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Abstract— This paper considers a two-level linear programming
problem involving random variable coefficients to cope with
hierarchical decision making problems under uncertainty. Two
decision making models are provided to optimize the mean of the
objective function value or to minimize the variance. It is shown
that the original problem is transformed into a deterministic
problem. The computational methods are constructed to obtain
the Stackelberg solution to the two-level programming problems.
An illustrative numerical example is provided to understand the
geometrical properties of the solutions.

I. INTRODUCTION

In this article, we consider two-level programming problems,
which are hierarchical decision making problems with two
decision makers (DMs) who are noncooperative. The DM who
has priority on the order of decision is called leader. On the
other hand, the DM who makes a decision after the leader does
is called follower. The Stackelberg solution is one of reasonable
solutions of two-level programming problems, in which the
leader makes a decision to optimize his/her objective function
under the assumption that the follower makes a decision to
optimize his/her objective function for a given decision of the
leader.
There have been proposed the computational methods for
Stackelberg solution, such as the method of enumerating the
endpoints in the feasible region [5], the methods of solving
a single-level problem of the leader which includes the con-
straints with respect to optimality conditions of the follower’s
problem [9], [3], [2], [4], and the method of solving the
reformulate problem with penalty in the objective function of
the leader’s problem so as to satisfy the optimality condition
of the follower’s problem [17]. Since the two-level linear
programming problem to obtain Stackelberg solution is NP-
hard [16], computational methods using genetic algorithms [1]
were developed for large-scale problems�Moreover, two-level
programming problems with 0-1 or integer decision variables
were investigated to deal with facility location problems or
budget drafting problems [13]�
In previous studies, the coefficients in the formulated problems
are constant. However, in real-world decision making, they
are not constant but uncertain. For example, the profit per
unit product often depends on economic conditions or weather
conditions. In such a case, the coefficients in the problems
are represented by random variables. Therefore, we consider

two-level linear programming problem with random variable
coefficients.
Stochastic programming was developed as mathematical pro-
gramming under stochastic environments. There are several
decision making approaches and models. Dantzig discussed
two-stage problems [8]. Charnes and Cooper considered chance
constrained programming [6], including E-model, V-model and
P-model [7]�E-model is the most basic model which is used
to optimize the mean of the objective function value. V-model
is useful for a decision maker who takes account of risk, the
variance of the objective function value. P-model is used to
maximize the probability that the objective function value is
better than or equals to a given aspiration level. On the other
hand, the aspiration level is optimized in another model [10],
[11]. We call the model F-model after the term of fractile used
in the literature [10]�
In this paper, we shall consider two-level programming prob-
lems with random variable coefficients, which has been yet
to be investigated. We shall construct stochastic two-level
programming models based on E-model and on V-model in
stochastic programming, i.e., Two-Level Expectation optimiza-
tion Model (TLE-model) and Two-level Variance minimization
Model (TLV-model). The purpose of this article is to provide
useful decision making models for the leader.
This paper is organized as follows: In the next section, we
formulate stochastic two-level programming problems and pro-
pose two decision making models which take account of mean
or variance of objective function values. In addition, we show
that the original problem involving randomness is transformed
into a deterministic equivalent problem. Section 3 develops the
exact solution method for obtaining the Stackelberg solution to
the problem based on TLV-model. In Section 4, we provide a
numerical example to examine the properties of the solutions
corresponding to the proposed models. Finally, we conclude
this paper and discuss the future research.

II. TWO-LEVEL STOCHASTIC PROGRAMMING PROBLEMS

A. Problem formulation

Let ���
��

be a decision variable column vector of the
leader and ���

��
that of the follower. Then we consider
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the following two-level linear programming problem:

min� ��������������	��
��
�� ������
min
� ��������������	��

s. t. ����������
��0���0�

��������
�������

(1)

where �������and �������are the objective function of the
leader and that of the follower, respectively.

���and
���are ��-

dimensional row vector of random variable coefficients, and�	�and
�	�are ��-dimensional row vector of random variable

coefficients. �� and �� are ���� and ���� coefficient
matrices, respectively, and

��
is an �-dimensional row vector.

Since problem (1) includes random variables in the right-hand
side of constraints, we take a chance constrained programming
approach [6] to the problem�This means that the constraint
involving random variables is satisfied at more than a given
probability level. Let �� be the probability level for the  th
constraint. Then chance constraints are represented as follows:

Pr!�����������"�#����  �$�%%% ��� (2)

where ���, ���and
�"� are the coefficients of the  th constraint.

Let &��'�be the distribution function of the random variable�"�. Then, since Pr!�����������"�#�$(&�����������,
inequality (2) is rewritten as &������������$(��. Let)�*+,be the maximum value of 'satisfying '�&*��$(���.
Then from the monotonicity of the distribution, inequality (2)
is rewritten as

����������)�*+,�  �$�%%%��% (3)

Equivalently, it follows that

��������-�*+� (4)

where
-�*+��)�*+��%%% �)�*+.�/ and the superscript

index 0denotes transposition.
Consequently, problem (1) is transformed into the following
problem with deterministic constraints:

min� ��������������	��
��
�� ������
min
� ���������������	���

s. t. ��������-�*+
��0���0%

�������
������

(5)

B. Two-level stochastic programming models

In this section, we propose two decision making models for
two-level stochastic programming problems, i.e., Two-Level
Expectation optimization Model (TLE-model) and Two-level
Variance minimization Model (TLV-model), which are con-
structed based on E-model and V-model in stochastic program-
ming [7], respectively�E-model is used to optimize the mean
of the objective functions of the leader and follower. Then

problem (5) is transformed into the following deterministic
problem:

min� 12������	��3�45���46��
��
�� ������
min
� 12������	��3�45���46��

s. t. ��������-�*+
��0���0�

�������
������

(6)

where 1273
denotes the mean of

7
.
�45��46��and

�45��46��
are mean vectors of

������	��and
������	��, respectively.

Since (6) is regarded as a usual two-level linear programming
problem, a Stackelberg solution of problem (6) is obtained by
using existing solution methods [9], [3], [2], [5], [4], [17].
It should be noted here that problem (6) does not take account
of risk or dispersion of objective function values. V-model
in stochastic programming is especially useful for a decision
maker who attaches importance to risk or the variance of the
objective function. Therefore, we propose TLV-model which is
used to minimize the variance of the objective function under
the condition that the mean is better than some given satisficing
level. The problem based on TLV-model is formulated as
follows:

min� 89:2������	��3�
;�
�

</
8�

;�
�

<

��
�� ������

min
� 89:2������	��3�

;�
�

</
8�

;�
�

<
s. t. ��������-�*+45���46���=�45���46���=�
��0���0�

��������������
�������������

(7)

where 89:273 denotes the variance of
7

. 8� and 8� are
variance-covariance matrices of

������	��and
������	��, respec-

tively. Without loss of generality, let us assume that 8� and8� are positive-definite.
=� and

=� denote the satisficing
levels of objective function values for the leader and follower,
respectively.

III. COMPUTATIONAL METHOD FOR STACKELBERG

SOLUTION OF V-MODEL

Suppose that the leader has made a decision >�. Then, the
rational response of the follower is an optimal solution �of
the following problem:

min 89:2���>���	��3�
;>�
�

</
8�

;>�
�

<
s. t. ��>������-�*+45�>��46���=�45�>��46���=�
�
�

0%

��������
�������

(8)

Let ?���be a set of rational response of the follower, i.e., a
set of optimal solutions �of problem (8). Then a Stackelberg
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solution is an optimal solution
�����of the following problem:

min 89:2������	��3�
;�
�

</
8�

;�
�

<
s. t. ��?���������������
��0���0%

������
�����

(9)

For simplicity, we use coefficient matrices ���, ��� and a
coefficient vector

��
instead of ��, ��, 45�, 46�, 45�, 46�,-�*+,

=�and
=� in problem (8).

Theorem 1: Without loss of generality, ?���is a singleton.
Proof: Since 8�is positive-definite, the objective function

of problem (8) is strictly convex. Moreover, the constraints
of the problem are linear. This means that problem (8) is a
convex programming problem where the objective function is
strictly convex. Therefore, the optimal solution of the problem
is unique. Consequently, ?���consists of a single element.

Since problem (8) is convex programming,��?���, which is
a condition of rational response in problem (9), is replaced by
the Kuhn-Tucker condition. Let �

�
be a decision of the leader.

Then, the Lagrange function is

��
����������

;��
�

</
8�

;��
�

<
�������������(���(�� (10)

where
�

and �are Lagrange multiplier vectors. Therefore, the
Kuhn-Tucker condition is

�
���
�	�
������
��

������
����

�	����
������
���*����������(�����  �$�%%%��� (11)

����������(���
0 (12)������������(���������� (13)

�
�

0���
0���

0� (14)

where ������ is an  th column vector of ���.
The rational response ��?��� is replaced by the Kuhn-
Tucker condition (11)–(14). Then we obtain the following
quadratic programming problem with linear complementarity
constraints:

min 89:2������	��3�
;�
�

</
8�

;�
�

<

s. t.
�
���
�	�
������
���

��������
�	����
������
���*����������(�����  �$�%%% ������������(���

0�����������(����������
��0���0���

0���
0%

�������������
������������

(15)

Since problem (15) is not convex, an optimal solution of the
problem is not obtained by using usual convex programming

techniques. However, when eliminating the linear complemen-
tarity constraints in problem (15), it becomes a usual quadratic
programming problem with linear constraints.
Bard and Moore [4] considered a solution algorithm for two-
level linear programming problems, which is based on branch-
and-bound method. We extend their algorithm to solve problem
(15), which applies the branch-and-bound method to linear
complementarity constraints and use quadratic programming
techniques [18], [12] for solving the subproblems.
Now we shall construct the algorithm for obtaining a Stackel-
berg solution of problem (15).
Let ��!$�%%% �������#be an index set of the linear
complementarity constraints. Let ��, �

��, �*�, ���and ��be
index sets of the �th subproblem in a tree diagram. Let us
assume that �8 is a provisional value.
��denotes an index set of linear complementarity constraints
which satisfies the condition that a Lagrange multiplier is 0
or that we have equality of the corresponding linear constraint
in the �th subproblem. �

�� denotes a subset of ��where the
Lagrange multiplier equals 0. �*� denotes a subset of ��where
we have equality on the constraint of the original problem. ���
denotes an index set not in ��. �� is an index set of paths
in a tree diagram. �5 denotes the current solution. Then, the
following is an algorithm to obtain Stackelberg solutions of the
problems based on TLV-model.

An algorithm to obtain Stackelberg solutions

Step 0 Set ���, �����
, �*���

, �����and �8��.
Step 1 Let us have equality on the linear complementarity

constraint in �
�� or �*�, or set the corresponding

Lagrange multiplier to 0. Solve the problems which
are obtained by eliminating constraints of problem
(15) for each subproblem. If the subproblem is not
feasible, then go to Step 5. Otherwise, set ����$
and �5���������������.

Step 2 If 89:2�������	���3��8, then go to Step 5.
Step 3 If all the linear complementarity constraints are satis-

fied, then go to Step 4. Otherwise, set �
�� ������ ,

��������  such that the amount of violation of linear
complementarity constraint is largest, �*� ���*�, and
return to Step 1.

Step 4 Set �8 ��89:2�������	���3.
Step 5 If there is no nonexplored node, then go to Step 6.

Otherwise, go to the nearest nonexplored node and
update ��, �

��, �*�, ���and ��, and return to Step
1.

Step 6 If �8��, then terminate the algorithm, and output
”nonfeasible”. Otherwise, output the solution corre-
sponding to the current �8as a Stackelberg solution.

IV. NUMERICAL EXAMPLE

Let us consider a simple stochastic two-level linear program-
ming problem with 5 constraints, in which both the leader and
the follower have only the one decision variable, repectively.
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The problem is formulated as follows:

min� �����������������
where �solves
min� �����������������
s. t. (������"�� $��(���"�

������"��������"�
�������"����������

����������
���������

(16)

where mean of random variables are shown as in Table I.
Variance-covariance matrices of

���������and
���������are given

as

8��
;� $$ �

<� 8��
;$ ($($ �

<%
Let us assume that all the right-hand side constant of the
constraints are normal random variables. Table II shows mean
and variance of the random variables, and the satisficing
probability levels for the two DMs.

TABLE I

RANDOM VARIABLE COEFFICIENTS OF THE OBJECTIVE FUNCTIONS

coefficient 	
� 	�� 	

 	�

mean ���� ���� ��� ���

TABLE II

RANDOM VARIABLE COEFFICIENTS OF THE CONSTRAINTS

coefficient 	�� 	�
 	�� 	�� 	��
mean ����� ������ ����� ����� �����

variance ��� ���� ��� ��� ����
probability

���� ���� ���� ���� ����

Following the decision making procedure of the proposed
model in the previous section, problem (16) is reformulated
as follows:

min�
�� ��

;� $$ �
<;�
�
<

where �solves

min�
�� ��

;$ ($($ �
<;�
�
<

s. t. (����� !� $��(��$$�
(��(��($"� (�(���($#(��(���(�"� (��(���(�$������������ ����

��������������
�������������

(17)

where (��(���(�$and
�������are the constraints of

the leader and follower with respect to the mean of objective
function values.
Problem (17) is transformed into the following the usual single-
level quadratic programming problem with linear complemen-

tarity constraints:

min
�� ��

;� $$ �
<;�
�
<

s. t. (���$����$�($�($�(�$�(�$�(�$%�$&(���
(����� !� $��(��$$�
(��(��($"� (�(���($#(��(���(�"� ��������(��(���(�$
$��(����( !���
$��$��(�($$����
$��(��(��$"���
$��(�(���$#���
$��(��(����"���
$%�(��(��(�$���
$&������(�����
����
��������$����  �$�%%% �!
���%

��������������������������������
�������������������������������

(18)

Fig. 1 shows both the feasible region and the Stackel-
berg solutions of the proposed models. The white circle at�#%$��!��%'''"�illustrates the Stackelberg solution to problem
(17), which is obtained based on TLV-model. The black circle
at
�!� �indicates the Stackelberg solution when eliminating the

constraints with respect to the mean of the objective function
value in problem (17). The black square at

�$�$��shows the
Stackelberg solution to the problem based on TLE-model.

Fig. 1. The feasible region and the Stackelberg solutions

It is observed from Table III that the mean of the objective
function for TLE-model is not much better than that for TLV-
model. On the other hand, as for the variance of the objective
function value, TLE-model is by far worse than TLV-model.
Therefore, we conclude that there are cases where TLV-model
is especially useful for decision makers who take account of
risk.
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TABLE III

THE STACKELBERG SOLUTIONS OF THE PROPOSED MODEL

model solution
mean of

the leader
mean of

the follower
variance of
the leader

variance of
the follower

TLV-model ����������� ��� 17 266.94 240.25
TLV-model

without mean ����� ��� 18 202 89

TLE-model ������ ��� 18 802 1505

V. CONCLUSION

In this paper, we have considered a stochastic two-level pro-
gramming problem to deal with hierarchical decision making
problems under uncertainty. We have proposed TLE-model and
TLV-model to take account of mean and risk, respectively. Our
main contribution is to construct the exact solution method
for obtaining an optimal solution of the problem based on
TLV-model, which consists of combine use of a quadratic
programming technique and the branch-and-bound method.
This owes to the fact that the rational response set in TLV-
model is necessarily unique without loss of generality, which
has been proven in Theorem 1.
In the future, we will consider other decision making models
based on P-model and on F-model.
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