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Abstract- Planning requires evaluating candidate plans multi-
criterially, which in turn requires some kind of a causal model of 
the operational environment, whether the model is to be used as 
part of evaluation by humans or simulation by computers.  
However, there is always a gap - consisting of missing or 
erroneous information - between any model and the reality.  One 
of the important sources of gaps in models is built-in assumptions 
about the world, e.g., enemy capabilities or intent in military 
planning. Some of the gaps can be handled by standard 
approaches to uncertainty, such as optimizing expected values of 
the criteria of interest based on assumed probability distributions.  
However, there are many problems, such as military planning, 
where it is not appropriate to choose the best plan based on such 
expected values, or where meaningful probability distributions 
are not available.  Such uncertainties, often called "deep 
uncertainties," require an approach to planning where the task is 
not choosing the optimal plan as much as a robust plan, one that 
would do well enough even in the presence of such uncertainties.  
Decision support systems should help the planner explore the 
robustness of candidate plans.  In this paper, we illustrate this 
functionality, robustness exploration, in the domain of network 
disruption planning, an example of effect-based operations. 

I. SIMULATION MODELS AND REALITY

Planning generally entails generation and evaluation of 
several alternate plans and selecting one of the plans based on 
multiple, potentially conflicting criteria.  Evaluating plans 
along multiple criteria requires, except in trivial situations, 
simulation of the plans. Simulation, whether done in a 
computer or in one’s thought process, requires a causal model 
of the operational environment, including, in adversarial 
planning, models of the adversaries.   

However, any planning based on simulations has to face an 
intrinsic problem of simulation models, namely, that there is 
an inevitable gap between the models and reality. Comparing 
and selecting plans on the basis of simulation results can be 
problematic in the face of simulation model gaps, 
uncertainties and errors.  

The concept of model errors is easy to understand: the 
model has incorrect information about reality. Gaps are 
missing aspects of reality.  These are harder to protect against, 
since generally we don’t know what we don’t know. 
Uncertainties are normally handled in a probabilistic fashion. 
However, as Bankes [Bankes] points out, difficult decisions 
about the future cannot be made on the basis of expected value 
for at least two reasons. The first is that if the outcome 
measures are correlated, then individual expected values will 
give a false picture of the future, but this can be taken care of 
by a more sophisticated stance towards computing the joint 
expected values. More seriously, however, expected values-
based assessments fail to indicate both dangers and 
opportunities that may lie nearby, and possibilities for driving 
the future states to avoid dangers and exploit opportunities. 
The decision maker needs to drive robustness exploration in 
the larger context of actions available.  For example, for a 
proposed military course of action (COA), suppose there is 
great uncertainty in the mind of the planner about the 
likelihood of rain.  Perhaps with some expenditure of effort 
better information about the likelihood of rain can be obtained, 
but if COA is robust with respect to rain, the resources that 
would be used in obtaining better information about rain could 
be put to better use. Even more importantly, the decision 
maker might be able to determine that while the probability of 
achieving the objective varies considerably depending on 
whether it rains, if subgoal S is achieved, then rain doesn’t 
affect the final outcome very much, and that increasing a 
certain COA parameter above a particular value can ensure 
that S can be achieved, rain or shine.   

Another example is a potential large uncertainty in enemy 
position. The decision maker might explore a how to make a 
COA robust with respect to this uncertainty. It would be good 
for him to discover that it is possible to design a COA such 
that the initial stages of the COA are largely oriented towards 
getting more information about the location, and such that 
based on the information, later stages of the COA can be 
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assigned appropriate parameters. Again, the goal is less to 
simply obtain estimated values for the outcomes than to 
explore the space around a COA to see whether it is possible 
to make it more robust. 

The gap between model and reality is not an issue for 
computer simulations alone – everyday human planning uses 
models as well.  However, humans have evolved several 
commonsense heuristics to cope with the various problems 
with the models we just identified.  Humans often know in 
their guts which aspects of their model of reality they are 
especially unsure of.   For important aspects of reality they are 
unsure of, they may not simply play probabilities, but instead 
selectively explore the world for additional information.  Or 
design plans that in their earlier steps combine achieving goals 
of the plan with information gathering, and have branch points 
in the plan based on the information.  Or work back from 
especially worrisome outcomes back to identifying aspects of 
reality that may be relevant even though their immediate 
simulation model contained no information about them.   

That robustness of decisions is important is not novel, but 
the in-principle nature of the gap between simulation models 
and reality, and how it forces a shift away from optimality to 
robustness is not widely appreciated, specifically in computer-
based decision support. More and more complex simulation 
models are being built as the enabling technology for decision 
making, with nary a warning or awareness of the problems 
that we have referred to.  The problem is compounded by the 
fact that simulation models in many complex planning 
problems are composed from bits and pieces written by 
several different people, and the planner may not even be 
aware of possible gaps.  This leads to a tendency to place too 
much reliance on the results of the simulation, and hence on 
the plans based on them.    

What the planner needs, and what decision support systems 
must help with, is a sense of what model assumptions have 
what kind of effect on what dimensions of outcome, and 
correspondingly, how to make the desired outcomes be less 
sensitive to the gaps and uncertainties.  That is, the planner 
needs to develop a sense of how robust the plan is with respect 
to possibly problematic aspects of the model and to modify the 
plan to be more robust if it is not robust enough.   

Handling the gaps as well the uncertainties requires a shift 
in point of view from optimality to robustness. In order to 
realize the full potential of the vastly increased search spaces 
made possible by computer simulation, it is essential that the 
decision support system empower the planner to explore the 
plans for robustness of the selected plans. The research 
challenge is to identify, and incorporate as part of decision 
support systems, a variety of techniques by which the selected 
plan can be tested for sensitivity to various model assumptions 
and uncertainties.  This is a tall order.   

This paper is an initial effort to illustrate the idea of 
robustness exploration in the context of a multi-criterial 
decision making framework.   

II. THE SEEKER-VIEWER-FILTER ARCHITECTURE FOR 
MULTI-CRITERIAL DECISION MAKING

This research is being conducted in the context of the 
development an integrated planning support system in which 
the goal is to support the entire planning cycle, as illustrated in 
Fig. 1.  A core of this is the Seeker-Filter-Viewer architecture 
[Josephson], where the Seeker generates decision alternatives 
and evaluates them on multiple criteria, the Filter produces the 
Pareto-optimal subset with respect to the criteria, and the 
Viewer provides a variety of interactive visual means by 
which to view the alternatives on one or two criteria, examine 
the tradeoffs, select and narrow the choices.  The Viewer is 
also a means of understanding the decision space: e.g., the 
user can see at what points in the decision space, how a 
change in one of the variables is related to change in selected 
other variables.  In fact, this feature of the Viewer will be used 
in the robustness investigation in the example later in the 
paper. 

Fig. 1.  An integrated planning framework

III. NETWORK DISRUPTION PLANNING:
AN ILLUSTRATIVE EXAMPLE 

Effects-Based Operations (EBO’s) [Davis] are military 
operations that focus “on planning, executing, and assessing 
military activities for the effects produced rather than merely 
attacking targets or simply dealing with objectives,” and 
complement traditional target-based courses of action 
(COA’s).  Examples include so-called “psywar” 
(psychological warfare) operations and disrupting aspects of 
infrastructure, such as communication and transportation 
networks, that support enemy military operations.  In the 
example we consider in this paper, the robustness of a network 
disruption plan is explored with respect to various 
assumptions built into the model of the enemy network used 
in simulating the plan.   

The network we used in our experiments is sketched in Fig. 
2.  The network includes power, communication and control 
nodes, and the links may be power or communication or both.  
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Some of the links are directed (one-way), others bi-directional.  
Nodes 6, 10 and 26 are command and control nodes.  A 
network disruption plan (or plan from now on) is abstractly a 
list of nodes and links to be attacked.  The goal of the 
disruption plan is to reduce the bandwidths for communication 
between these nodes.  These three bandwidths provide three 
criteria, and expected friendly and enemy casualties provide 
two further criteria in our experiments.  In the experiments, we 
use the number of fragments into which the network is split as 
a useful proxy for bandwidths.  Even though we don’t use it in 
this illustrative experiment, collateral damage could be an 
especially important criterion in practice in such EBO 
operations.      

In order to assess the potential performance of a plan, it 
needs to be simulated, and this requires a fully specified 
model of the relevant aspects of reality: the structure of the 
network, the number and type of nodes, their connectivity, the 
intentions and capabilities of the defenders and the attackers, 
and the repair capabilities are just some examples.   Here we 
draw attention to one set of parameters in the model that will 
be particular interest in our experiments: “defense strength” 
parameters (denoted by di for node i) associated with nodes. 
This parameter represents the probability that the node will 
survive an attack. It also determines the casualties suffered by 
the attacker of the node.  Because the model is stochastic, each 
run might produce different values, so several runs are 
performed and expected values for the criteria of interest are 
generated.   

 The robustness exploration project that we are reporting on 
is part of a larger project that includes EBO plan space 
exploration, including generation and simulation of multiple 
plans, Pareto-filtering on multiple criteria, and further down-
selecting by the human, based on trade-offs.  A companion 
paper submitted to this conference [Carroll] describes the use 
of an evolutionary algorithm for generating a plan. For 
purposes of this paper, however, we assume that a good 
candidate plan has been generated.   Specifically, the plan is 
the list of nodes to be disrupted (attacked): {3, 15, 16, 21, and 
22}.    

IV. ROBUSTNESS WITH RESPECT TO MODEL ASSUMPTIONS

Almost any aspect of the model used to simulate an attack 
plan on the network is an “assumption” about the world of 
interest, the impact of which on plan performance might be of 
interest. However, the planners generally have more 
confidence in some aspects of the model than others.  To 
illustrate the methodology, we take the set of defense strength 
parameters as the assumptions that the planner is most unsure 
of1.  This is not unrealistic – the resources available to the 
                                                          
1  While in some situations the uncertainty about the 
parameters can itself be treated probabilistically, in others 
such an approach is not appropriate.  If by “most unsure of,” 
the planner means that the source of information about the 
defense strength is unreliable and may have questionable 
motives, the uncertainty of the planner is best treated as an 
example of deep uncertainty.  Treating it by just putting a 

Fig. 2. A network to be disrupted 
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defenders are likely to be among the most common sources of 
uncertainty.  The model has some assumptions of these 
defense strength parameters built in.  In Fig 2, the first column 
of the Table to the right lists these assumptions. Given the 
plan “Attack nodes {3, 15, 16, 21, and 22},” we would like the 
robustness exploration to help us answer questions such as the 
following. 

(1) Which nodes’ defense parameter assumptions are 
most critical to the outcomes?  

(2) If we know that the outcomes are especially sensitive 
to (i.e., not robust with respect to) assumption about 
the parameter for node i, is there any other 
assumption whose correctness would reduce the 
plan’s sensitivity to the assumption about node i?   

The answer to the first question might suggest adding 
resources to strengthen the attack on node i. Or, the planner 
might focus some of the information gathering resources on 
checking the assumption about node i.  Suppose it turns out 
that it is hard to get additional information about node i, say
because the information about the defense allocation to the 
node is even better defended that the node itself.  In this case, 
the answer to the second question may be useful.  For example, 
suppose the robustness investigation reveals that if node j’s
parameter is in a certain range, then the plan is less sensitive, 
i.e., more robust with respect, to the assumption about node i,
then it may be worth redirecting the information resources to 
find out more about node j.    

In passing we note that there is no implication from the 
example question (2) that only pair-wise interactions are 
important.  There could be cases where the planner might have 
reason to hypothesize that a parameter’s sensitivity might 
depend on two other factors.  In general, however, humans 
find it is easier to make hypotheses regarding the interaction 
of variables when the numbers are small rather than large.    

THE METHODOLOGY

The general methodology is simple:  Vary the model 
assumption in question over its range, for each variation 
simulate the plan and compute the criteria of interest.  
Examine how sensitive are the criteria of interest to the 
variations.  This examination can be done in several ways.  
We first change only one model assumption and investigate 
how sensitive the criteria are to this change.  The user might 
then investigate possible interactions between assumptions.  
For example, while the plan may turn out to be not robust with 
respect to assumption A1, it might turn out to be acceptably 
robust with respect to A1, if another model assumption, say A2,
is changed in a certain way.   

Given a system characterized by independent variables 
{x1, ..xi…xn},  dependent variables {c1,…cj…cm}, and a set of 
samples {s1,…sk} consisting of instances (candidates, runs..) 
of the system behavior for various values of x’s, a common 

                                                                                                    
probability on the reliability of the source is exactly what we 
propose is inappropriate.       

way to estimate the sensitivity of a dependent variable to the 
independent variables is to compute the correlation coefficient
based on the samples.  For our application, for Question (1), 
this requires that we compute, from the data from simulation 
runs, the correlation coefficient between defense strength 
parameter di and the outcomes of interest.  For interactions 
between assumptions -- to decide how sensitive a dependent 
variable cj is to independent variable xi, given that specified 
other independent variables have a certain values or occur in 
certain ranges, the answer for our Question (2) -- the 
correlation coefficient would be computed between xi and cj,
using only the runs that satisfy the constraints on the other 
independent variables.   

In practice, there are many problems in simply computing 
the correlation coefficients for our needs, problems that make 
the kind of visual interface that we will soon describe an 
attractive option.  First, correlation coefficient formulae look 
for a linear relation between the variables.  If there is a 
positive correlation over a certain range of xi and a negative 
correlation for another range – quite often the case in real 
world situations -- such computations might return zero as the 
value for the correlation coefficient.  Second, while it is easy 
enough to calculate correlation coefficients for each single 
independent variable and each dependent variable, the number 
of combinations to be considered for pairs or triples of such 
variables can grow very large.  Interactive data analysis, 
where the analyst uses domain-specific expertise to generate 
hypotheses, which he then interactively tests, which then 
results in additional hypotheses is often an effective way to 
fight the combinatorics.  These considerations lead to the need 
for a visual interactive interface for exploring the structure of 
simulation data to form and test hypotheses about robustness.    

A. The Viewer    

The Viewer is described in [Josephson] and the thesis by 
Iyer [Iyer].  The Viewer enables the analyst to have on one 
screen a combination of several types of displays of data.  The 
first is a spectrum display.  For a given variable, the 
corresponding spectrum displays all the candidates, each at the 
location of its value for the variable.  Two dimensional scatter 
diagrams can be created for pairs of variables, and again the 
candidates are displayed at the location determined by the 
values that each candidate takes for the two variables.  These 
two display types work well when the variables are continuous.  
When a number of such displays are created in one screen, the 
same data item will appear in different locations in different 
diagrams depending on the values that the item takes for the 
variables in the display.   

When the variables take only a small number of discrete 
values, as in our application, histograms are used to represent 
the number of entities in the run that take a specific value (in 
the spectrum), and in the scatter diagram boxes whose areas 
are proportional to the number of entities that take the 
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specified discrete values are placed in the coordinate location, 
as in Figure 3.   

A key functionality is cross-linking: a set of alternatives can 
be chosen in one of the diagrams – the selected ones change 
color from blue to red – not only in the selected diagram but in 
all the other diagrams.     

B. Exploring the Robustness of the Plan 

Simulation.   The attack plan was simulated a total of 5000 
times (producing 5000 runs), under various defense 
parameters for the nodes.  The first group, the base group,
consisted of runs with the defense parameters all at the 
assumed values.  The second group consisted of a sequence of 
sets of runs: in each set, one of the parameters was increased 
to various higher values2 from those in the base model, and the 
rest were unchanged; one of the parameters was decreased to 
various lower values from those in the base case and the other 
parameters were left unchanged.  This was done for each of 
the nodes.  The third group consisted of pair by pair changes: 
e.g., d15 and d16 were each increased, d15 was increased and d16

decreased, and d15 was decreased and d16 increased.   This was 
done for all pairs of nodes in the plan.  It is worth noting that 
the relation between the di parameters and the probability of 
the node being destroyed can be complex, and it itself part of 
the set of model assumptions.   

C. Assessing Sensitivity.   

 Which assumption about nodes’ defense parameters are 
most critical for what aspects of the plan’s performance?  To 
start with, the number of fragments and average bandwidths 
are both measures of how well the plan is performing: the 

                                                          
2 The details of how these values are chosen are not important 
for the illustrative point we aim to make.   

higher the number of fragments, or the lower the bandwidth, 
the better is the plan.  Let us look at Fig. 3, which plots the 
number of fragments against the bandwidth. It appears that 
there really is not much reason to distinguish between 5 and 6 
fragments; both of them reduce the bandwidth to 0.  In fact, 
using the additional consideration that a bandwidth value 
below 15,000 units is quite good, fragments 4, 5 and 6 are 
more or less equally good enough.   

In Fig. 4, the analyst can see that the runs with labels 1, 2, 4 
and 5 seem to maximize the number of cases with 4 or more 
fragments.  Also, simulations 1 and 2 have the fewest number 
of runs with 3 or fewer fragments.  Conversely, though 
simulation 8 is fine with respect to having a large number of 
instances with 6 fragments, it also has a large number of cases 
with non-fragmented network.  Simulation 6 has both a small 
number of 6 fragments and a large number of non-fragmented 
cases.  Labels 1 and 6 correspond to low and high values for 
d3, respectively.  One hypothesis that the analyst can make is 
that the COA’s performance changes significantly as the value 
of d3 changes, flagging it as one of the parameters with respect 
to which the COA is possibly not robust.  Different lines of 
analysis might identify different nodes, but, given that the 
analyst is concerned with the worst cases as well as the best 
cases, the identification of node 3 as a candidate for 
robustness concern is reasonable.   

Another line of analysis (we don’t show the figures because 
they consume too much space) leads the planner to wonder 
about node 16.  Specifically, when the analyst looks at cases 
where the d parameters of pairs of nodes are increased, he 
notices that there are a couple of cases that stand out in 
regards to preventing the network from fragmenting: one 
where d3 and d16 are increased and the other where d16 and d21

Fig. 3.  The simulations are plotted as the 
number of network fragments vs the aggregate 

bandwidth of the network resulting from the 
execution of the COA. 

Fig. 4. Various simulation runs (X-axis) plotted 
against the number of fragments (Y-axis).  X-axis:
left-most (label 0) is the base case, the next 5 (labeled 1 

through 5) correspond to the parameters for nodes 3, 15, 
16, 21 and 22 being set low respectively, and the next 5 
(labeled 6 through 10) to the parameters for the same 

nodes set high respectively.

189

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)



are increased.  This and other similar analysis fingers d16 as a 
parameter that the COA is somewhat sensitive to, especially 
with respect certain cases of bad worst-case behavior.   

The behavior of node 16 gives rise to an example of 
Question (2): Are there any conditions on other nodes that 
might reduce the plan’s sensitivity to those values of d16 that 
correspond to the worst case behavior?  Note that this is 
indeed an issue of robustness with respect to model 
assumptions: if we could be sure that the value of d16 is not 
one that corresponds to bad performance, we don’t need to 
worry.  But given the uncertainty, the planner might look for 
ways to moderate the effects.  One way is to identify another 
node that he do something about in the COA to ensure good 
performance, in spite of the uncertainty about d16.  If he feels 
more confident about the assumptions regarding this node, or 
he has reason to think that it would be easier to acquire better 
information about this node, then identifying such a node 
would be useful.   

Fig. 5 is a display that shows on the x-axis simulations 
ordered by the value of d16: in the middle is the simulation for 
the base value and the value of d16 increases from left to right.  
The y-axis is the number of fragmentations, with the bin sizes 
corresponding to the numbers of runs that produced the 
corresponding number of fragments.  Fig. 6 is a similar 
display, except that only the runs where node 3 was not 
destroyed are included.   It is clear that when node 3 is not 
destroyed, the attack plan overrides any effects of high values 
of d16, including those corresponding to poor worst-case 
performance.  This is a reassurance to the planner that as long 
as he can take steps either to acquire more reliable knowledge 
about the value of d3 to make sure it is not high, or to modify 
the COA to ensure that the chances of destroying node 3 are 
high, he can worry less about not knowing enough about d16.

V. DISCUSSION

This paper has two parts.  In the first, we make a general 
case for a shift in perspective in multi-criterial decision-
making from optimal decisions to robust decisions.  This is 
because almost all decision-making involves modeling the 
world of interest and such models are bound have gaps and 
errors, and it is more important to ensure that the decisions we 
make are not fatally compromised by such model errors than 
to optimize based on extreme confidence in our world models.  
In the second part, we illustrated the approach with an 
example drawn from a planning domain where we gave 
examples of the use of a visual interface to generate 
hypotheses about how robust a proposed plan is with respect 
to various model assumptions. 

It is useful to list a number of caveats regarding the example 
and the approach used.  First, the example was used to 
illustrate some of the ideas in the first part and not as a 
realistic instance in the network disruption planning domain.  
Second, using the visual interface is a good way to start 
making interesting hypotheses, but statistical work would need 
to be done to verify or reject the hypotheses. The advantage of 
the visual interface is that it can help identify correlations over 
subranges of values that are unlikely to show up in correlation 
calculations over the entire data set.  In addition to making 
available histograms as in Figures 3-6, the Viewer, the 
interface described in the paper, provides other ways, such as 
“spectra,” and scatter plots, to display and analyze data to 
explore various robustness hypotheses.  Third, robustness 
analysis is computation-intensive so the planner has to be 
reserve it for assumptions that he has reasons to worry about.  
In fact, it is impossible to test a plan with respect all aspects of 
a model: if one is in such a state of uncertainty about the 
domain, planning with any hope of achieving success is a 
fool’s errand.   

Having an idea about the robustness of a decision can help 
improve the decision in many ways.  Information gathering 
resources can be selectively focused on acquiring better 

No. of 
fragments

X-axis shows simulation run labels: The values of d16 increase 
along this axis, with the base value case in the middle. 

Fig. 5. Value of d16 plotted against the number of 
fragments into which the network splits. 

X-axis shows simulation run labels: The values of d16 increase 
along this axis, with the base value case in the middle. 

No. of 
fragments

Fig. 6.  Same as Fig. 5, except that in all these runs 
 node 3 is not destroyed 
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information regarding those model assumptions that the plan 
is most sensitive to.  The plan may be modified to overcome 
any negative effects of lack of knowledge.  For example, in 
our example, the plan was quite sensitive to assumptions about 
node 3.  One way to respond to this knowledge might be to 
add plan resources so it succeeds even if node 3 happens to 
much better defended than assumed.   In the absence of this 
specific information about node 3 being crucial, information-
gathering or plan enhancement resources would need to be 
allocated to confirm all possible assumptions, reducing the 
benefits.  Having the information enables the planner to focus 
the resources specifically to node3.   

In our illustrative example, we started with a plan already 
generated, presumably selected multi-criterially from a set of 
plan candidates, and described evaluating the robustness of the 
selected plan as a last stage.  In fact, however, generation and 
modification of plans and robustness evaluation can interact 
with other in various ways.  The planner might be unhappy 
with what the robustness analysis revealed, and might change 
the plan, or create a new plan, and follow this up with another 
robustness analysis.  Thus, generation and robustness analysis 
may form a cycle until satisfaction is obtained.  

In principle, during the multicriterial evaluation, 
comparison and selection stage, the plans’s robustness 
properties might form additional criteria.   There are two 
points to keep in mind, however.  One is that assessing the 
robustness is an exceptionally computation-intensive process – 
recall that in our illustrative example, the selected plan was 
simulated thousands of times.  Thus, while comparing plans 
with respect to robustness would be useful, the plan space 
would need to be significantly pruned, so that only a small 
number of plans that survive selection in the first selection 
round are assessed for robustness and then compared.  More 
importantly, however, robustness conceptually is not the same 
sort of criterion as the ones that the plan that relate to the 
plan’s purposes.  Given two plans with approximately equal 
performance figures with respect to say the probability of 
mission success, it makes sense to choose the one with better 
robustness properties, but if one plan has an expected value of 
50% for mission success probability with a variance (a 
robustness measure) of 5%, and another plan has success 
probability at 80% with a variance of 7%, we would of course 
choose the second plan, even though it is less robust than the 
first.  Robustness is an important property, but it is 
conceptually not a criterion in then same sense as those that 
define the mission.  

In the example in the paper, at least we knew what the 
parameters were about which we were making assumptions.  
How about missing knowledge?  For example, what if there 
might be ways in which the enemy might foil our intentions 
but ways that we can’t hypothesize at the moment?  How to 
respond to missing knowledge in the models will be discussed 
in future papers.   

Finally, we are not the first researchers to propose or 
discuss the issue of robustness of plans – [Bankes] is just an 
example of modern references that discuss approaches to this 
aspect of decision-making.  Sensitivity analysis has long been 
an important topic in decision analysis.  Economists in 
particular have discussed robust policies, since uncertainty 
about model knowledge is pervasive in that discipline.   Our 
paper is a response to three observations.  First, that the gap 
between models and reality is fundamental and is not 
restricted to cases clearly known to be full of uncertainty is 
not widely appreciated, shown by the fact that an 
overwhelming fraction of the literature in simulation and 
decision support still focuses on optimality, typically based on 
assumed probability distributions and expected values.  There 
is usually little appreciation of the issue of missing knowledge 
or what has been called deep uncertainty.  (Admittedly, our 
illustrative example doesn’t deal with this issue.)  Our goal is 
to add this view of robustness to a general framework on 
decision support as indicated in Fig. 1, so that all the issues 
that should be part of such a framework are identified and 
supported by underlying technologies that work together.   For 
example, the fact that we can use the visual interface of the 
Viewer to perform some of this robustness analysis is 
important, since the Viewer is also part of the multi-criterial 
technology for selecting decision alternatives by applying 
trade-off judgments.   

Second, we wish to raise awareness that robustness 
investigation is not simply a technical data analysis, but is 
motivated by the larger context of available actions, including 
various information-gathering and plan modification heuristics. 
We don’t simply ask what assumptions the plan is most or 
least robust with respect to; the robustness analysis is partly 
driven by considerations of what we can do something about.  
Thus, if it turns out that the plan is most sensitive to 
assumption A1, but we have no means of verifying it, we then 
turn to exploring if there are any other assumptions we can do 
something about and which might moderate our uncertainty 
about A1.  Another strategy that we mention in the earlier part 
of the paper is that of modifying plans so that the initial part of 
the plan is partly devoted to obtaining additional information 
about the assumptions that are uncertain and the plan is 
sensitive to.  Proposing that we view robust decision-making 
not as a technical decision analysis issue but as embedded in a 
larger framework of action is another contribution of this 
paper.    
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