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Abstract—If preferential independence is assumed inappro-
priately when developing multicriterion search methods, biased
results may occur. A new axiomatic approach to defining con-
ditional preference orderings that naturally accounts for prefer-
ential dependencies is presented and illustrated. This approach
applies both to scalar optimization techniques that identify a
best solution and to evolutionary optimization approaches that
approximate the Pareto frontier.

I. INTRODUCTION

The classical approach to multicriterion decision making
is a priori optimization, which is to define a scalar utility
function as an aggregation of individual utility functions, and
then search for the extrema of this function. Recent emphasis
has also focused on a posteriori optimization, which involves
searching for an entire family of solutions—the Pareto optimal
set—by the application of evolutionary algorithms that exploit
dominance to guide the search for the Pareto frontier. However,
if the search algorithms employ the assumption of mutual
preferential independence, then errors can be introduced that
are difficult to quantify if that assumption is not appropriate.

As a simple example of preferential dependence, consider
the following scenario introduced by [1, p. 232]. A farmer
has preferences for various amounts of rain and sunshine
because of the impact on his crops. However, his preferences
for various amounts of sunshine will be different, depending
on the amount of rain. Thus, the farmer cannot independently
define his preference orderings for the two attributes.

This paper provides an alternative approach to both scalar
optimization and dominance that is explicitly designed to
account for preferential dependencies. We first provide a brief
summary of preferential independence and then introduce a
new axiomatic approach that accounts for such dependencies.
We then define a scalar utility function and a concept of dom-
inance, each of which accounts for preferential dependencies.
We finish with a brief example and conclusions.

II. BACKGROUND

A. Preferential Independence

Let A be a space of feasible alternatives, and suppose there
are n ≥ 2 distinct criteria that must be considered when
choosing a ∈ A. In the parlance of multicriterion decision
theory (see [1]), an attribute Xi is a function associated with
the ith criterion that maps each a ∈ A to the corresponding
consequence space Xi; that is, Xi(a) = xi ∈ Xi. Let the

Cartesian product space X n = X1 × · · · × Xn denote the n-
dimensional consequence space, and let [X1(a), . . . , Xn(a)] =
(x1, . . . , xn) ∈ X n denote a consequence vector for the
alternative a. It is convenient to denote elements of X n as
vectors using the notation xn = (x1, . . . , xn).

A critical consideration when considering an alternative is to
appreciate the significance in X n of its adoption. A preference
ordering �Xn

is a binary relation over the vector consequences
such that xn �Xn

x
′
n if and only xn is considered, from the

point of view of all consequences considered simultaneously,
to be a least as good as x

′
n. Notationally, we write xn �Xn

x
′
n

if xn is strictly better than x
′
n, and we write xn ∼Xn

x
′
n if xn

and x
′
n are equivalent. We shall assume that �Xn

is reflexive,
antisymmetric, transitive, complete, and continuous.

The reason multicriterion theory is a challenging endeavor
is that such an ordering can be difficult to comprehend and
even more difficult to define unambiguously, due to conflicts.
As Keeney and Raiffa observe, it is very difficult for a human
decision maker to specify a preference order for more than
two attributes under certainty or more than one attribute
under risk because of the need to consider both preference
orderings and probabilities simultaneously [1, p. 311]. Because
of such conceptual difficulties, the decision maker is strongly
motivated to formulate preference orderings over subspaces of
X n and then aggregate them to form a decision. This approach
is appropriate if it is possible to decompose the consequence
space into subspaces that do not depend on each other. To
this end, Keeney and Raiffa have employed the concept of
preferential independence [1], which we briefly review.

Definition 2.1: Let X m = {Xi1 × · · · × Xim
} and X k =

{Xj1 ×· · ·×Xjk
} be m- and k-dimensional disjoint subspaces

of X n (i.e., X m ∩X k = ∅) such that m + k = n. X k is the
complementary subspace of X m.

If X m and X k are complementary subspaces of X n, we
write X n = X m×X k, and elements of X n may be expressed
as xn = (xm,xk), where xm = (xi1 , . . . , xim

) ∈ X m and
xk = (xj1 , . . . xjk

) ∈ X k. (Since the indexing of elements of
X n is arbitrary, it may be necessary to permute the indices to
obtain this decomposition.)

Definition 2.2: Let X m and X k be complementary sub-
spaces of X n. The consequence vector xm ∈ X m is condi-
tionally at least as good as x

′
m ∈ X m given xk ∈ X k if

(xm,xk) �Xn
(x′

m,xk). The subspace X m is preferentially
independent of X k if, for any two vectors xm,x′

m ∈ X m

such that (xm,x′
k) �Xn

(x′
m,x′

k) for some x
′
k ∈ X k, then
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(xm,xk) �Xn
(x′

m,xk) for all xk ∈ X k.
Preferential independence is not symmetric; that is, X m

being preferentially independent of X k does not imply that
X k is preferentially independent of X m.

Let X m and X k be complementary subspaces of X n.
If X m is preferentially independent of X k, then a prefer-
ence ordering �Xm

over X m is induced by the equivalence
xm �Xm

x
′
m if and only if (xm,xk) �Xn

(x′
m,xk).

Definition 2.3: The members of X n are said to be mutually
preferentially independent if every subspace of X n is prefer-
entially independent of its complementary subspace.

The condition that each Xi is preferentially independent of
its complementary subspace (a weaker condition than mutual
preferential independence) induces an individual preference
ordering �Xi

over each Xi. Given this condition, we may
define the conventional notion of dominance.

Definition 2.4: Suppose individual orderings �Xi
exist for

i = 1, . . . , n. The consequence vector xn = (x1, . . . , xn)
dominates x

′
n = (x′

1
, . . . , x′

n) if xi �Xi
x′

i, i = 1, . . . , n and
xj �Xj

x′
j , for some j ∈ {1, . . . , n}.

Definition 2.5: The Pareto frontier is the set of all nondom-
inated consequence vectors. The Pareto optimal set is the set
of all a ∈ A such that (X1(a), . . . , Xn(a)) is an element of
the Pareto frontier.

B. Aggregation

The aggregation problem is to combine individual prefer-
ence orderings to form a group preference ordering. A well-
known result is Arrow’s Impossibility Theorem [2], which
states that it is generally impossible to combine a set of
individual preference orderings to form a group preference
ordering that satisfies a set of arguably reasonable or desirable
properties (monotonicity, independence, unanimity, and non-
dictatorship). Since Arrow’s formulation involves only ordinal
preference rankings, it does not permit interpersonal com-
parisons of preferences. By relaxing this prohibition through
the introduction of numerical utilities, however, it becomes
possible to form group preference orderings.

Definition 2.6: A function pXn
: X n → R is a utility over

X n corresponding to a preference ordering �Xn
if xn �Xn

x
′
n if and only if pXn

(xn) > pXn
(x′

n) and xn ∼Xn
x
′
n if and

only if pXn
(xn) = pXn

(x′
n).

If X m and X k are preferentially independent of their
complementary subspaces, then subspace orderings �Xm

and
�Xk

can be defined over X m and X k, respectively. Utilities
pXm

over X m and pXk
over X k may then be defined that

correspond to these preference orderings. Given these utilities,
however, there is not a unique way to aggregate them to form
a utility pXm×Xk

over X m ×X k. Rather than there being too
few ways (none) to aggregate the ordinal preference relations,
there are now too many ways (infinite) to aggregate the utility
functions. For example, any positively weighted sum of the
individual utilities defines an ordering over X m × X k that
satisfies all of Arrow’s conditions except for the prohibition
against interpersonal comparisons of utility. Thus, there exist
many functions of utilities over X m and X k that define a

preference ordering over X m × X k. If each Xi is preferen-
tially independent of its complement, then we may define a
multiattribute utility function as

pXn
(xn) = f [pX1

(x1), . . . , pXn
(xn)], (1)

where each pXi
is a utility over the corresponding one-

dimensional consequence subspace Xi, i = 1, . . . , n. A classi-
cal result of mutual preferential independence is the additive
value theorem [3], which states that mutual preferential inde-
pendence is necessary and sufficient to define a multiattribute
utility function pXn

of the form

pXn
(xn) =

n
∑

i=1

wipXi
(xi), (2)

with weighting factors wi > 0 for 1, . . . , n and
∑n

i=1
wi = 1.

A classical way to search for the Pareto frontier is to per-
form scalar optimization for various combinations of weight-
ing factors. This approach, however, assumes that the conse-
quence space is convex ([4, 5]). Recent research has focused
on population-wide searches using evolutionary algorithms to
generate an entire family of solutions that approximate the
Pareto frontier without requiring the convexity assumption.
The key feature of these search procedures is the use of
dominance as the criterion for survival [6, 7]. Although these
approaches do not require a scalar utility function to be
defined, they do require a well-defined notion of dominance.
With the conventional notion of dominance expressed in terms
of individual preferences, each one-dimensional consequence
subspace must be preferentially independent of its comple-
mentary subspace.

Preferential independence is a stringent assumption, and if
it is not appropriate, then neither a scalar utility function of the
form (1) nor dominance in terms of individual preference or-
derings can be defined, and the multicriterion decision problem
becomes more difficult. Assuming preferential independence
inappropriately can lead to errors that are difficult to quantify.

C. Conditional Preferential Independence

Keeney and Raiffa suggest a natural way to weaken the
hypothesis of preferential independence by introducing the
concept of conditional preferential independence.

Definition 2.7: Let X m, X k, and X ` be disjoint subspaces
of X n such that X m×X k ×X ` is preferentially independent
of its complementary subspace. The subspace X m is con-
ditionally preferentially independent of X k given x` ∈ X `

if, for any two vectors xm,x′
m ∈ X m and fixed x` ∈ X `

such that (xm,x′
k,x`) �Xm×Xk×X`

(x′
m,x′

k,x`) for some
x
′
k ∈ X k, then (xm,xk,x`) �Xm×Xk×X`

(x′
m,xk,x`) for all

xk ∈ X k. If this relation holds for all x` ∈ X `, then X m is
conditionally preferentially independent from X k given X `.

The notion of conditional preferential independence has
inspired several researchers to develop graphical models to
represent multivariate utility functions and simplify calcula-
tions. Bacchus and Grove [8, 9] decompose the global utility
function into sums of utility functions over conditionally inde-
pendent subspaces of consequences. They extend this notion
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to define generalized additive independence, which permits
the attributes to be expressed graphically. Boutilier, Brafman,
Hoos, and Poole [10] extend this work to develop a Condi-
tional Preference (CP) network involving directed graphs that
represent the ordinal ranking of the attributes in terms of their
importance. These relationships can be expressed graphically
by associating a vertex with each attribute and associating an
edge with each parent-child pair, thereby forming a directed
graph. Boutilier, Bacchus, and Brafman [11] then combine
CP nets with generalized additive independence to generate
a directed graph that quantifies the preferential relationships
with numerical values. The resulting UCP (Utility Conditional
Preference) network is a directed acyclic graph with attributes
as vertices and edges associated with the conditional utility
functions for the children given the instantiation of the parents.
Gonzales and Perny [12] have also applied generalized additive
independence decompositions to construct graphical models to
assist in the elicitation of preferences for risky multiattribute
decision problems. Related work by Engel and Wellman [13]
introduces the notion of conditional utility independence and
shows this leads to the calculation of joint utility as the sum
of conditional utility functions.

A somewhat different approach is taken by La Mura and
Shoham [14], who introduce nonconventional notions of prob-
abilistic independence and utility independence. Using these
constructions, they define a hybrid graphical model called an
Expected Utility Network (EUN) composed of attributes as
vertices and with two sets of edges—one for probabilistic
dependencies and one for utility dependencies.

III. AN AXIOMATIC APPROACH TO AGGREGATION

As is evident from the above discussion, much theoretical
effort has focused on justifying and exploiting preferential
independence and conditional preferential independence to
simplify the construction of the multiattribute utility function
and to define dominance. This paper, however, reorients the
problem by focusing directly on ways to accommodate pref-
erential dependencies. We present two fundamental axioms
that we suggest should constrain the structure of preference
orderings, and then we define preference orderings and utility
functions that comply with these axioms.

A. Fundamental Axioms

As discussed above, classical multicriterion decision theory
recognizes concepts of conditional preferences and preferential
independence. These concepts are analogous to the corre-
sponding concepts of probability theory. The main distinction
is that dealing with attributes and criteria is a praxeological1

consideration, whereas dealing with randomness and uncer-
tainty is an epistemological2 consideration. Two random phe-
nomena are epistemologically (i.e., statistically) independent if
the probability of the occurrence of one is not influenced by the

1Praxeology is the classification of choices on the basis of effectiveness
and efficiency.

2Epistemology the classification of choices on the basis of knowledge and
belief.

occurrence of the other; two consequences are praxeologically
independent if the utility of the instantiation of one is not
influenced by the instantiation of the other.

The view of this paper is that the above analogy between
the preferential and the statistical is more profound than is
generally appreciated. Multicriterion decision theory considers
aggregating relationships among praxeological attributes—
efficiency and effectiveness, and probability theory considers
aggregating relationships among epistemological attributes—
knowledge and belief. The perhaps surprising thesis of this
paper is that they can both be characterized by the same
mathematical structure. To motivate this thesis, consider the
following aggregation axioms.
Axiom 1 (Conditioning) Preferences for consequences of a
multicriterion decision problem may be conditioned on the
preferences for other consequences.
Axiom 2 (Endogeny) If preference orderings exist for a space
of consequences, they must be determined by relationships that
exist among its subspaces.

Axiom 1 represents an important shift in perspective from
classical decision theory. With the classical approach, an at-
tribute’s preference ordering is with respect to the instantiation
of consequences to itself and to other attributes [1, 10, 13]. This
axiom, however, permits an attribute’s preference ordering to
be with respect to the preference for consequences to itself and
to other attributes. If the consequences are mutually preferen-
tially independent, then this ordering should be the same as
with the conventional case. But if mutual independence does
not apply, then the attribute’s preferences can be dependent
on the benefit to other attributes as well as on the benefit to
the given attribute. For example, consider the farmer scenario
introduced in Section I. Suppose, for health reasons and when
viewed in isolation of his crop’s success, he prefers much rain
to little rain. Given that, he would naturally be inclined to
consider his preference for much sun or little in the light of
his preferences for rain.

Definition 3.1: Let X k be a subspace of X n that is prefer-
entially independent of its complementary subspace, and let
�Xk

be the preference ordering over X k. A consequence
vector xk ∈ X k is a commitment if xk �Xk

x
′
k for all x

′
k ∈

X k\{xk} and x
′
k ∼Xk

x
′′
k for all x

′
k,x′′

k ∈ X k\{xk},where
{·} denotes a singleton set.
Essentially, a commitment to xk means that it is the only
preferred consequence. All other consequences are equally
inferior.

Definition 3.2: Let X m and X k be disjoint subspaces of
consequences, with m+k ≤ n, such that X k is preferentially
independent of its complementary subspace, and X m × X k

is preferentially independent of its complementary subspace.
A conditional preference ordering over X m given X k is a
binary relation �Xm|Xk

such that xm|xk �Xm|Xk
x
′
m|x′

k

means X m considers xm to be at least as good, given that
X k is committed to xk, as x

′
m, given that X k is committed

to x
′
k .

It is important to appreciate that a conditional ordering
over X m is hypothetical; it does not depend on the actual
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preference ordering over X k, nor does it mean that the order-
ing over X k actually is a commitment to any consequence.
Rather, it means that if xk were a commitment, then the
ordering over X m would be as defined. To illustrate, suppose
a committee is to buy a car, and committee members Y and
Z have interest restricted to the attributes of model and color,
respectively. A possible conditional preference would be that
Y prefers convertibles given that Z is committed to red cars,
to sedans given that Z is committed to green cars. A special
case obtains if Y prefers convertibles to sedans given that Z is
committed to red cars. The critical feature of this conditional
preference structure is that it provides an ordering conditioned
on preference, not on actual instantiation. We can view a
conditional preference ordering in two ways. First, it may
reflect Y ’s preference ordering out of its own selfish interest.
Second, it may reflect Y ’s willingness to give deference
to Z when defining its preferences (either benevolently or
malevolently). Thus, this structure provides the opportunity
for a social relationship to exist between Y and Z . It does
not, however, require or impose a social relationship.

We now consider the problem of defining utility functions
that correspond to conditional preference relations.

Definition 3.3: If a subspace ordering �Xk
exists over X k,

a marginal utility over X k is a function pXk
: X k → R such

that pXk
(xk) > pXk

(x′
k) if and only if xk �Xm

x
′
k and

pXk
(xk) = pXk

(x′
k) if and only if xk ∼Xm

x
′
k.

Definition 3.4: If a conditional preference ordering ex-
ists over X m given X k, a conditional utility over X m

given X k is a function pXm|Xk
: X m × X k → R

such that pXm|Xk
(xm|xk) > pXm|Xk

(x′
m|x′

k) if and
only if xm|xk �Xm|Xk

x
′
m|x′

k and pXm|Xk
(xm|xk) =

pXm|Xk
(x′

m|x′
k) if and only if xm|xk ∼Xm|Xk

x
′
m|x′

k .
The next step in our development is to impose requirements

on the utility functions that ensure compliance with Axiom
2. Suppose we are given the preference ordering �Xk

over
X k and the conditional preference ordering �Xm|Xk

over X m

given X k. The aggregation problem is to define a preference
ordering �Xm×Xk

over the product space of consequences
X m × X k. Axiom 2 prohibits an exogenous source from
defining this ordering; rather, the aggregation must emerge
from the relationships that exist between the two sets of
consequences. Complying with this axiom thus requires that
the utility function over X m × X k must be a function of the
marginal utility function over X k and the conditional utility
function over X m given X k.

Definition 3.5: Let X m and X k be two disjoint subspaces
of consequences, with m + k ≤ n, such that X k is pref-
erentially independent of its complementary subspace, and
X m ×X k is preferentially independent of its complementary
subspace. The utility functions pXk

and pXm|Xk
are endoge-

nously aggregated if there exists a function F , nondecreasing
in both arguments, such that

pXm×Xk
(xm,xk) = F [pXk

(xk), pXm|Xk
(xm|xk)], (3)

is a utility over X m × X k, and hence defines a preference
ordering �Xm×Xk

.

A reasonable and intuitively important property of this type
of aggregation is that, if xm|xk �Xm|Xk

x
′
m|x′

k and xk ∼Xk

x
′
k, then (xm,xk) �Xm×Xk

(x′
m,x′

k), and, if xk �Xk
x
′
k with

xm|xk ∼Xm|Xk
x
′
m|x′

k , then (xm,xk) �Xm×Xk
(x′

m,x′
k).

These relationships obtain if and only if F is nondecreasing
in both arguments.

B. The Aggregation Theorem

Probability theory is traditionally concerned with epistemol-
ogy and is used to express the degrees of belief regarding
the truth of propositions. Mathematically, however, probability
theory is a sub-topic of general measure theory [15]. We may
also apply measure theory to the praxeological problem to
express the degrees of suitability of choices. In the interest of
brevity, we restrict our attention to the discrete case involving
a finite alternative space and a finite consequence space.

Let X n be a finite collection of n-dimensional consequence
vectors. A praxeological measure3 PXn

is a function defined
over a Boolean algebra B of subsets of X n such that

1) PXn
(A) ≥ 0 for all A ∈ B.

2) PXn
(X n) = 1.

3) For any finite collection of pairwise disjoint elements
{Ai} of B, PXn

(
⋃

i Ai

)

=
∑

i PXn
(Ai)

Given a praxeological measure PXn
over the power set of

X n, we may construct a multivariate mass function pXn
, a

family of marginal mass functions {pXm
, m = 1, 2, . . . , n−1},

and a family of conditional mass functions {pXm|Xk
, m, k =

1, . . . , n− 1}, Xm ∩X k = ∅, m + k ≤ n}, such that, for all
xn ∈ X n, xm ∈ X m, and xk ∈ X k,

pXn(xn) = PXn({xn})

pXm(xm) = PXn({xm} × X k)

pXm|Xk
(xm|xk) =

PXn [{xm}×{xk}×(X n \ (X m×X k))]

PXn [{xk} × (X n \ X k)]
,

where the last relation is defined if and only if the denominator
is nonzero.

Theorem 3.6: (The aggregation theorem) Let X n be a
finite collection of n-dimensional consequence vectors, and
let B denote the power set of X n. Let {pXm

, X m ∈ B, m =
1, . . . , n} be a family of utility functions associated with the
subspaces of X n and let {pXm|Xk

, X m∩X k = ∅, m+k ≤ n}
be a family of conditional utility functions associated with all
pairs of disjoint subspaces of X n. These utility functions are
endogenously aggregated if and only if they are mass functions
corresponding to a praxeological measure PXn

over B.
A proof of this theorem is provided in the Appendix. This

theorem formalizes the analogy between the epistemic and the
praxeic. Indeed, we may view the alternative set A as analo-
gous to a sample space, the attribute functions Xi as analogous
to random variables, and the multiattribute utility function pXn

as analogous to a multivariate probability mass function. It
provides a complete valuation of all consequences, including

3Mathematically, this is same as a probability measure, but with different
semantics.
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the relationships between them. The aggregation theorem
establishes that this function possess the same mathematical
structure as multivariate probability mass functions, albeit with
praxeological, rather than epistemological, semantics.

• Non-negativity: pXn
(xn) ≥ 0 ∀xn ∈ X n.

• Normalization:
∑

xn∈Xn
pXn

(xn) = 1.
• Marginalization: Let X m be an arbitrary m-dimensional

subspace of X n. Then the utility of xm is obtained by
summing pXn

(xn) over the complementary subspace X k,
where k = n − m, yielding

pXm
(xm) =

∑

xk∈Xk

pXn
(xn). (4)

• Aggregation: The marginal utility pXk
(xk) and the con-

ditional utility pXm|Xk
(xm|xk) may be aggregated ac-

cording to the chain rule. Let X m and X k be disjoint
subspaces such that X k is preferentially independent of
it complement. Then the function F in (3) has the form

F [pXk
(xk), pXm|Xk

(xm|xk)] =pXm×Xk
(xm,xk)

=pXm|Xk
(xm|xk)pXk

(xk). (5)

More generally, if X m, X k, and X ` are disjoint sub-
spaces of X n such that X `, X k×X `, and X m×X k×X `

are all conditionally independent of their respective com-
plementary subspaces. Then

pXn
(xm,xk,x`) =

pXm|Xk×X`
(xm|xk,x`)pXk|X`

(xk|x`)pX`
(x`). (6)

• Praxeological Independence: Let X m and X k be disjoint
subspaces such that X m ×X k is preferentially indepen-
dent of its complementary subspace. Then X m and X k

are praxeologically independent if pXm×Xk
(xm,xk) =

pXm
(xm)pXk

(xk). Praxeological independence implies
preferential independence, but not vice versa.

IV. MULTICRITERION DECISION MAKING

A. Constructing the Multiattribute Utility Function

The multivariate mass function pXn
provides a complete

evaluation of the consequences that does not require assump-
tions of independence. It therefore is more general than the
classical scalar utility function of the form (1). Generating this
function requires the same kind of detailed knowledge about
the problem as would the conventional approach. Fortunately,
however, since pXn

is a multivariate mass function, we may
apply methods that were originally designed for probabilistic
applications to construct this function.

Directed acyclic graphs (DAGs) provide a convenient way to
represent the influence one attribute may have on another. They
have special significance to probability theory, and are used to
construct Bayesian networks where each vertex represents a
random variable and each path represents a conditional prob-
ability linking the parent to the child. Since our formulation
of the aggregation problem employs the same mathematics

as does probability theory, DAGs play a similar role. To
distinguish between the two contexts, we will refer to such
graphs as praxeic networks.

Consider the praxeic network displayed in Figure 1, whose
vertices correspond to the attributes of a six-attribute decision
problem. The edges consist of conditional utilities which
express the degree of preferential influence one attribute has
on another. The parents of a vertex Xi are denoted pa (Xi).

X1

pX2|X1 pX3|X1

pX4|X1

X2

pX5|X2

pX6|X2

X3 X4

X5 X6

Fig. 1. (a) A praxeic network for a six-attribute decision problem.

The key property of Bayesian and praxeic networks is the
Markov property: nondescendent nonparents of a vertex are
conditionally independent of the vertex, given the state of its
parent vertices (for a proof, see [16, 17]). Consequently, we
may define conditional preference orderings for each Xi given
the preferences of its parents.

Definition 4.1: Let pa (Xi) denote the subspace corre-
sponding to pa (Xi), that is, if pa (Xi) = {Xi1 , . . . , Xiki

},
were ki is the number of parents of Xi, then pa (Xi) =
Xi1 ×· · ·×Xiki

. A conditional preference ordering �Xi| pa (Xi)

may be associated with each Xi as follows. Let xki
∈ pa (Xi)

and x
′
ki

∈ pa (Xi) denote the ki-dimensional sub-vectors of
xn and x

′
n, respectively, that lie in pa (Xi). The expression

xi|xki
�Xi| pa (Xi)

x′
i|x

′
ki

means that Xi prefers xi given
that its parents are committed to xki

, to x′
i given that its

parents are committed to x
′
ki

. If pa (Xi) = ∅ then Xi is
preferentially independent of its complementary subspace and
the conditional preference ordering �Xi| pa (Xi)

reduces to the
unconditional preference ordering �Xi

.
The Markov property may be used to prove the equivalence

of a DAG whose edges are conditional mass functions with a
joint mass function for all of the vertices. Thus, the multiat-
tribute utility function may be constructed as

pX1×···×Xn
(x1, . . . , xn) =

n
∏

i=1

pXi| pa (Xi)

(

xi|xki

)

, (7)

where, if pa (Xi) = ∅, then pXi| pa (Xi)
(xi|xki

) = pXi
(xi), the

marginal utility function for attribute Xi.
For the praxeic network illustrated in Figure 1, the multiat-

tribute utility function is

pX6
(x1, x2, x3, x4, x5, x6) = pX1

(x1)pX2|X1
(x2|x1)

pX3|X1
(x3|x1)pX4|X1

(x4|x1)

pX5|X2
(x5|x2)pX6|X2

(x6|x2). (8)
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The consequence of this property is that, if local influ-
ence relationships between attributes can be expressed with
a DAG, then the influence relationships can be represented
by conditional mass functions where the dependencies flow in
only one way: from parents to children. Note that the DAGs
associated with conditional preferences as defined in this paper
are different from the DAGs that are associated with so-called
CP (conditional preference) networks as defined by [10] and
CUI (conditional utility independence) networks as defined
by [13]. An essential distinction between these approaches
and the approach we offer is that our approach conditions
with respect to preferences for other consequences, whereas
conditional independence is with respect to the instantiation of
other consequences (see the discussion regarding Axiom 1).
Although these previous approaches employ DAGs, they are
not Bayesian networks.

The Markov property is used to define algorithms to
construct the joint probability mass function from the local
relationships that exist between vertices. Well known computa-
tionally tractable algorithms include Pearl’s Belief Propagation
Algorithm [16] and the Sum-Product rule [18].

B. Conditional Dominance

Once the joint utility function pXn
is defined, each a ∈ A

maps to utility space according to the relation pXn
(Xn(a)),

where Xn(a) = (X1(a), . . . , Xn(a)). The classical a priori
optimal solution is then obtained as

a∗ = argmax
a∈A

pXn
(Xn(a)). (9)

To follow the a posteriori approach, we must identify
the Pareto frontier, which requires a notion of dominance.
As conventionally defined (see Definition 2.4), dominance
requires consequences to be preferentially independent. How-
ever, it is possible to extend this notion to the preferentially
dependent case. To motivate, let us examine (8). We see that,
since the utility function pX1

appears in this product and
praxeological independence implies preferential independence,
X1 is preferentially independent of its complement. Thus pX1

corresponds to an unconditional preference ordering �X1
over

X1. Now consider the term pX3|X1
(x3|x1). It is clear from the

construction that X1 ×X3 is preferentially independent of its
complement, and pX3|X1

(x3|x1) corresponds to a conditional
preference ordering �X3|X1

over X3 given X1, and so forth. We
thus see that each conditional mass function in (8) corresponds
to a conditional ordering over the associated subspace. These
conditional preference orderings may be used to generalize the
notion of dominance.

Definition 4.2: Conditional dominance and Pareto frontier.
Let xn = (x1, . . . , xn) and x

′
n = (x′

1, . . . , x
′
n) be arbitrary

elements of X n and suppose Xi has ki parents. Let xki
∈

pa (Xi) and x
′
ki

∈ pa (Xi) be defined as in Definition 4.1.
Then xn conditionally dominates x

′
n if xi|xki

�Xi|Xpa (Xi)

x′
i|x

′
ki

, i = 1, . . . , n, with strict inequality for at least one
j ∈ {1, . . . , n}. The conditional Pareto frontier is the set of
all conditionally nondominated consequence vectors.

Notice that this modified definition coincides with the clas-
sical definition of dominance when each Xi is preferentially
independent of its complementary subspace.

C. Example

To illustrate the effect of conditional preference orderings,
consider the following simple example. Suppose a series of
four different plays (P1, P2, P3, P4) are offered on each of four
days (D1, D2, D3, D4). An individual has one ticket, and must
choose one (play,day) combination out of the sixteen possible
alternatives aij = (Pi, Dj), i, j = 1, . . . , 4. Let Criterion 1
correspond to enjoying the play, and let Criterion 2 correspond
to desiring the day.

The operational concept of preference for the play is enjoy-
ment; that is, P1 �X1

P2 means that play P1 will be enjoyed
at least as much as play P2. This ordering is illustrated on a
normalized scale in Table I, yielding pX1

.

TABLE I
THE MARGINAL UTILITY FUNCTION pX1 .

x1 P1 P2 P3 P4

pX1 (x1) 0.3571 0.2857 0.2143 0.1429

Now suppose that the individual’s preferences for the day
depends on the individual’s preference for the play (e.g.,
different actors may be performing on different days). Such
a player’s preference for the day would then be conditioned
on her preferences for the play, yielding a conditional utility
of the form pX2|X1

(x2|x1). Table II displays this conditional
utility function. For example, the conditional valuation for day
D3 given that P2 is attended is pX2|X1

(D3|P2) = 0.4348,
which is the highest valuation for that day. If, however, the
individual were to attend on day D3, play P4 would result
in the next-worst valuation. The multiattribute utility function
thus assumes the form

pX1×X2
(x1, x2) = pX2|X1

(x2|x1)pX1
(x1). (10)

Maximizing (10) yields a∗ = a14.

TABLE II
THE CONDITIONAL UTILITY FUNCTION pX1|X2 .

x1

x2 P1 P2 P3 P4

D1 0.1667 0.0870 0.1852 0.0909
D2 0.1666 0.3043 0.3333 0.2727
D3 0.2500 0.4348 0.4444 0.1818
D4 0.4167 0.1739 0.0370 0.4545

It is instructive to compute the entire utility space, as
displayed in Figure 2. By inspection, the Pareto optimal set is
{a14, a23, a33, a44}. As expected, the globally optimal solution
a∗ is a member of this set.

Now let us assume preferential independence. Unfortu-
nately, the problem specification does not include an uncon-
ditional ordering over X2, but it is possible to generate such
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Fig. 2. The utility space illustrating the conditional Pareto optimal set.

-

6

| | | |

0.1 0.2 0.3 0.4

-

-

-

-

0.1

0.2

0.3

0.4

a11

a12

a13

a14

a21

a22

a23

a24

a31

a32

a33

a34

a41

a42

a43

a44

pX1
(x1)

p
X

2
(x

2
)

Fig. 3. The utility space assuming preferential independence.

an ordering by computing the marginal utility over X2 as

pX2
(x2) =

∑

x1∈X1

pX2|X1
(x2|x1)pX1

(x1). (11)

Using the marginal utility, however, does not result in the same
solution as using the conditional information. Figure 3 displays
the utility space assuming preferential independence. The
Pareto optimal set is now the singleton {a13}. This alternative,
however, is not Pareto optimal when preferential dependence is
taken into consideration. This example illustrates the fact, well
known in the probability context, that the multiattribute utility
cannot be reconstructed from the marginal utilities unless the
consequences are praxeologically independent.

V. CONCLUSION

This paper provides a reorientation for multicriterion deci-
sion problems when the preferential independence assumption
is not appropriate. Rather than focusing on ways to exploit
preferential independence, as do most approaches in the lit-
erature, our approach is to account directly for preference
dependencies. We do this by introducing a new utility structure
that is explicitly designed to model dependencies according
to two fundamental aggregation axioms. We show that com-
pliance with these axioms requires the utilities to possess

the syntactical structure of probability mass functions, albeit
with praxeological, rather than epistemological, semantics.
In a personal communication to Judea Pearl, Glenn Shafer
observed that “probability is not really about numbers; it is
about the structure of reasoning” [16, p 15]. We submit that
this property applies not only to the epistemological activity
of forming beliefs, but also to the praxeological activity of
taking action.

An ancillary, but important benefit of the utility structure
is that it is amenable to a powerful conceptual and synthesis
tool: graph theory. Since the utility functions are structured
mathematically as mass functions, the multiattribute utility
function may be synthesized according to the Markov property
of graph theory (i.e., the chain rule of probability), rather
than relying upon ad hoc simplifications of the multiattribute
function, such as additive decompositions.

This approach may result in more complexity than would
be encountered with mutual preferential independence, but
as Palmer has noted, “complexity is no argument against a
theoretical approach if the complexity arises not out of the
theory itself but out of the material which any theory ought
to handle” [19, p. 176].

APPENDIX

Proof of the Aggregation Theorem (Preliminary versions of
this theorem are discussed in [20–22].)

Sufficiency follows by the definition of marginalization and
conditioning, yielding

F [pXk
(xk), pXm|Xk

(xm|xk)] = pXm|Xk
(xm|xk)pXk

(xk).
(12)

To prove necessity, let X i, X j , and X k, where i 6=
j, i 6= k, j 6= k, be arbitrary pairwise disjoint subspaces
of X n, and let pXi×Xj×Xk

, pXi|Xj ×Xk
, pXi×Xj |Xk

, pXi×Xj
,

pXi|Xj
, and pXi

be endogenously aggregated non-negative
utility functions. That is, there exists a function F such
that pXi×Xj

(xi,xj) = F [pXj
(xj), pXi|Xj

(xi|xj)] ∀(xi,xj) ∈
X i × X j .

Let PXi×Xj×Xk
, PXi|Xj ×Xk

, and PXi×Xj |Xk
be non-

negative functions over subsets of X i×X j ×X k; let PXi×Xj
,

PXi|Xj
be non-negative functions over subsets of X i × X j ,

and let PXi
be non-negative functions over subsets of X i such

that, for all singleton sets {xi} ∈ X i,

PXi×Xj×Xk
({xi}×{xj}×{xk}) = pXi×Xj×Xk

(xi,xj ,xk)

PXi|Xj ×Xk
({xi}|{xj} × {xk}) = pXi|Xj ×Xk

(xi|xj ,xk)

PXi×Xj |Xk
({xi} × {xj}|{xk}) = pXi×Xj |Xk

(xi,xj |xk)

PXi×Xj
({xi} × {xj}) = pXi×Xj

(xi,xj)

PXi|Xj
({xi}|{xj}) = pXi|Xj

(xi|xj)

PXi
({xi}) = pXi

(xi).

These functions, when restricted to singleton sets, are utility
functions and thus, by hypothesis, are endogenously aggre-
gated. We require these functions over sets to be endogenously
aggregated when extended to arbitrary measurable rectangles
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A × B × C ⊆ X i × X j × X k. Thus, it must hold that

PXi×Xj
(A × B) = F

[

PXj
(B), PXi|Xj

(A|B)
]

=

F
[

PXi
(A), PXj |Xi

(B|A)
]

. (13)

It is convenient to follow the development that Jaynes ap-
plied to the epistemological case [23, Chapter 2]. Let A ⊆ X i,
B ⊆ X j , and C ⊆ X k be arbitrary. Since product space oper-
ations are associative, A×B×C = (A×B)×C = A×(B×C),
it must hold that

PXi×Xj×Xk
(A × B × C) =

F
[

PXj×Xk
(B × C), PXi|Xj ×Xk

(A|B × C)
]

= F
[

PXj
(C), PXi×Xj |Xk

(A × B|C)
]

. (14)

By the endogenous aggregation hypothesis, we have

PXi×Xj |Xk
(A × B|C) =

F
[

PXj |Xk
(B|C), PXi|Xj ×Xk

(A|B × C)
]

. (15)

Applying (13) to PXj×Xk
(B × C) and (15) to

PXi×Xj |Xk
(A × B|C) yields, upon substitution into (14),

F
{

F [PXk
(C), PXj |Xk

(B|C)], PXi|Xj ×Xk
(A|B × C)

}

=

F
{

PXk
(C), F [PXj |Xk

(B|C), PXi|Xj ×Xk
(A|B × C)]

}

. (16)

In terms of general arguments, this equation becomes

F [F (x, y), z] = F [x, F (y, z)] , (17)

which is called the associativity equation [23, 24]. By direct
substitution it is easy to see that (17) is satisfied if

f [F (x, y)] = f(x)f(y) (18)

for any function f .
It has been shown by Cox [25] that if F is differentiable in

both arguments, then

• (18) is the general solution to (17) for any function f .
Taking f as the identity function, (13) becomes

PXi×Xj
(A × B) = PXi|Xj

(A|B)PXj
(B) =

PXj |Xi
(B|A)PXi

(A) (19)

• For any A1, A2 ⊆ X i and any B1, B2 ⊆ X j such that
(A1 × B1) ∩ (A2 × B2) = ∅,

PXi×Xj
[(A1 × B1) ∪ (A2 × B2)] =

PXi×Xj
(A1 × B1) + PXi×Xj

(A2 × B2). (20)

• PXi×Xj
[X i × X j ] = 1.

In particular, if X i × X j = X n, then PXn
is a praxeological

measure over B and the utility function pXn
is the associated

multivariate mass function over X n.
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