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Abstract— The article presents an approach to interactively
solve multi-objective optimization problems. While the iden-
tification of efficient solutions is supported by computational
intelligence techniques on the basis of local search, the search
is directed by partial preference information obtained from the
decision maker.

An application of the approach to biobjective portfolio
optimization, modeled as the well-known knapsack problem,
is reported, and experimental results are reported for bench-
mark instances taken from the literature. In brief, we obtain
encouraging results that show the applicability of the approach
to the described problem.

In order to stipulate a better understanding of the underlying
structures of biobjective knapsack problems, we also study the
characteristics of the search space of instances for which the
optimal alternatives are known. As a result, optimal alternatives
have been found to be relatively concentrated in alternative
space, making the resolution of the studied instances possible
with reasonable effort.

I. INTRODUCTION

As many problems of practical relevance are often char-
acterized by several criteria that simultaneously have to be
taken into consideration when solving the problem, multi-
criteria approaches play an increasingly important role in
many application areas of operations research, engineering,
and computer science. Approaches from the domain of multi
criteria decision making describe an alternative x, belonging
to the set of feasible alternatives X , by a set of objective
functions Z(x) = (z1(x), . . . , zK(x)). From a decision
making perspective, these functions describe attributes of the
alternatives, which are considered to be of relevance from the
point of view of a decision maker, in a quantitative way. As
the aspects and therefore the functions are however often
of conflicting nature, not a single alternative exists being
optimal for all zk(x). Instead, a set of equally Pareto-optimal
alternatives can be found as introduced in the definitions
below. Without loss of generality, we assume in the following
Definitions 1.1 and 1.2 the maximization of the components
zk(x) of Z(x).

Definition 1.1 (Dominance): A vector Z(x) is said to
dominate Z(x′) iff zk(x) � zk(x′)∀k = 1, . . . ,K ∧ ∃k |
zk(x) > zk(x′). We denote the dominance of Z(x) over
Z(x′) with Z(x) � Z(x′).

Martin Josef Geiger is with the Department of Industrial Manage-
ment (510A), University of Hohenheim, 70593 Stuttgart, Germany (phone:
0049-711-45923462; fax: 0049-711-45923232; email: mjgeiger@uni-
hohenheim.de).

Definition 1.2 (Efficiency, Pareto-optimality): The vector
Z(x), x ∈ X is said to be efficient iff � ∃Z(x′), x′ ∈ X |
Z(x′) � Z(x). The corresponding alternative x is called
Pareto-optimal, the set of all Pareto-optimal alternatives
Pareto-set P .

Two aspects play a vital role for solving multi-objective
problems:

1) Search for optimal alternatives (the Pareto set P ),
supported by an optimization approach. In comparison
to single-objective optimization approaches, the notion
of optimality is here generalized with respect to the set
of simultaneously considered optimality criteria.

2) Choice of a most-preferred solution by the decision
maker of the particular situation. While in single-
objective optimization problems, the choice of the
most-preferred solution naturally follows the identifica-
tion of the (single) optimal solution, in multi-objective
problems an individual tradeoff between conflicting
criteria has to be resolved in a decision making proce-
dure.

Principally, three classes of combining search and decision
making exist [8]:

1) A priori approaches reduce the multi-objective problem
into a single-objective problem by constructing a utility
function for the decision maker. The resolution of the
problem then lies in the identification of the solution
which maximizes the chosen utility function.

2) A posteriori approaches first identify the Pareto set P
(or a close and representative approximation) and then
resolve the choice of a most-preferred solution within
an interactive decision making procedure.

3) Interactive approaches combine search and decision
making, presenting one or several solutions to the
decision maker and collecting preference information
which is then used to further guide the search for
higher preferred alternatives.

The question, which particular way to follow when solving
multi-objective optimization problems depends on several
aspects. As mentioned above, a priori approaches require
comparably rich preference information from the decision
maker in order to reduce the problem to a single-objective
problem. Assuming this information can be obtained, the
resolution of the problem is straight-forward. Unfortunately,
this is not necessarily the case in many situations as uncer-
tainty about the precise appearance of the decision makers
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utility function is often present. Also, the acceptance of a
single solution computed by a computational intelligence
method may be a problematic issue from a psychological
point of view for some decision makers as no further choice
is possible.

A posteriori approaches on the other side do not require
any information from a decision maker. Instead, the Pareto
set P is computed off-line, allowing the decision maker
to perform other tasks while waiting for the results of the
optimization procedure. Under the assumption that the set of
optimality functions Z(x) is exhaustive, an important aspect
when formulating multi-objective models [2], one element
x∗ ∈ P can be identified in a later decision making procedure
as the most-preferred one. A potential drawback of this
approach is however, that the Pareto-set may be of large
cardinality, resulting in a necessary high computational effort
when identifying the Pareto-optimal alternatives. Also, many
if not most x ∈ P are discarded in the decision making
procedure as they do not meet the individual, personal
requirements of the decision maker.

Interactive approaches may overcome the problems of the
above described extreme ways of resolving multi-objective
optimization problem. On one hand, only partial preference
information is required when solving the problem as the
search is guided in one direction which may be changed
when obtaining less-preferred solutions. On the other hand,
only fewer alternatives have to be computed compared to the
entire Pareto-set P . An important aspect when implementing
interactive approaches is, that the decision maker needs
to be present during the resolution procedure. Also, the
computation of the solutions has to be completed in little
time as the decision maker will have to wait for the results
of the system. With the increasing computational possibilities
of modern, affordable computer systems, the proposition
and implementation interactive approaches however becomes
more and more attractive.

Recent approaches of computational intelligence tech-
niques implement interactive problem resolution procedures,
e. g. on the basis of Evolutionary Algorithms [12], involving
a decision maker during search. While in these approaches
the set of criteria remains fixed during search, other concepts
also include the possibility of dynamically changing the rele-
vant criteria when searching for a most-preferred solution [7].
Research in interactive computational techniques is however
a rather new field, and the precise way of how to integrate
articulated preferences in the search process is still to be
investigated in more detail.

In this article, we aim to contribute to the development
of interactive computational intelligence techniques for the
resolution of multi-objective optimization problems. While
the search for Pareto-optimal alternatives is done by meta-
heuristics on the basis of local search, individual preferences
guide the search in a particular direction with the goal of
identifying a subset of P that is considered to be of interest
to the decision maker. While the idea is generic, it is tested
on a particular application.

The article is organized as follows. In the following
Section II, the biobjective portfolio optimization problem
is introduced and a quantitative optimization model is pre-
sented. We also briefly review existing approaches from the
literature that have been used to solve this problem. In order
to obtain a better understanding of the underlying structures
of the particular problem, an analysis of the search space has
been carried out which follows in Section III. An interactive
procedure to solve the problem is proposed in Section IV.
Experimental investigations on benchmark instances taken
from literature follow in Section V, and conclusions are
drawn in Section VI.

II. PROBLEM DESCRIPTION

The multi-objective portfolio optimization problem con-
sists in selecting a subset of assets from a set of n possible
investment possibilities such that several criteria, mainly the
profit and risk of the resulting portfolio, are optimized. More
formally, the following program has to be solved.

max zk(x) =
n∑

j=1

pk
j xj ∀k = 1, . . . ,K (1)

s. t.

n∑

j=1

cjxj � C (2)

xj ∈ {0, 1} (3)

Each alternative x consists of an n-dimensional decision
vector x = (x1, . . . , xn) which defines for each asset j
whether it is included in the portfolio (xj = 1) or not
(xj = 0), given in constraint (3). Side constraint (2) ensures
that a given capacity (e. g. a budget) of C is not exceeded,
and typically the nonnegative coefficients cj relate to each
other as cj � C ∀j = 1, . . . , n and

∑n
j=1 cj > C.

The nonnegative coefficients pk
j express for each xj the

contribution (e. g. the profit) of asset j to objective k.
As the objectives conflict with each other, a set of Pareto-

optimal alternatives P exists among which the choice of a
most-preferred solution x∗ ∈ P has to be made.

Unfortunately, the problem, also referred to as the so called
knapsack problem, is NP-hard [4], even for a K = 1. For
single-objective problems, relatively good branch-and-bound
algorithms have been developed [11], other approaches are
based on dynamic programming [9]. The multi-objective
case with K � 2 has been tackled again with branch-and-
bound [16] and several heuristics, mainly local search as e. g.
Simulated Annealing [15], or Tabu Search [3].

III. ANALYSIS OF THE SEARCH SPACE

A. Motivation and theoretical foundation

In general, metaheuristics such as Simulated Annealing,
Tabu Search, and Evolutionary Algorithms aim to improve
solutions through the successive modification of their deci-
sion variables. In this context, the modification of a decision
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vector is done with respect to the definition of a certain
operator, which associates one or several other alternatives
to a given solution x. It is also common to refer to these
alternatives, computed for the input x, as so called neighbors
of x. Given an improvement of an alternative x by applying
a particular operator, the improved solution usually replaces
its predecessor. For the case in which no improvement of
the input x is possible using the chosen operator, different
heuristic specific escape strategies have been proposed in the
literature [13].

From this point of view, most metaheuristics perform a
walk in a neighborhood graph GN(V,A), induced by the
chosen neighborhood operator N. Each vertex vx ∈ V in
GN represents an alternative x ∈ X . An arc a = (vx, vx′)
exists if x′ is in the neighborhood of x: x′ ∈ N(x).

As metaheuristics iteratively search in GN, their effective-
ness depends on the underlying properties of the neighbor-
hood graph. Two main questions are of relevance for the
identification of Pareto-optimal alternatives:

1) How hard is it to identify a Pareto-optimal alterna-
tive either starting from a random initial solution or
a naı̈ve heuristically computed one? In the specific
case of the multi-objective knapsack problem, a first
approximation P approx of the Pareto set P can be
obtained by means of diversified set of weights which
is used to reduce the problem to a single-objective
problem, keeping the found non-dominated alternatives
in P approx.

2) How do the Pareto-optimal alternatives relate to each
other in alternative space? Are they relatively concen-
trated in alternative space or are there bigger gaps in
between?

In order to be able to express the distance of two alter-
natives x and x′, we use the so called Hamming distance
dh(x, x′) between two decision vectors x = (x1, . . . , xn)
and x′ = (x′

1, . . . , x
′
n) as given in Expression (4).

dh(x, x′) =
n∑

j=1

∣∣xj − x′
j

∣∣ (4)

Using the Hamming distance, we are able to compute
for each x ∈ P the distance to the closest element in the
approximation P approx of P using Expression (5).

dmin
h (x) = min

x′∈P approx
dh(x, x′) (5)

B. Results for benchmark instances
We analyzed two biobjective benchmark instances taken

from the literature [3] for which the optimal alternatives are
known, which is one of the reasons why they have been
chosen. Both consist of n = 50 items. The first instance
‘2KP50-11’ has a property of C = 0.11

∑n
j=1 cj , the second

one ‘2KP50-50’ of C = 0.5
∑n

j=1 cj . This means in other
words that in the case of the first instance an expected
percentage of 11% of the assets will be included in a feasible
portfolio. For the second instance, a percentage of 50% can
be expected respectively.

Using a set of 101 weight vectors W = (w1, . . . , w101)
with a w0 = 0 and wi+1 = wi +0.01∀i = 2, . . . , 101, a first
approximation P approx of P is computed. This is done by
sorting the items in non-increasing order of

wip
1
j+(1−wi)p

2
j

cj

and accepting the assets in this order up to the knapsack
capacity C. Dominated alternatives found by this procedure
are discarded from P approx such that the approximation
of P only contains alternatives for which no dominating
other alternative is known. We obtained approximations of
|P approx| = 6 for 2KP50-11 and |P approx| = 12 for 2KP50-
50.

Table I gives the frequency in which particular values of
dmin

h have been obtained for the two instances.

TABLE I
NUMBER OF ELEMENTS IN P FOR A GIVEN MINIMAL DISTANCE dmin

h

dmin
h 2KP50-11 2KP50-50

0 2 5
2 15 28
3 2 10
4 21 8
5 0 1
6 4 0

|P | 44 52

It can be seen, that some of the elements x ∈ P possess
a value of dmin

h = 0, which means that they are included in
P approx. This is the case for two Pareto-optimal alternatives
of 2KP50-11 and five of 2KP50-50. Others are very close to
their nearest element in P approx with a significant concen-
tration around values of dmin

h = 2 and dmin
h = 4. The most

distant elements differ in six decision variables in instance
2KP50-11.

As a corollary, the alternatives provided by the weighted
sum aggregation procedure appear to be useful starting
points for metaheuristics as only small modifications on the
decision variables produce Pareto-optimal solutions with a
high likeliness.

In order to obtain an understanding of the relation of
the elements in P , the fitness-distance-correlation has been
analyzed using the Hamming distances of the alternatives
x, x′ ∈ P and the Euclidean distances of their objective
vectors Z(x), Z(x′), x, x′ ∈ P . Figures 1 and 2 show the
plots of the values for the two investigated instances. Clearly,
the Pareto-optimal alternatives show high fitness-distance
correlations.

In the light of the search space analysis, it appears to be
a fruitful strategy to solve biobjective knapsack problems
by local search, focusing on a particular area of the search
space. On one hand, heuristically generated starting solutions
appear close to the true Pareto-optimal alternatives. On the
other hand, Pareto-optimal alternatives show a clear fitness-
distance-correlation, which means that when starting from
one Pareto-optimal alternative, solutions with a similar eval-
uation are likely to be found close by.
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Fig. 1. Fitness-distance plot for 2KP50-11
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Fig. 2. Fitness-distance plot for 2KP50-50

IV. SOLUTION APPROACH

Based on the discussion of different problem resolution
strategies in Section I and the insight in the structure of
biobjective knapsack problems gained in Section III, we
propose an interactive metaheuristic that brings search and
decision making together in a combined approach.

In the first step of the problem resolution approach, the
decision maker is provided with lower and upper bounds
of the particular problem. For the knapsack problem, this
can be done by a set of weights W and relaxing the
binary constraint 3 for the computation of upper bounds. An
example of a visual output is given in Figure 3, plotting the
lower bound sets in blue, the upper bound sets in orange.

By means of the visualization of the lower and upper
bounds, the decision maker may easily see the area in which
Pareto-optimal solutions can be found. It becomes equally
clear what values of Z(x) are not possible as they would
dominate an upper bound, enabling the decision maker to
develop realistic expectations of a most-preferred solution x∗.
In other words, objective values which are not achievable, as
they lie outside the boundaries of the upper bounds, can be
excluded from the decision making procedure.

The search for Pareto-optimal solutions is then guided by
the articulation of a reference point R = (r1, . . . , rK), given
in red color in Figure 3. This reference point defines a cone
in outcome space which is used to specify an area in which
the most-preferred solution x∗ is expected. After having
successfully implemented an a posteriori strategy based on

Fig. 3. Lower/ upper approximation and determination of the goal vector

the same principle in which the identification of a most-
preferred solution is supported by the progressive articulation
of aspiration levels [6], we use this idea here to interactively
guide the search.

Algorithm 1 Optimization framework
1: Compute a first approximation P approx of P using a set

of weights W .
2: Present P approx to the decision maker
3: Obtain a reference point R from the decision maker
4: repeat
5: Compute P approx

R

6: while R has not been changed or termination criterion
has not been met do

7: Search for Pareto-optimal alternatives in the cone
defined by R by means of a pre-defined local search
metaheuristic

8: Constantly update P approx
R while searching for

Pareto-optimal solutions
9: Constantly update the visualization of P approx

R ,
showing the results to the decision maker

10: end while
11: until termination criterion is met

The cone defined by R is used to compute the set of
alternatives P approx

R that dominate the reference point and
therefore lie in the interior of the cone. In brief, P approx

R

contains all elements x ∈ P approx | zk(x) � rk∀k =
1, . . . , K, therefore P approx

R ⊆ P approx. These alternatives
are used by the Pareto Iterated Local Search metaheuristic,
whose principle is sketched in Figure 4 and discussed in
the following. Search continues until the decision maker
terminates the process. This is going to be the case when
a solution x∗ ∈ P approx

R is found which meets the individual
requirements and expectations of the decision maker as close
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as possible.

z1(x)

z2(x)

Z(x)

Z(x´)

(1)

(2)

(3)

Fig. 4. Pareto Iterated Local Search

Starting from an initial solution, a local search run is
performed using a neighborhood operator until no further
improvement is possible with simple local modifications.
During this step, an archive of alternatives is maintained
which contains all non-dominated alternatives found during
search. While in the general procedure of Pareto Iterated
Local Search [5] all non-dominated alternatives are kept, we
here restrict the procedure to keep only alternatives in the
cone defined by R for further modifications/ improvements.
In Figure 4, this stage of the procedure is visualized as step
(1), with the results shown as white points in outcome space.

After having obtained a set of locally optimal alternatives,
one of them is picked at random, see Z(x) in Figure 4,
perturbed into another alternative x′ using some other neigh-
borhood (2), and search is continued from here (3). As it
can be seen in Figure 4, the perturbed solution may be
dominated by one or several elements of P approx

R , which
has to be accepted when overcoming local optimality. In
result, the metaheuristic iterates in interesting areas of the
search space as opposed to restarting search from some other
solution. This principle, known from Iterated Local Search
[10], has been already successfully applied to other problems
in which considerable fitness-distance-correlations have been
found [1].

The computations of the metaheuristic are continued,
constantly updating the plot of the Pareto-optimal alternatives
in outcome space. During the problem resolution procedure,
the decision maker is allowed modify the reference point,
shifting the focus of the computations towards other regions.
The problem resolution procedure terminates with the iden-
tification of a most-preferred solution x∗.

V. EXPERIMENTAL INVESTIGATIONS

A. Experimental setup

The interactive Pareto Iterated Local Search has been
tested on the two benchmark instances taken from [3].
Apart from the fact that the optimal alternatives of these
instances are known as mentioned above, the data sets are
widely used for experimental investigations and comparison.
In choosing them, we hope to provide a basis for fair and
representative comparison. The data of the instances can be
obtained from the internet homepage of the International
Society on Multiple Criteria Decision Making under http:
//www.terry.uga.edu/mcdm/.

Local modifications of alternatives x are done by randomly
picking a single decision variable xj | xj = 1, changing its
value to xj = 0, and randomly changing the value of other
randomly chosen decision variables to 1 until no additional
asset may be added to the solution.

We applied this local search neighborhood to each element
in P approx

R until a dominating alternative has been found,
replacing the alternative, or a subsequent number of 100
unsuccessful iterations has been tested on each element in
P approx

R . Then, the perturbation is applied to a randomly
picked element in P approx

R . The alternative is perturbed by
changing two randomly chosen variables xj = xl = 1
to 0 and refilling up the knapsack to the capacity C by
randomly selected other assets. In this sense, the perturba-
tion is similar to the regular neighborhood, only that more
decision variables are involved, leading to a bigger jump in
the search space while keeping most of the characteristics
of the perturbed alternative at the same time. The search
then continues from the alternative which has been obtained
through perturbation as described in Section IV.

In order to simulate the individual preference articulation
of the decision maker, three reference points have been
defined for each of the model instance as given in table II,
one in the ‘knee-region’ [14] and two in the extreme areas
of either one of the objective functions.

TABLE II
REFERENCE POINTS

Model Reference point Vector

2KP50-11 ref. #1 r1 = 395, r2 = 550

2KP50-11 ref. #2 r1 = 531, r2 = 428

2KP50-11 ref. #3 r1 = 616, r2 = 354

2KP50-50 ref. #1 r1 = 1807, r2 = 1924

2KP50-50 ref. #2 r1 = 2094, r2 = 1800

2KP50-50 ref. #3 r1 = 2166, r2 = 1574

100 test runs have been carried out with each instance
and reference point, keeping the approximations P approx

R for
further analysis. In each test run 100,000 iterations have been
allowed before terminating the search.

The quality of the computed approximations has been ana-
lyzed using the M metric, given in expression 6. M measures
the percentage of identified Pareto-optimal alternatives in the
cone defined by R.
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M =
|P approx

R ∩ PR|
|PR| (6)

B. Results

Based on the data gathered in the experiments, the arith-
metic mean values of M have been computed, depending
number of evaluations of the metaheuristic. These average
values, given in Figures 5 and 6, clearly show that the iPILS
metaheuristic successfully identified the Pareto-optimal alter-
natives in the particular areas of the reference points. It can
be seen that for model 2KP50-50 the approximation appears
to converge faster than for 2KP50-11. However, there does
not turn out to be a consistent difference for the three chosen
reference points within the same instance.

 0
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Fig. 5. Results for 2KP50-11
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Fig. 6. Results for 2KP50-50

While some approximations P approx
R already contain a

Pareto-optimal alternative right from the start, no overall
advantage for the final approximation quality results from
this circumstance. Some areas are faster approximated, e. g.
the one of reference point #1 in 2KP50-50, others take
considerable more time, see reference point #3 in 2KP50-
50.

VI. CONCLUSIONS

The article presented an interactive method for the resolu-
tion of multi-objective optimization problems. The concept
is based on the articulation of a reference point which
expresses, from the point of view of the decision maker,
an interesting area in outcome space. The computation of
Pareto-optimal solutions is consequently focused on that
region, identifying optimal solutions. In order to overcome
locally optimal alternatives and converge to the front of the
efficient solutions, a metaheuristic based on Iterated Local
Search has been implemented.

Tests on biobjective portfolio optimization problems have
been carried out. Initial investigation of problem structures
revealed that heuristically generated alternatives are rather
close to the Pareto-optimal alternatives and therefore present
good starting points for heuristics based on local search.
Also, the Pareto-optimal solutions show a significant fitness-
distant-correlation, indicating that similar efficient solutions
are close to each other in alternative space.

In order to simulate a human decision maker, we assumed
three different reference points for each instance. Each one
was chosen with respect to lower and upper bound sets
that serve as an orientation for the decision maker. The
problem resolution technique successfully solved the investi-
gated benchmark instances, independent from the particular
reference point.

Based on the investigations and experiments carried out,
we conclude that the proposed concept may be a useful tool
for solving multi-objective optimization problems, given the
possibility to appropriately compute lower and upper bound
sets of the particular problem. The results are encouraging,
and deeper investigations on more instances will follow to
support the results of the study.
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