the 
best compromise solution on the Pareto front region [15].  Our 
method focuses on finding a solution or a region on the Pareto 
front that is close to the aspiration levels (e.g. ideal point).  
Methods such as the Tchebycheff method [16] and goal 
programming [17] are available to find the solution that best 
meets the specified aspiration levels.  While the approach 
described in this paper is flexible to accommodate any of these 
methods, the description and the results are based on a 
constraint method-based implementation to generate the 
Pareto front region.  Based on the aspiration levels of the DM, 
a region or a point on the Pareto front is found for further 
investigation.    

In the next phase, the investigation includes the decision 
space.  From the region or the point on the Pareto front that is 
close to the aspiration levels, a collection of solutions are 
presented to the DM.  The values of the decision variables and 
the objectives of the solution/s are analyzed by the DM.  If 
there are explicit preferences on the values of the decision 
variables and the objectives, they are then incorporated as 
constraints into the multiobjective optimization model to find 
new solutions.   

Next, distinct solutions within the inferior region of the 
decision space are generated by employing MGA methods by 
relaxing the objective values of the point on the noninferior 
region.  These distinct solutions would lie close to each other 
in the objective space; however, the values of the decision 
variables will be maximally different than those in the original 
solution.  The number of MGA solutions to be generated is 
dictated by the uniqueness of the last MGA solution 
generated.  Unless the solutions start to look similar to each 
other, more MGA solutions will be generated.  

The MGA solutions and the noninferior solution/s form a 
solution set.  The DM and the analyst examine the values of 
the decision variables and the objective values of the solution 
in the set.  The DM categorizes the solutions as preferred or 
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not preferred.  The selection information is processed by the 
data mining algorithms.  The algorithm analyzes the trends 
and the hidden patterns in the set of solutions to generate 
decision rules.  Consequently, the decision rules would help us 
discover the implicit preferences of the DM.  The applicability 
of the decision rules are validated at each iteration by the DM, 
and irrelevant rules are discarded.  The satisfactory decision 
rules are incorporated into the original multiobjective 
optimization model as constraints.  The model is solved again 
to obtain an updated solution with an updated decision vector 
that is reflective of the decision rules.   

In some cases, the algorithms may yield inapplicable or 
irrational decision rules.  In this case, the analyst generates 
additional MGA solutions to generate more decision rules.  
The iterations continue until a satisfactory solution is attained.   

At any point in the decision making process, any new 
preference information explicitly stated by the DM can be 
incorporated into the analysis.  The ultimate goal in each 
iteration is to analyze distinct alternative solutions that would 
help the DM converge to the best compromise solution.   

 
III ILLUSTRATIVE EXAMPLE 

The MCDM procedure was applied to a real public sector 
planning case study.  A municipal solid waste management 
planning case study was conducted for the State of Delaware.  
The goal of this case study was to generate and to analyze 
alternative solid waste management (SWM) strategies.  A 
SWM strategy includes means to collect, transport, separate, 
treat and finally dispose MSW in a cost- and environmentally-
effective way.  The problem was represented in a solid waste 
management-life cycle inventory (SWM-LCI) model [18-21].  
The model includes (1) LCI-based process models for each 
waste processing technology (referred to as SWM unit 
operations), (2) a linear programming based SWM system 
model that embeds waste-item specific mass flow equations, 
(3) an interface for the interaction with CPLEX®, and (4) a 
graphical user interface.  A variety of technology choices were 
considered to collect waste, to recover the recyclables and to 
treat the waste.  Specifically, the decisions include the 
selection of collection options to transport waste from 
generation to next destination, the selection of alternative 
waste treatment technologies such as composting, waste-to-
energy, the selection of recycling facilities, total capacity of 
and the itemized mass flows through these facilities.   

The evaluation of the SWM strategies is based on several 
objectives, including cost, energy consumption, environmental 
emissions and waste diversion from landfills. For 
demonstration purposes, only two objectives, (1) minimizing 
the total cost of the strategy and (2) minimizing the total 
greenhouse gas equivalents (GHE) emissions of the strategy, 
were considered.   

The State of Delaware has three counties. In the planning 
case study, each county was modeled and analyzed separately 
as a Multi-Objective Linear Programming (MOLP) model. In 
this illustration, we focused on the decision making process 
for only one of counties in the state, i.e. New Castle County.   

Fig. 1 presents the tradeoff between cost and GHE 
emissions.  The noninferior region, generated by constraint 
method, was analyzed.  The DM selected a region on the 
Pareto front that reflected his preferences.  This area of 
interest is shown in Fig. 1.  The noninferior solution with a 
cost of $43 million/yr and net annual GHE offset (i.e., the 
avoided GHE emissions) of 8,200 tons was shown to the DM.  
The values of the objectives and the decision variables were 
analyzed in detail.  Given the feedback from the DM, this 
solution was found unsatisfactory.  Next, MGA solutions were 
generated.  The objective values of the MGA solutions were 
close to each other and located within the area of interest 
shown in Fig. 1; however, each solution had distinct values of 
decision variables.  Each solution reported the item specific 
mass flow through the unit operations of a SWM system.  
Table 1 summarizes the facilities utilized in the Pareto front 
and MGA solutions.  The corresponding cost and GHE 
emissions are given in Table 2.  In addition to the GHE 
emissions, SWM-LCI model can report environmental 
emissions and energy consumption; some of the emissions and 
energy consumption values are in given in Table 2 as well.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Noninferior trade-off between cost and greenhouse gas emissions  
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TABLE 1 
.UTILIZATION OF WASTE PROCESSING FACILITIES IN PARETO FRONT AND NEAR PARETO FRONT STRATEGIES 

Alternative SWM Strategies 
  

Pareto front 
Solution 1 2 3 4 5 6 7 8 9 10 11 12 

Mixed Waste Transfer (Mixed-TR) 1 1 - - 1 - - - - - - - - 
Commingled Transfer (Comm-TR) - - - - - - - - 1 - - - 1 
Pre-Sorted Transfer (Presorted-TR) - 1 1 - 1 1 - 1 - 1 - 1 1 
Mixed Waste Separation (Mixed-MRF) - - 1 1 - - - - 1 - 1 1 1 
Presorted Separation (Presorted-MRF) 1 1 1 1 1 1 1 1 1 1 1 1 1 
Commingled Separation (Comm-MRF)  - - - - - - - - 1 - - 1 1 
Composting - - - - - - - - - 1 - 1 - 
Waste-to-energy  1 1 1 1 1 1 1 1 1 1 1 1 1 
Landfill  1 1 1 1 1 1 1 1 1 1 1 1 1 
Ash-landfill  1 1 1 1 1 1 1 1 1 1 1 1 1 
Preferred NO NO YES YES NO NO NO NO YES NO YES YES YES 

 
TABLE 2 

COST AND ENVIRONMENTAL EMISSIONS OF THE PARETO FRONT AND NEAR PARETO FRONT STRATEGIES 

 Cost 
Greenhouse Gas 
Equivalents 

Energy 
Consumption 

Total Particulate 
Matter 

Nitrogen 
Oxides 

Sulfur 
Oxides Preferred 

 $/year tons/year MBTU/year lbs/year lbs/year lbs/year   
Least 
GHE 4.30E+07 -8.20E+03 -1.30E+06 -3.30E+05 -4.10E+05 -1.80E+06 NO 

1 4.30E+07 -5.00E+03 -1.10E+06 -2.90E+05 -3.60E+05 -1.60E+06 NO 

2 4.30E+07 -5.00E+03 -1.20E+06 -3.00E+05 -3.70E+05 -1.70E+06 YES 

3 4.50E+07 -5.00E+03 -1.40E+06 -3.00E+05 -5.40E+05 -1.70E+06 YES 

4 4.30E+07 0.00E+00 -1.30E+06 -3.20E+05 -4.60E+05 -1.60E+06 NO 

5 4.30E+07 0.00E+00 -1.10E+06 -2.80E+05 -3.60E+05 -1.60E+06 NO 

6 4.30E+07 0.00E+00 -1.10E+06 -2.70E+05 -3.20E+05 -1.50E+06 NO 

7 4.50E+07 0.00E+00 -1.40E+06 -2.90E+05 -5.20E+05 -1.60E+06 NO 

8 4.50E+07 0.00E+00 -1.60E+06 -3.60E+05 -5.20E+05 -1.70E+06 YES 

9 4.50E+07 0.00E+00 -1.20E+06 -2.80E+05 -3.20E+05 -1.60E+06 NO 

10 4.50E+07 1.00E+04 -1.40E+06 -3.10E+05 -6.00E+05 -1.60E+06 YES 

11 4.50E+07 1.00E+04 -1.20E+06 -3.00E+05 -3.40E+05 -1.60E+06 YES 

12 4.50E+07 1.00E+04 -1.40E+06 -3.20E+05 -6.00E+05 -1.60E+06 YES 
 
The analysis of the solutions, first, focused on the 

selection of facilities.  For each solution, the DM was asked 
to state explicit preferences on the selection of the facilities.  
Then, the DM decided whether each solution is preferable 
or not.  Next, analysis focused on the selection of capacities 
of each facility.  The division of the problem into sub-
problems eased the selection process, thus the DM did not 
feel overwhelmed with the choices.   

To test and validate the algorithms, the DM implicitly 
selected solutions with commingled and mixed waste 
material recovery facilities (MRF) as preferable.  Based on 
this input, last row in Table 1 and last column in Table 2 
were generated.   

WEKA, a data-mining-software [10], was used to 
generate the decision rules.  Within the WEKA, there are 
many association rule mining and clustering algorithms.  
Two association rule mining algorithms: Apriori [22-24] 
and Tertius [25] algorithms were tested and reported in this 
paper.  The information in the Table 1 was input to the 
association rule mining algorithms embedded in WEKA.  
The decision rules were generated from each algorithm.  

Tables 3 and 4 summarize the decision rules generated from 
Apriori and Tertius algorithms, respectively.   

The algorithms verified the DM’s implicit preferences. 
For example, rule #1 in Table 4 says that when mixed waste 
material recovery facility (MRF) is not utilized, the solution 
is not preferable, and this rule has a confidence value of 
99.41% with zero counter instances.  Similarly, regarding 
the preference on the utilization of the commingled MRF, 
Rules #5, 7, 13 in Table 4 verified that if the commingled 
MRF is not in the solution, then the solution is not 
preferred.  In addition, Rules #5 and 8 in Table 3 verified 
that if neither commingled MRF nor mixed waste MRF is in 
the solution, then the solution is not preferred.  Similarly, 
Rules #16 and 19 in Table 4 revealed that solution is not 
preferred when the mixed waste transfer station is not in the 
solution.   

In addition, some feasibility conditions within the 
multiobjective linear programming (MOLP) model were 
generated as decision rules.  For example, the commingled 
transfer station can be utilized only in the presence of the 
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commingled MRF.  This feasibility condition was captured 
in rule #1 in Table 3. 

The decision rules were generated using data set in Table 
1 that has only binary values.  One drawback with 
association rule mining was the handling of the numeric 
attributes.  In the SWM planning problem, all of the mass 
flows through the facilities, cost and environmental 
emission of the strategy had real values.  To work with the 
association rule mining, the data had to be preprocessed so 
that the numerical attributes were discretized before running 
the algorithms.  Unfortunately, these results were not very 
promising.  Thus, another data mining algorithm was tried 
out.   

Clustering is the partitioning of a data set into smaller 
data subsets so that each cluster has more common traits.  
K-means [26] is one of the simplest unsupervised learning 
algorithms that solve the well known clustering problem.  
K-means algorithm embedded in the WEKA was utilized.  
Clusters were formed based on the preferred solutions and 
their emission and energy consumption values.  The results 
from the clustering set are described in Table 5.  Cluster ‘0’ 

corresponding to the preferred solution set has a mean GHE 
value of 2,857 tons/yr with the standard deviation of 6,986 
tons/yr.   

The information gathered from the association rule 
mining and the clustering was incorporated into the MOLP 
model to generate a Pareto front strategy.  Following 
constraints were added to the MOLP model:  

(1) Total cost should be less than or equal to 
$43Million/yr, (2) total GHE emissions should be less than 
or equal to 2857 tons/yr, and (3) a commingled MRF should 
present in the solution. Thus, the amount of waste processed 
at the commingled MRF was constrained to be at least 5,000 
tons/yr which represents the size of a reasonable mid-size 
facility.  

Table 6 summarizes the waste flows through the SWM 
unit operations in the resultant strategy.  The corresponding 
cost and emission values are given in Table 7.   

The DM analyzed this solution and decided to cease the 
iterations as this strategy was selected to be the best 
compromise solution.   

 
 

TABLE 3 
ASSOCIATION RULESET FROM APRIORI ALGORITHM 

Rule IF a  THEN b c 
1 Comm-MRF=0 10 ==> Comm-TR=0 10 1 
4 Mixed-MRF=0 7 ==> Comm-TR =0 Comm-MRF =0 7 1 
5 Preferred=NO 7 ==> Comm-TR =0 Mixed-MRF =0 Comm-MRF =0 7 1 
6 Comm-TR =0 Mixed-MRF =0 7 ==> Comm-MRF =0 Preferred=NO 7 1 
7 Comm-TR =0 Preferred=NO 7 ==> Mixed-MRF =0 Comm-MRF =0 7 1 
8 Mixed-MRF =0 Comm-MRF =0 7 ==> Comm-TR =0 Preferred=NO 7 1 
a: the support of the rule, the number of items covered by its premise 
b: the number of items for which the decision part of the rule holds. 
c: confidence value: b/a 

 
TABLE 4 

ASSOCIATION RULESET FROM TERTIUS ALGORITHM 
Rules a b IF  THEN 
1 0.9941 0 Mixed-MRF=0 ==> Preferred=NO 
2 0.9941 0 Preferred=NO ==> Mixed-MRF=0 
3 0.6658 0 Comm-TR=0 and Compost=0 ==> Comm-MRF=0 
5 0.5476 0.0769 Preferred=YES ==> Presorted-TR=0 or Comm-MRF=1 
7 0.5444 0 Preferred=NO ==> Comm-MRF=0 
10 0.5244 0 Comm-MRF=0 ==> Comm-TR=0 
12 0.5160 0.2308 Mixed-TR =0 ==> Compost=1 or Preferred=YES 
13 0.5160 0.2308 Comm-MRF =0 ==> Preferred=NO 
16 0.4845 0 Preferred=YES ==> Mixed-TR=0 
19 0.4643 0.3077 Mixed-TR=0 ==> Preferred=YES 
a. confirmation value; b. frequency of counter-instances 
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TABLE 5 

CLUSTERING THE CONTINUOUS ATTRIBUTES VIA K-MEANS ALGORITHM 
Cluster Centroids: 

  Energy 

Greenhouse 
Gas 
Equivalents 

Total 
Particulate 
Matter 

Nitrogen 
Oxides Sulfur Oxides Preferred 

  MBTU/year tons/year lbs/year lbs/year lbs/year  

Mean -1,359,215 2,857 -310,711 -470,730 -1,625,107 YES Cluster 0 
Standard Deviation 128,153 6,986 24,788 123,430 69,938 N/A 

Mean -1,209,003 -2,201 -296,300 -403,726 -1,623,275 NO Cluster 1 
Standard Deviation 111,628 3,557 22,102 76,160 76,817 N/A 

Clustered Instances:      

 # of items % of coverage      

Cluster 0 7 54%      

Cluster 1 6 46%      
  

TABLE 6 
RESULTANT BEST COMPROMISE SWM STRATEGY – MASS FLOWS THROUGH THE FACILITIES 

 Sector   Unit Process   Best Compromise SWM 
Strategy  

Residential 1  Residuals Collection  139,150  
Residential 2  Residuals Collection  15,499  
Residential 1  Recyclable Drop-Off Collection  10,870  
Residential 2  Recyclable Drop-Off Collection  1,211  
Multifamily 1  Recyclable Drop-Off Collection  557  
Multifamily 1  Commingled Collection  5,000  
Multifamily 1  Residuals Collection  37,700  
Commercial 1  Residuals Collection  176,085  
 Mixed Waste Separation  15,499  
 Presorted Separation  12,637  
 Commingled Separation  5,000  
 Waste-to-energy  98,520  
 Landfill   268,805  
 Ash-landfill   13,161  

 
TABLE 7 

RESULTANT BEST COMPROMISE SWM STRATEGY – COST AND EMISSION VALUES 
Cost/LCI Parameter Units Best Compromise SWM 

Strategy 
Cost $/year 43,000,000 
Greenhouse Equivalents tons GHE/year 786 
Energy Consumption MBTU/year -1,194,707 
Total Particulate Matter lbs/year -297,616 
Nitrogen Oxides lbs/year -301,835 
Sulfur Oxides lbs/year -1,568,404 

 
 
 

IV CONCLUDING REMARKS 

The new MCDM methodology searches for the best 
compromise solution in both objective and decision spaces.  
The solutions from the region of interest are investigated 
and analyzed while the DM makes selections among the 
solutions.  Machine learning algorithms utilize the selection 
information to create decision rules that captures the 
relationships between the traits of the solutions, such values 
of the decision variables and the objectives, and the 
preference information reflected by the DM’s selections. 
The decision rules ultimately reflect the DM’s implicit 

preferences and are used to constrain the decision space 
further to converge to a solution reflective of the DM’s 
preferences in both objective space and decision space. 

Both association rule mining and clustering algorithms 
verified that the DM preferred a solution with commingled 
and mixed waste MRF.  Some of the feasibility conditions 
of the LP model were verified.  Furthermore, clustering 
analysis helped us define statistically the region on the 
Pareto front and near Pareto front that DM preferred the 
most.   

In addition, the new MCDM method was illustrated via a 
MSW planning case study conducted for the State of 
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Delaware.  The results presented in this paper represent the 
decisions for only one county of the state.  Currently, the 
method has been tested on the application to the rest of the 
state.   
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