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Abstract- We present a conceptual framework of an 
interactive method for solving integer linear vector
optimization problems. The method is based on an 
enumerative cut approach. It combines cutting planes with
enumerative parts. In this method the user can perform a 
structured searching process in the non-dominated set.

I. INTRODUCTION

Interactive approaches in vector optimization, generally,
perform a structured search in the non-dominated set. In this
paper we will show how this can be done for integer linear
vector optimization problems. There are some approaches
combining traditional approaches from classical integer
programming. In an early work, Lee and Morris [8] combined
dual cutting planes, branch-and-bound techniques and implicit
enumeration in a goal programming approach. Ramesch,
Zionts and Karwan [9] integrated the Zionts/Wallenius
method into a branch and bound concept. Karavainova et al.
[7] apply the Pareto Race to integer problems. Alves and 
Climaco [1] combine (classical) cutting planes and branch-
and-bound routines. The method, we present here, uses
enumerative cuts combining enumerative elements with a
general type of cutting planes.

Enumerative cuts were introduced to solve ordinary integer
linear optimization problems by Burdet [2], [3] and developed
by Habenicht [4]. Up to our knowledge, this is the first time
that this approach is used in vector optimization.

The paper is organized as follows. In chapter 2 integer
linear vector optimization problems are introduced. The
concept of enumerative cuts is presented in chapter 3. In 
chapter 4 we develop our interactive procedure. Chapter 5
gives some final remarks, open problems, and some directions
of further research.

II. THE INTEGER LINEAR VECTOR 
OPTIMIZATION PROBLEM

This paper deals with the integer linear vector
optimization problem (ILVOP):

   “Minimize” {y = Cx | x X}  (1)

X:= {x n | Ax b} (2)

Here,  denotes the set of integers, y k the (real valued)

vector of outcomes, C kxn the matrix of coefficients of the

k criteria, A mxn the coefficient matrix of the constraint set, 

and b m the right hand  side vector.

Let Y:= {y = Cx | x  X}, then we can formulate ILVOP
in an “outcome oriented “ way as: 

 “Minimize” {y Y} (3)

The two formulations of ILVOP can be interpreted as two
different views on the problem. (1), (2) stands for the
traditional interpretation of a (vector) optimization problem in
decision space: “Find some feasible solution x in decision
space, according to the ‘minimize’- operator.” Whereas, (3)
stands for a view on the problem in outcome space: “Find 
some feasible outcome y, according to the ‘minimize’-
operator”.

Here, the “minimize”-operator is defined in the ordinary

sense of pareto-optimality, i.e. find some y Y*, with:

Y*:= {y Y | y’ y  y’=y} (4)

Y* is called the non-dominated set and

X*:= {x n | Cx Y*}                   (5)

the efficient set. Throughout this paper we will use the
following example:
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Fig. 1: Feasible se

III. ENUMERATIVE CUTS

Enumerative cuts are based on the concept of intersection
cuts, also called cutting plane
approach in integer linear optimization this concept uses LP-

laxations.

Let XR:= {z sible set of the

LP

| = m), and NBV:= {1,…,n+m}\BV the index

t in decision space 

convexity cuts. Like any

re
n+m| (A,I)z=b,z 0} be the fea

-relaxation of ILVOP, with I the (mxm)-identity matrix,

z=(x,s), and s:= b-Ax m the vector of slack variables.

Moreover, let BV  {1,…,n+m} be the index set of the basic
variables (|BV
set of the non-basic variables of some basic solution of the
LP-Relaxation. The non-negativity constraints of the non-

basic variables define the cone KB:= {z n+m | (A,I)z=b, zj 0

j NBV}, originating at the basic solution. KB can also be

formulated as KB= {z n+m | zi = dio- j NBV dijzj j NBV},

with dio the right hand side coefficients and dij the other
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Fig. 2: Feasible Set in Outcome Space

coefficients of the simplex tableau. The edges of the cone KB

are given by the columns of the simplex tableau, and the basic
solution is given by zi*= dio i BV, zi*= 0 else. The
corresponding (LP-relaxed) solution of IVLOP is given by
xi*=zi* i n.

Let C n be a closed and convex set that contains x* in

its interior, then we call C a cut generating set. For j NBV,
let j*:= sup{ j | x*-dj

j C }. If j*< , then xj:= x* - dj
j*

is an intersection point of the edge of KB generated by the
non-basic variable zj with the boundary of  C (dj denotes the
column of the simplex tableau for non-basic variable zj). The
half space S(C):= {x = x*-djzj | j NBV 1/ * zj  1} is called
the cut generated by C.

Obviously, the intersection points xj lie on the boundary of
S(C) and the fo

t(C) denotes the interior of C. Classical cutting 

n
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S(

x1

5

5

10

10

(I)

(II)

(III)

(IV)

x1

5

5

10

10

(I)

(II)

(III)

(IV)

llowing theorem holds [4]:

Theorem: Let C be a cut generating set and S(C) the
generated cut, then

  KB\ S(C) int(C) (4)

In (4), in
plane algorithms use this result by choosing cut generating
sets that do not contain any integer point in its interior. In 
fact, the classical Gomory cuts are special cases of such
intersection cuts.

If we choose cut generating sets that have integer points
in its interior we can get deeper cuts, but these integer
points may be cut off. Hence, we have to enumerate the
integer points in the interior of the cut generating set. In our

approach we use hypercubes of the form Q:= { x  | u

x o } with u, o n as cut generating s

In Figure 3 we show for our example the cut generating
set C = {5 x 101 , 6 x2 12} together with the generated cut

C).
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Fig. 3: Enumerative Cut
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IV. THE INTERACTIVE APPROACH

We start with a rudimentary description of our approach:

Step 0: Let xo be the best solution of ILVOP known so far. (If no 
solution is known, let xo be some dummy solution with a
sufficiently bad evaluation).

Step 1: Transform ILVOP to a single criterion problem by some
positive weighting of the criteria and solve the LP-Relaxation

Step 2: The DM chooses a cut generating set in outcome space. 

Step 3: Let the DM choose the best feasible (integer) solution x’ in
int(C). If the DM prefers x’ to xo, let xo:=x’.

Step 4: Introduce S(C) and present the vertices of the facet produced 
by the introduction of S(C) into the Relaxation to the DM.
Ask for the best vertex and denote it by x+.

Step 5: If the DM prefers x* to x+, stop. Otherwise, choose as the 
new basic solu and go to step 2.

Now, we e ay
ask the decision maker (DM) for some (positive) weighting of
th n
pr o
we hts are available from the DM, we may use equal
we h
result is sho

relaxation is
in outcome tter
sol P
on all criter has defined
the 1

This defi
Sin en
Fig h
very well su ace.
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sim
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xplain the steps in some detail. In step 1 we m

e criteria, and we transform ILVOP to a single criterio
oblem by building the weighted sum of the criteria. If n
ig
ights. T en we solve the LP-relaxation. In Figure 4 the

wn in outcome space.

The outcome vector y* of the optimal solution x* of the
 shown to the DM, and he is asked for the region

space around y* where to search for be
utions. recisely, he is asked for lower and upper bounds

ia. In Figure 4 we assume that the DM
bounds 2 y1 30 and 9 y2 21.
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Fig. 4: Starting solution in outcome space
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Fig. 5: C* in decision space

set C the smallest hypercube in decision space with integral
bounds that contains S*. This is shown in Figure 6.

It should be mentioned that S(C) is stronger than S(C*). A 
crucial point in the choice of the cut generating set lies in the
fact that the DM does not know how many integer points are 
contained in the interior of C when he chooses C*. If he
chooses it too small, there may be no integer points in the
interior of C. If he chooses C* too large, there are too many
points to be enumerated. This is a crucial point because the
DM has to choose the best one out of them.

This problem can be solved by generalizing S(C*) to
S (C*):= {x = x*-djzj | j NBV 1/ * zj }. In this way, we
can control the depth of the cut and, hence, the extension of C
by the parameter . We are choosing the maximal value of
such that the number of integer points in the interior of C is

ot greater than some prespecified value.n
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The enumeration of the integer points in the interior of C
can be done in different ways. One approach is the Outcome 
based Neighbourhood Search (ONS) developed by the author 
[5]. In this approach generalized quad trees are used to 
identify the non-dominated points. 

In step 4 we introduce the cut S(C) and look at the vertices 
of the created facet. If the best solution found so far is 
preferred to all the vertices of the facet, we have reached some 
kind of local optimum und we propose to stop. If the 
preferences meet some special properties (for instance, pseudo 
concavity of the utility function) we conjecture that x° is 
globally optimal. If x° is not preferred to all vertices, we 
choose the best vertex as a new basic solution of the LP-
relaxation and perform another iteration. 

V. CONCLUDING REMARKS 

he aim of this paper was to sketch out the applicability of 
the enumerativ inear vector 
op

eration schemes where the 
de
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e cutting plane approach to integer l

timization problems. We presented a concept that has to be 
specified with respect to many aspects. One crucial point is 
the size of the cut generating sets. This point is highly 
correlated to the problem of finding good enumeration 
schemes. We are looking for enum

cision maker may choose the best one out of a great number 
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