
Abstract— This paper introduces an effective computational 
environment for multi-objective decision-making, optimization 
and identification. The paper adopts multi-objective vector 
identification methodology and performance assessment 
provided by the Parameter Space Investigation method (PSI). 
The main feature of this methodology is in the fact that various 
design objectives are taken into consideration in their natural 
form without reducing dimensionality of the problem and 
therefore without distorting its nature. Therefore, there is no 
need for artificial convolution and weighting of multiple 
criteria. Moreover, the design alternatives are assessed 
explicitly versus multiple given requirements. The main 
practical purpose of this work is of twofold. First, we introduce 
an optimization framework and technique that allows to 
determine feasible and Pareto sets of the numerous 
uncertainties inherent for real-world engineering systems. This 
framework tightly couples principal advantages of 
MatLab/Simulink simulation engine with the unique properties 
of the multi-objective PSI method. Second, we show key 
benefits of the MatLab/PSI bundle on the example of 
identification of the principal aerodynamic characteristics and 
apparent masses of the controllable circular parachute. 

I. INTRODUCTION

lmost every real-world problem involves concurrent 
optimization of multiple objectives which must be 

satisfied simultaneously. Multi objective optimization is a 
process of maximizing/minimizing a vector of 
incommensurable and possibly conflicting objectives. Due 
to the conflicting nature of the objectives, finding a single 
solution that optimizes all of them simultaneously is hardly 
possible. Therefore, in multi-objective optimization the 
solution is regarded as optimal in terms of Pareto optimality.

There are several problems associated with multi criteria 
optimization or identification. First is the problem of 
consistency of the adequacy criteria. We normally cannot 
declare a full agreement between the model and the real 
object primarily because only some criteria are adequate 
while many others are physically deficient. While the choice 
of the adequacy criteria might be a complicated task by 
itself, there are not many techniques that can provide any 
support in finding a physically adequate criterion. The 
inadequacy can also be caused by a prior uncertain nature of 
system parameters and their combined and unknown 
influences on certain physical phenomena. This is why one 
cannot use a single criterion to evaluate the adequacy of the 
model. This contributes to the principal advantage of multi-
criteria identification where there is no need to introduce a 

single criterion artificially, which usually distorts the 
physics of the problem. 

An overview of existing works [1-7] shows that there is 
only one way to resolve the deficiency problem. The 
solution consists in an interactive analysis of the adequacy 
criteria and their amendment while solving the task. 

Second problem of multi criteria decision making consists 
in the correctness of the constraints assigned to the design 
variables and the functional relations. An expert often does 
not have sufficient information about the bounds of design  
variables, the bounds on functional relations might be even 
more difficult to assess. It is quite often that clear idea of 
correct constraints emerges only during the solution phase, 
therefore an ability to revise and adjust constraints 
interactively while solving the global optimization task 
becomes crucial. 

A number of works [3-7] address the issue of multi-
objective optimization or vector identification and achieve 
some level of success. Many works provide complete 
software solutions that primarily designed to solve a 
particular type of optimization task. Analysis of those works 
shows that nothing universal exists in nonlinear vector 
identification, primarily because of the variety of existing 
problems and their statements. Therefore, the lack of 
universal panacea still attracts numerous researchers to this 
task and prompts them to resolve the problem. 

The Parameter Space Investigation (PSI) method [8-12] 
has been developed to address a correct statement and 
solution of the multi criteria optimization (identification) 
problem. The principal advantage of this method consists in 
the fact that the formulation and solution of the task 
comprise a single process. However, due to the problems 
discussed above the solution involves several layers of 
interactive work with a designer. At every step of the 
process, an intellectual input of the designer can be 
seamlessly integrated to the task therefore modifying its 
formulation (statement) but preserving and integrating 
acquired data into the final result. 

The PSI method, being implemented in the software 
package [12] MOVI 1.3, has been implemented on top of the 
highly flexible MATLAB/SIMULINK system modeling and 
analysis environment through the shared-memory interface. 
This implementation easily allows one to incorporate 
nonlinear multi-criteria vector optimization/identification 
into any design task that is implemented in any of the 
Mathworks’ products. Applying this method to an example 
of identifying the controllable descending system, this paper 
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reveals some of the advantages of simultaneous modeling 
and multi-criteria search, decision making and visualization. 

The main practical reason for this work lies in the 
necessity to identify several uncertainties of the controllable 
circular parachute. The physical phenomenon of the 
controllable parachute consists in the fact that the 
aerodynamics depends on the canopy shape that in turn 
depends on the control action of the risers distorting the 
canopy. The major practical reason for the identification of a 
controllable descending system is to provide the control 
algorithm with an adequate model of the guided object. 

A significant amount of research on circular parachute 
modeling has been done over the past sixty years by 
numerous researchers (see references in [13]). However, the 
existing models of a circular parachute lack unverified non-
linear aerodynamics and empirical values of the apparent 
mass terms. Our early attempts [13] to identify these 
parameters improved the model, but also revealed the vital 
need to use a multi-criteria method. 

The paper is organized as follows. It starts with a 
statement of the vector identification problem. The paper 
further discusses an implementation of a number of 
identification criteria that describe the proximity of the 
model and the real system. After formulating these criteria, 
the paper defines the model of controllable parachute and 
parameterization of the aerodynamics and apparent mass 
terms for which a set of design variables (DV) and their 
constraints are developed. Next, it introduces an idea of two-
step parameter identification technique. Several features of 
the MOVI package are presented along the solution of the 
task. The paper concludes with a summary of the obtained 
results. 

II. STATEMENT OF THE IDENTIFICATION TASK

A. Statement of the Identification Task 

The general statement [2,9] of a multi-objective 
identification task is as follows: optimize the vector of 
objective functions 

T
k xfxfxfxf )](),...,(),([)( 21 ,    (1) 

that is subject to constraints on the functional relations 
jj dxgc )( , mj ,..,1 ,     (2) 

and design variables  
iii xl , ni ,..,1 .     (3) 

The term “optimize” means finding such a solution that 
provides the values of all the objective functions ( )kf x

acceptable to the designer. In other words, we wish to 
determine such a region from among the principal domain 
set of the design variables that satisfy the functional 
relations and yields the optimum values of all the objective 
functions.

Owing to the contradiction of the objective functions, 
finding a single solution that would optimize all the 

objectives simultaneously is quite difficult or even 
impossible. Therefore, in multi-objective optimization, the 
design vectors ix  are regarded as optimal if their 
components cannot be improved without deterioration to at 
least one of the other components. This is usually called 
Pareto optimality and this second mapping of the feasible to 
the optimal region produces the Pareto set.

B. Adequacy Criteria 

The flight experiment setup ( see more details in [14, 15]) 
included sensors and equipment that measured and stored 
during the flight the inertial position and velocity, the Euler 
angles and the control activation history. We employ this 
data to calculate the differences between the measurements 
(true data) and the corresponding modelled parameters along 
the flight time. Those differences are the isuue of adequcy 
criteria that characterize measure of closeness of the real 
physical system and its model. 

Although the meaning of adequacy criteria is obvious 
(Fig.1), special consideration should be given to the correct 
assignment of limitations on both the unknown parameters 
of the system and criteria; the latter ones directly contribute 
to the determination of Pareto set. The determination of 
uknown parameters of the system is the issue of the 
identification process. Although their boundaries (3) are 
hardly initially known in the parameter space 1 , they can 
be adjusted during the solution process. A correctly chosen 
and physically meaningful adequasy criterion shows 
sensitivity to the variation of identifying parameter. Such a 
criterion being a subject of minimization allows revealimg a 
feasible subset of 2 1 as well as its extension. 

Fig. 1.  Determination of adequacy criteria and Space mapping. 

Figure 1 shows that the identification consists in minimizing 
the integral area between a true measurement and a 
modelled parameter corresponding to the identification 
variable ix . Should the modelled parameter leave the upper 
and lower bounds (Fig.2), though not contributing 
significantly to the integral adequasy criterion, the solution 
becomes infeasible therefore eliminating this particular ix .
This is taken into account by using an an adequasy criteria 
that expels the drop-out.

Therefore, in our task besides estimating the differences 
of the inertial position and velocity along the flight time, we 
also estimate the residuals in the maximum and minimum 
values of the Euler angles rates. 
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Fig. 2.  System parameter is out of bounds. 

We also employ the results of the spectral analysis of the 
Euler angles because eigen-frequencies represent the 
inherent oscillation dynamics of the descending system. 

The final set of criteria that we employ for the 
identification task is presented in Table1 where we use tfl to 
denote the flight time and the symbol “ ” to refer to a real 
measurement taken in flight. 

TABLE 1. IDENTIFICATION CRITERIA
 CRITERION PHYSICAL MEANING

1,2 
flt

HH PP
0

ˆ ,
flt

HH PP
0

2ˆ
Sum of the residuals’ 
modulus and their squares 
of the horizontal position.

3
flt

VV PP
0

ˆ
,

Sum of the residuals’ 
modulus of the vertical 
position. 

4,5 
flt

HH VV
0

ˆ ,
flt

VV VV
0

ˆ
Sum of the residuals’ 
modulus of the horizontal 
and vertical velocity. 

6,7
,8 

flt

0

ˆ ,
flt

0

ˆ ,

flt

0

ˆ

Sum of the residuals’ 
modulus of the Euler 
angles. 

9
flt

0

2ˆ Sum of the residuals’ 
squares of the Yaw angle. 

10,
11,
12

maxmax
ˆ , minmin

ˆ

avravr
ˆ

Absolute differences of 
the max, min and average 
values of the Yaw rate 

13, 
14, 
15

ˆ
eigeig ff , ˆ

eigeig ff ,
ˆ

eigeig ff

The Euclid norms of the 
differences of the Euler 
angles' eigen-frequencies. 

III. PSI METHOD IMPLEMENTATION

The PSI method was developed for the task of multi-
objective optimization or vector identification in the form 
we have just presented (1-3). The method is a systematic 
sampling procedure of the multi-dimensional domain by 
using uniformly distributed sequences, which have the best 
uniformity characteristics in Multi-dimensional Parameter 
Space among those presently known. In particular, the 
efficiency is achieved by using of Sobol's LP  generator 
[16] that does not leave any untested spots where, 
theoretically, the optimal solution can be located. 

Three principal steps of the PSI technique are shown in 
Fig.3. First, the parallelepiped-enclosed region of the design 

variables (DV) (3) is uniformly filled. Each point of that 
region is a trial point (vector) of the entire algorithm. Next, 
if the trial point is not feasible with respect to the functional 
constraints (2), it is discarded. If it is feasible, then its 
criterion vector (1) is computed and retained. After all the 
trial points have been processed, the set of all the criterion 
vectors forms an approximation of the feasible 
region 2 1 . The last phase supposes an interaction with 
a designer in order to either refine the constraints on DVs 
(3) and the functional relations (2) or to specify the discrete 
approximation of a Pareto-set with respect to the applied 
criteria constraints (1). 

Fig.3  The principal steps of the PSI method 

When we first evaluated this method, it was unable to 
communicate with a model created in Mathwork's 
MatLab/Simulink. In order to establish a communication 
between MOVI and MatLab/Simulink, we developed a 
universal interfacing library that is based on the shared-
memory interface with Mathwork's computation engine. The 
MOVI solves any problem implemented in MatLab by 
iteratively calling the LP  generator to modify the DVs and 
then calling the MatLab engine to calculate the 
corresponding criteria. Once you specify the task in 
MatLab/Simulink, the MOVI does all the spade-work. 

IV. MATHEMATICAL MODEL OF THE OBJECT

Analyzing the nature of parachute motion allows us to 
distinguish two principal ambiguities. First, the pressure 
distribution around a body immersed in a fluid is based on 
the body's shape. In turn, for a body as flexible as a 
parachute is, its canopy shape is determined by the pressure 
distribution. Therefore, the parachute not only deflects the 
surrounding air, but also adopts its shape, which is dictated 
by the airflow that the canopy generates. Beyond this, there 
is a combined and concurrent influence on the dynamics of 
motion of the aerodynamics and apparent mass terms; they 
contribute significantly to the dynamics of motion when a 
body experiences accelerations. These factors cannot be 
explicitly separated in order to estimate their independent 
influence. Furthermore, the apparent mass influence is more 
explicit and significant when an object undergoes 
acceleration due to the external forces or control actuation. 
Such coupling of the aerodynamics and the apparent mass 
terms significantly complicates one's ability to identify the 
controllable descending system. 
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Developing the six-degree of freedom (6DoF) 
controllable circular parachute model was previously 
addressed in [13]. The equations of motion for the 
parachute-air system (Fig.4) were based on Lagrange's 
approach. The final form of the equations of motion can be 
presented as follows: 

),,,(/
ijrisers

da f VVFGF ,    (4) 

),,,,(/
ij

i
risers

i
G

da f VVMMM ,   (5) 

where F and M are vectors of the external force and moment 
that act on the system, while , , T

u v wV  and , , T
p q r

are vectors of the linear and angular velocity, and ij  are 

the apparent mass components of tensor A.
The specific parameters and geometry of the aerial 

descending system (ADS) used were those of a G-12 
parachute (a 150m2 nylon cargo parachute with 64 
suspension lines) and the A-22 delivery container [15]. The 
top of the payload container houses guidance and control 
system, pneumatic muscle actuators (PMA) and 
instrumentation block (Fig.4). 

Fig 4.  Modeled system 

Besides the control task, the GNC system provides us 
with extensive telemetry data for the post-flight analysis and 
identification. This data includes the inertial position and 
velocity, and the measurements of Euler angles. A 
successful application of the identification technique has 
also been made by employing wind profiles measured 
during each drop. This was accomplished by using an 
independently launched small parachute system specifically 
designed for this task [15]. 

V. PARAMETERIZATION OF THE MODEL

A. Apparent Mass Model 

Similar to the rigid-body mass tensor, the apparent 
(virtual) mass tensor A has 6x6=36 unique elements. For an 
ideal fluid, however, A is a symmetrical tensor, leaving a 

maximum of 21 distinct terms. In the case of a body with 
two planes of symmetry and a coordinate frame origin 
located on the axis of symmetry, tensor A can be further 
reduced to the following simple form: 

11 15

22 24

33

24 44

15 55

66

0 0 0 0
0 0 0 0
0 0 0 0 0
0 0 0 0

0 0 0 0
0 0 0 0 0

A
 (6) 

Because of the axial symmetry of the circular canopy, the 
following relations are valid 22 11 , 55 44  and 

24 15 . That leaves only five distinct elements of the 
A.

To represent a flow around a fully deployed canopy, it is a 
customary to refer to the air trapped within a hemispheroid. 
In such a case, the air mass induces half of the spheroid and 
the moments of inertia correspond to those moments of the 
air displaced by the body 

320.5
3

s
a a pm m R ,     (7) 

2 21 1
5

air
xx a pI m R , 22

5
air
zz a pI m R .     (8) 

In the latter equations 
0

2
3pR R  denotes the radius of the 

inflated parachute, where 0R  is a nominal radius of the 
uninflated canopy, is an air density, and  is a canopy 
shape ratio (for the system at hand, it equals to 0.82). 

In general, the apparent mass terms depend on the 
canopy’s configuration, porosity, acceleration and the spatial 
angle of attack. However, in the present study, the authors 
follow all other major studies [17], considered all the 
apparent mass terms to depend explicitly on the air density. 
All other possible effects were represented by variables 
( ix ), which are the issues of the design variables: 

amx111 , Pa zmx215 , amx333 ,    (9) 

xxaIx
~

444 , zzaIx
~

566 ,      
where Pz  represents the distance from the origin {b} to the 
canopy’s center of pressure. 

B. Aerodynamics 

Preliminary data, provided by the CFD technique [18], 
requires us to introduce the influence of the spatial 
orientation of the system and the control inputs on the entire 
parachute's aerodynamics. 

The aerodynamic force vector canopyF  depends on the 

spatial angle of attack - sp , dynamic pressure - q and 
control inputs. Since the control applies only to one or two 
possibly adjacent risers [15] and due to the parachute 
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symmetry, the number of control inputs ctrln  can represent 
the degree of the control influence. Therefore, canopyF is
represented as follows: 

a

a
ctrlspDcanopy qSnC

V
VF 0),( ,     (10) 

where  denotes a Euclidian norm of the airspeed vector 

aV  and 0S  is the canopy’s reference area. Analyzing the 
possible analytical forms of the initial CFD data, we chose 
the following equation for the sp  in the range 35,35 :

2
6 9 7

8

( , ) exp( (1 cos( )) )
4 2

(1 ( ) cos( ))
70 2 70

D sp ctrl ctrl

sp sp

C n x x x n

x sign

(11)

While developing the model, our assumptions were based 
on the White and Wolf's work [17]. Their work shows the 
uncoupled character of the longitudinal and the lateral 
motion of a parachute in a glide plane. The assumption 
implies that the roll and pitch motions of the ADS have the 
same moment characteristics ,roll m ctrlC C n ,

,pitch m ctrlC C n . Here, angle of attack  and 

sideslip angle  represent two plain projections of the 

spatial angle of attack sp  on the parachutes plains of 

symmetry. Therefore, the vector of aerodynamic moment is 
represented as follows: 

T
npitchrollcanopy CCCRqS ,,2 00M .    (12) 

Analyzing the most suitable analytical forms of the CFD 
data, we choose the following equation for the ,  in the 

range 35,35 :

11 12 11 12

2 2
10 10

, ( ) sin
40

( (1 ( )) ) ( (1 ( )) )
4 2 2

m ctrl

ctrl

C n x sin x x x

e x cos n exp x cos

(13)

The last term nC  in the equation (12) refers to the yaw 
rotation that appears when the length of the riser changes 
during the control actuation. Typically, the yaw angle of 
15…20˚ was accrued [15] during the transition (4…5sec) of 
riser state. Therefore, if the k-th riser undergoes transition, 
the following relation is valid: 

rCllCllsignC r
nk

l
nkkn )()( 11 ,    (14) 

where min max min( ) ( )k kl l l l l  is a PMA’s relative length, 

which for a shortened riser 0kl  and for a lengthened riser 

1kl . The difference )( 11 kk ll  defines the sign of the 

moment. The coefficient r
nC  is the damping moment 

coefficient.
Analyzing data from 20 flight tests [15], we found the 

functional dependences to be as follows: 

)sin()( 13 lxlC l
n  and the coefficient 14xC r

n . Result 
of our previous work initiates these values with 13 0.6x

and 14 2x .

C. Actuator Forces and Moments 

The change in the aerodynamic force due to the PMA 
activation risersF  was modeled as a function of the PMA’s 

relative length l , number of PMA actuated ( ctrln ), transition 
time , and involved actuation system dynamics with 
unknown coefficient x15:

),,,()( 15xnlftrisersF .     (15) 

In turn, the actuator moment is computed as 

risersCPrisers FPM , where T
PCP z,0,0P  is the position 

of the center of pressure of the canopy. For the considered 
system zp= -2.0 m. 

VI. TWO-STEP PARAMETER IDENTIFICATION TECHNIQUE

Let us recall that the analysis of the flight test data reveals 
significant difference in the ADS dynamics during the 
controlled and uncontrolled drops. Therefore, the 
identification algorithm was first applied to the data 
obtained from the uncontrolled drop. The resulting values of 
DVs were used then to initialize the second step, in which 
the same technique was applied to a controlled drop. While 
values of DVs obtained in the first step provide estimates of 
ADS dynamics around zero angle of attack, their adjustment 
at the second step characterizes ADS dynamics at higher 
angles of attack with non-zero control inputs. 

Another issue that should be discussed is a sufficient 
number of trials. Generally, it is determined based on the 
informal analysis of the results. Therefore, another feature 
we use during each step of the identification process is an 
application of the “double-tuning” technique. During the 
first step, the technique estimates the general response based 
on a relatively small number of trials. Then by analyzing the 
system's response with the predetermined level of criteria 
constraints, the initial DVs domains 1  are refined. This 
technique allows obtaining a sharper response from the 
system under consideration and consequently to obtain a 
superior approximation of the Pareto set.

A. Uncontrolled Drop 

Since the parachute model assumes a fully deployed 
canopy, the analysis starts at the point on the real trajectory 
where the canopy was fully deployed. The initial values of 
the DVs’ domains are shown in Table 2. 

An example of the performance of double-tuning 
technique is presented in Fig.5 for the design variable 6.
These two histograms show the distribution of feasible 
solutions with respect to the domain of the considered DV 
x6. The first result was obtained for the 128 trials and the 
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second one for the 2048 trials. Correspondingly, the first 
step produces 16% of feasible points and the second one 
25%. The correction of its initial range from [0, 0.6] to [0.3, 
1.0] allows obtaining a higher percentage of feasible DVs 
and therefore to determine the most probable range of the 
final solution for the uncontrolled drop phase. 

TABLE 2. INITIAL DOMAINS OF THE DVS
DV 1 2 3 4 5 6 7 
MIN 0 0.8 0.5 0.1 0 0 0.5 
MAX 1.5 2 2 1 0.01 0.6 1.5 
DV 8 9 10 11 12 13 14 
MIN 0.75 0.01 0.01 0.06 0 0 1.5 
MAX 1.5 0.5 0.5 0.13 0.5 0.85 5 

Fig.5.  Double-tuning technique: first (top) and second (bottom) steps. 

Another special feature of the MOVI is that this method 
allows distinguishing two types of criteria. The first is a 
"pure" criterion that is used to determine the Pareto set. The 
second one is a pseudo-criterion that fulfills the same 
functions but is not considered during the Pareto Set 
calculation. It allows one to "soften" the edge of the Pareto 
set approximation and finally produces a more stable 
solution.

During the identification of the ADS uncertainties, we 
chose only four criteria to be used in the Pareto set 
calculation and the rest to be pseudo-criteria. These four 
criteria (1,3,4,5 see Tab.1) represent the position and 
velocity errors while the ADS tracks the predetermined 
trajectory. The choice is based on the idea [15] to design the 
control algorithm that can steer the controllable ADS along 
the predetermined trajectory by compensating for the 
position and velocity errors through the controlled canopy 
distortion.

Based on the data of Test Table and applied criteria 
constraints, MOVI calculates the feasible solution set and 
the Pareto set approximation. Another useful representation 
of the Test Table data is a plot of one criterion versus 
criterion. These plots are the perfect representation of the 
physical nature of the model errors. 

As an example, consider two plots of criteria, which in 
our case mean model errors. Fig.6.a represents vertical 
versus horizontal position errors (Criterion 1 versus 

Criterion 3). Fig.6.b corresponds to the vertical versus 
horizontal velocity errors (Criterion 4 versus Criterion 5). 

In order to distinguish the obtained solutions, MOVI 
employs three types of points. Infeasible solutions are 
colored red, feasible solutions are depicted in blue, and 
Pareto solutions are green. Each graph shows that every 
criterion can be decreased, which reflects two principal 
factors: first, the model is sensitive to the design variables, 
and second, the compromise objectives of the identification 
process can be reached. 

Fig. 6.a  Criterion 1 
versus Criterion 3 

Fig. 6.b  Criterion 5 versus Criterion 4 

Fig. 6.c  Criterion 1 versus Criterion 5 

Finally, for the uncontrolled flight, we can show the 
model's response (Fig.7) in terms of changing the principal 
flight parameters, which were used to obtain the Pareto set.

Fig. 7.  Comparison of the 3D projections of the flight trajectories 

Fig.7 shows 3D projections of the real flight trajectory and 
two solutions that correspond to the "worst" and the "best" 
choice of the DVs. 

The main conclusion to be drawn from the uncontrolled 
flight identification is as follows: 

The 6DoF model is sensitive to the chosen DVs;  
The 6DoF uncontrolled dynamics are adequately close 
to those of the actual system; 
The PSI method allows estimating the combined 
influence of the chosen uncertainties at hand. 

The final DVs’ domains of the uncontrolled drop 
identification are as presented in Table3. 

TABLE 3. DV DOMAINS AFTER UNCONTROLLED DROP IDENTIFICATION
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DV 1 2 3 4 5 6 7 
MIN 0 0.8 0.5 0.1 0 0.3 0.5 
MAX 1.5 2 2 1 0.01 1.0 1.5 
DV 8 9 10 11 12 13 14 
MIN 0.75 0.01 0.01 0.06 0 0 1.5 
MAX 1.5 0.5 0.5 0.13 0.5 0.85 5 

B. Controlled Drop 

The initial DV domains used to initiate the controlled 
drop identification were taken from the previous stage 
(Tab.3.). The difference that distinguishes this phase of the 
entire ADS identification is that DV 15x  comes to play in 
the controllable motion; it is initialized with the range [0.5; 
2]. 

C. Control Contribution 

In order to estimate the required control performance and 
its influence on the parachute aerodynamics, we used the 
following approach. First, based on the Pareto set of the 
previous step, we chose the most reliable design vector. 
Next, simulating the uncontrolled flight with the wind 
profile measured during the controlled drop produces the 
trajectory "No control + Wind" (Fig.8). Subtracting this 
trajectory versus altitude from the flight test data (see "Real" 
in Fig.8), we obtain an approximation of the control 
contribution ("Control contribution" in Fig.8.). This 
particular data is used as the input data for the system 
identification algorithm. The idea looks reasonable because 
the control influence on the descent rate is insignificant [13]; 
hence, the new input data approximates the controlled drop 
in the absence of wind. 

Fig. 8.  Control contribution 

The result of the identification procedure for this case is 
presented in Fig.9. Three solutions (#1-3) are shown here to 
reflect the model's sensitivity. They represent the position 
obtained by driving the 6DoF model with no wind and with 
control inputs recorded during the real drop. 

Since the control input appears in the system through 

risersF  and risersM , which denote the aerodynamic force and 
moment caused by the change in riser length, the only 
variable that represents these terms is 15x . In turn, the 

moment risersM  also depends on the geometry of the entire 
system. However, the risers' actuation essentially changes 
only the shape of the canopy but not the geometry and 
masses location of the system. 

Fig. 9.  Identification of the control contribution 

Technically, 15x and its refined domain are determined by 
using the same procedure earlier used for the uncontrolled 
drop identification. However, we do not have the explicit 
inertial velocity profiles for this step. Therefore, in order to 
obtain the Pareto set we use only errors in the horizontal and 
vertical plain (Criteria 1 and 3). Figure 10 shows the 
identification result of the control contribution that includes 
44 feasible solutions. 

Fig.10.  Histogram of the DV#15 

From among them, only 18 are Pareto solutions (depicted in 
green on Fig.11. Obviously, the range [0.6, 1.6] represents 
the refined domain of the DV 15x .

Fig.11.  Plot of the Criterion 3 versus Criterion 1 

D. 6.2.1 Full scale identification of the guided model 

Finally, based on the results of the previous steps, which 
incorporates the uncontrollable flight data and the estimates 
of the control contribution, we move to the full-scale 
controllable drop identification.

Analyzing the test table provides us with the location of 
the optimum solution. Sequential tightening of the criteria 
constraints provides an approximation of the Pareto set and 
allows finding several solutions for further analysis. 

Prior to make the final choice, three design vectors were 
chosen from the Pareto set in order to analyze the robustness 
of their criteria response (Tab.4). This step intends to check 
the concentration of all the design variables in the vicinity of 
the optimal solution and the smoothness of their criteria 
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responses.
TABLE 4. CORRESPONDING CRITERIA

CRITERIA  #1 #3 #4 #5 
MIN: 28793 3363530 16191 786 
MAX: 29097 3467024 16980 801 

110 28992 3363530 16272 794 
710 28793 3467024 16191 801 
881 29097 3439497 16980 786 

Analysis of the robustness uses one more type of graph 
available in MOVI that is the “Criterion versus Criterion 
(type II)” graph; it represents the criteria response in the 
vicinity of a particular design vector with respect to the 
predetermined design variable. This technique is applied to 
the quasi-optimal solution 110. Figure.12 shows very 
smooth behavior of the criteria in the vicinity of the chosen 
solution.

Fig.12.  Section of the criterion#1 along the DV#1 

Finally, Fig.13 compares the trajectories of the flight test 
and the controlled drop obtained in the simulation with the 
previously identified DV. Clearly, the results obtained in the 
simulation fits the flight test data fairly well. The final 
values of the optimization parameters are shown in Table 5; 
they correspond to the design vector 110.

Fig. 12.  The final comparison of the trajectories 

TABLE 4. FINAL VALUES
DV 1 2 3 4 5 6 7 

VALUE  1.03 0.98 1.31 0.22 0.00 0.45 1.00 
DV 8 9 10 11 12 13 14 

VALUE 1.45 0.21 0.05 0.04 0.25 0.94 3.12 

VII. CONCLUSION

The paper presents an effective multi-objective decision-
making methodology implemented into the Parameter Space 
Investigation method (PSI). Principal benefits of the 
technique are introduced along the process of identification 
of a 6DoF model of a controllable circular parachute. 

Key technical contributions of the paper include: 
Integration of the MatLab/Simulink engine with 
MOVI1.3 software into one efficient multi-objective 
optimization and identification environment. 

Successful application of the nonlinear system 
identification technique to refine the analytical values of 
the aerodynamic coefficients and apparent mass terms 
based on the available flight test data. 

The result acquitted itself well when compared with the 
flight test data. Nevertheless further improvement is also 
possible. It should include the structural optimization or 
reformulation of the apparent mass and control influence 
models. More design variables in the inertia and apparent 
mass tensors might be included in the model to reflect their 
changes during the canopy distortion. A number of different 
cost functions (adequacy criterion) might also be considered. 
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