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Abstract- In this paper we address the problem
of finding well distributed nondominated points for
an MOLP. We propose a method which combines
the global shooting and normal boundary intersec-
tion methods. It overcomes the limitation of normal
boundary intersection method that parts of the non-
dominated set may be missed. We prove that this
method produces evenly distributed nondominated
points. Moreover, the coverage error and the unifor-
mity level can be measured. Finally, we apply this
method to an optimization problem in radiation ther-
apy and show results for some clinical cases.

1 INTRODUCTION

The goal of multiple objective optimization is to
simultaneously minimize p ≥ 2 objectives. The
objectives are conflicting and a feasible solution
optimizing all the objectives simultaneously does
not exist. Therefore, the purpose of multiobjective
optimization is to obtain the nondominated set, i.e.,
the collection of all nondominated points in objec-
tive space. A nondominated point corresponds to
an efficient solution in decision space. An effi-
cient solution is a feasible solution for which an
improvement in one objective will always lead to a
deterioration in at least one of the other objectives.
The nondominated set conveys trade-off informa-
tion to a decision maker (DM) who prefers less to
more in each objective. In this paper, we focus on
multiobjective linear programming problems.

For a decision maker, it is nearly impossible to
study the infinite set of nondominated points to
identify the most preferred solution. A discrete
representation of the nondominated set by finitely
many distinguishable points that cover the whole
nondominated set simplifies this task. The deci-

sion maker can interactively navigate through the
nondominated points to choose the most preferred
solution. Therefore, it is of interest to find a good
discrete representative subset of the nondominated
set.

In Section 2 and 3, we review quality attributes
of discrete representations and summarize current
methods for computing discrete representations of
the nondominated set. In Section 4, we pro-
pose a method which combines the global shooting
method [2] and the normal boundary intersection
(NBI) method [3]. We give an example that shows
that the NBI method may miss parts of the non-
dominated set if p ≥ 3 objectives are present. We
then analyse our proposed method and show that
the obtained points are evenly distributed and that
the quality of the representation in terms of cov-
erage and uniformity can be guaranteed. Neither
the global shooting method, nor the normal bound-
ary intersection method have this property. In Sec-
tion 5, we apply the proposed method to a radia-
tion therapy treatment planning problem. The re-
sults we obtain for some clinical cases illustrate the
quality of our method.

2 DISCRETE REPRESENTATIONS OF SETS

In this section, let Z ⊂ R
p be a set and let R ⊂

Z be a finite subset. Sayin [11] defines coverage,
uniformity, and cardinality as the three attributes
of quality of discrete representations. According to
these three attributes, a good representation needs
to contain a reasonable number of points, should
not miss large portions of the nondominated set,
and should not contain points that are very close
to each other.

Moreover, Sayin proposes measures to quantify
these attributes. The number of points contained
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in a representation is used to measure the cardinal-
ity. The coverage error ε and uniformity level δ are
defined as follows.

Definition 1. Let ε ≥ 0 be a real number and d be
a metric. R is called a dε-representation of Z if for
any z ∈ Z , there exists r ∈ R such that d(z, r) ≤ ε.

Definition 2. Let R be a dε-representation of Z . R
is called a δ-uniform dε-representation if

minr1,r2∈R,r1 �=r2{d(r1, r2)} ≥ δ.

The coverage error ε is a parameter that signifies
how precisely the set Z is being represented by the
discrete representative subset R, it can be mathe-
matical written as:

ε = max
z∈Z

min
r∈R

d(z, r).

How well a fixed z ∈ Z is covered is deter-
mined by the closest point to z in the representation
R. For the entire set Z , the coverage error depends
on how well an arbitrary element of Z is covered.
Therefore, the coverage error ε is equal to the max-
imum of coverage error for individual points in Z .

Similarly, the uniformity of a representation can
be measured by the distance between a pair of clos-
est points of R. Thus it can be expressed as

δ = min
r1,r2∈R

d(r1, r2).

For a discrete representation, a small number
of points, low coverage error, and high uniformity
level are desirable.

3 EXISTING METHODS

3.1 Preliminaries

Consider a multiple objective linear program-
ming problem (MOLP),

min {Cx : x ∈ X}, (1)

where C ∈ R
p×n is the p × n matrix whose rows

ck, k = 1, 2, . . . , p, are the coefficients of p linear
functions < ck, x >, k = 1, 2, . . . , p and X ⊆ R

n

is a nonempty compact polyhedral set of feasible
solutions. The feasible set Y in objective space is
defined by

Y = {Cx : x ∈ X}. (2)

Rockafellar [9] has shown that the image Y of a
convex polyhedron X by a linear map C is also a
convex polyhedron. Y is of course also compact.

Definition 3. x0 is an efficient solution to problem
(1), if x0 ∈ X and there exists no x ∈ X such that
Cx ≤ Cx0 and Cx �= Cx0. The set of all efficient
solutions of problem (1) will be denoted by XE ,
it is called the efficient set in decision space. Cor-
respondingly, y0 = Cx0 is called a nondominated
point and YN = {Cx : x ∈ XE} is the nondomi-
nated set in objective space for problem (1).

Definition 4. A feasible solution x̂ ∈ X is called
weakly efficient if there is no x ∈ X such that
Cx < Cx̂, i.e. ckx < ckx̂, for all k = 1, 2, . . . , p.
The point ŷ = Cx̂ is then called weakly nondomi-
nated.

The following theorem is fundamental in mul-
tiple objective linear programming. The reader is
referred to [4] for a proof.

Theorem 5. A feasible solution x0 ∈ X is an effi-
cient solution of the MOLP (1) if and only if there
exists a λ ∈ R

p
> such that

λT Cx0 ≤ λT Cx (3)

for all x ∈ X .

Definition 6. Let F ⊂ Y be a face of Y . F is
called nondominated face, if F ⊂ YN . F is called
maximal nondominated face if it is nondominated
and there is no other nondominated face that con-
tains F .

3.2 Survey of Existing Methods

The nondominated set of an MOLP is the union
of the (maximal) nondominated faces and these
nondominated faces are polyhedral due to Y being
a convex polytope. Therefore, finding discrete rep-
resentations of YN is equivalent to finding discrete
representations of a union of polyhedra.

There are two groups of methods for finding rep-
resentations of the nondominated set, one is based
on the knowledge of XE and the other works with-
out the knowledge of XE .

Based on the knowledge of XE , Sayin [12] pro-
poses a procedure to find discrete representations
with specified coverage errors. The procedure also
specifies the uniformity level of the representa-
tions. Knowledge of XE can, however, not be as-
sumed when solving an MOLP.

Most of the methods work without the knowl-
edge of XE .

Benson and Sayin [2] propose a global shoot-
ing method to find a representation of the nondom-
inated set. This method has the coverage property,
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but it can not directly control the uniformity of the
representations it generates.

Das and Dennis [3] propose a normal boundary
intersection method for finding several nondomi-
nated points for a general multiple objective non-
linear programming problem. It uses the convex
hull of the individual minima (CHIM) as reference
plane. Equidistant reference points are placed on
the CHIM and for each reference point a corre-
sponding nondominated point is found by solving a
scalar optimization problem. This method can pro-
duce evenly distributed nondominated points, how-
ever, some parts of the nondominated set may be
missed, a problem caused by the use of the CHIM.
We will illustrate this limitation in Section 3.5.

Based on the NBI method, Messac, Ismail-
Yahaya and Mattson [7] propose the normalized
normal constraint (NC) method. NC works in a
normalized objective space and uses an inequality
constraint to reduce the feasible region in objective
space. However, it has the same problem as the
NBI method because it uses the CHIM as reference
plane. Realizing this limitation of using the CHIM,
Messac and Mattson [8] improve the NC method by
using an extended CHIM instead of CHIM as ref-
erence plane. They use examples to illustrate that
their method provides an even representation of the
entire nondominated set but they do not give any
mathematical proof.

Analogously to [8] we revise the NBI method in
a way that guarantees coverage of the whole non-
dominated set and that allows us to prove a unifor-
mity guarantee.

We emphasize that representation is different
from approximation of YN . While a representa-
tion R of YN is a finite set of points that must be
nondominated, an approximation of YN may be an
infinite or continuous set that has no intersection
with YN . Quality measures for approximations are
quite different from those of representations [6].
While there are many approximation methods for
multiobjective programming (the reader is referred
to [10] for a survey) that compute some nondom-
inated points, they do not aim at finding evenly
distributed nondominated points and may yield bad
representations in terms of coverage error and uni-
formity. Approximation of YN is not considered in
this paper.

3.3 The Global Shooting Method

Define Y ′ = {y ∈ R
p : Cx ≤ y ≤

ŷ for some x ∈ X}, where ŷ is chosen as a point
so that for all y ∈ YN we have y ≤ ŷ. E.g., ŷ

can be chosen as the anti ideal point yAI , yAI
k =

max{yk, y ∈ Y }, k = 1, . . . , p. Y ′ has dimension
p and that Y ′ and Y have the same nondominated
set [1].

First, a big simplex S is constructed that con-
tains Y ′ and a subsimplex Ŝ of S is taken as the
reference plane. Equidistant reference points are
placed on Ŝ and the method “shoots” from ŷ to-
wards each reference point as far as possible while
remaining in Y ′. This is achieved by solving an
LP. Thus a set of points on the boundary of Y ′ is
calculated. Each reference point corresponds to a
boundary point of Y ′, but not every such point is
nondominated. Therefore it needs to be checked
whether the intersection point is dominated or not
by solving another LP.

Fig. 1 illustrates the global shooting method.
Two weakly nondominated points of Y ′ are found.
Those are shown as triangles.

The global shooting method is simple and com-
putationally tractable for the MOLP case. It guar-
antees coverage because it puts equidistant refer-
ence points on Ŝ and YN ⊂ Ŝ + R

p
�. However, the

uniformity of the discrete representative set can not
be controlled directly.

2y

Y

1y

AIy
S 'Y

2y

Y

1y

AIy
S 'Y

Fig. 1: Solutions obtained by the global shooting method.

3.4 The Normal Boundary Intersection Method

Consider the MOLP problem (1). Assume that
individual minima of the functions < ck, x > over
X are attained at xk for k = 1, 2, . . . , p. Let
yk = Cxk and let yI = (c1x1, c2x2, . . . , cpxp)T

be the ideal point. The points y1, . . . , yp define the
convex hull of the individual minima (CHIM).

A set of equidistant reference points on the
CHIM is generated and, for each of them, a NBI
subproblem is solved to find the farthest point on
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the boundary of Y along the normal n̂ of the CHIM
pointing toward the ideal point. The NBI subprob-
lem for a given reference point q is as follows:

max{t : q + tn̂ ∈ Y ; t ≥ 0}. (4)

Fig. 2 shows how the NBI method works for
the same MOLP example with two objectives as in
Fig. 1. For this example, all the points obtained are
nondominated and no part of the nondominated set
is overlooked. However, for problems with more
than two objectives, even if the normal direction of
the CHIM is negative, the solution method may still
overlook a portion of the nondominated set. These
overlooked points are likely near the periphery of
the nondominated set [3]. If n̂ is not negative, the
NBI method may not find any nondominated points
outside the CHIM. In Section 3.5, we will show an
example to see why CHIM based algorithms do not
work in some cases.

Although Das and Dennis [3] claim that this
method does compute evenly distributed nondom-
inated points, they do not provide bounds on the
spacing of the resulting points, which means the
uniformity of the discrete representative is not mea-
sured.

2y

Y

1y

1y

2yIy

2y

Y

1y

1y

2yIy

Fig. 2: Solutions obtained by the NBI method.

3.5 The Limitation of CHIM Based Algorithms

Consider a the linear relaxation of an assign-
ment problem with three objectives. The cost ma-
trices of the three objectives are

c1 =

⎛
⎜⎜⎝

3 6 4 5
2 3 5 4
3 5 4 2
4 5 3 6

⎞
⎟⎟⎠ ,

c2 =

⎛
⎜⎜⎝

2 3 5 4
5 3 4 3
5 2 6 4
4 5 2 5

⎞
⎟⎟⎠ ,

c3 =

⎛
⎜⎜⎝

4 2 4 2
4 2 4 6
4 2 6 3
2 4 5 3

⎞
⎟⎟⎠ .

Define Y ′ = {y ∈ R
3 : Cx ≤ y ≤

ŷ for some x ∈ X} with ŷ = (21, 21, 21), which
is greater than the anti ideal point (20, 20, 20).

In Fig. 3, the four circles which represent
points (11, 11, 14), (19, 14, 10), (15, 9, 17) and
(13, 16, 11) are the nondominated extreme points
of Y ′. The nondominated set consists of a line seg-
ment from point (11, 11, 14) to point (19, 14, 10)
and a face which is the convex hull of (11, 11, 14),
(19, 14, 10) and (13, 16, 11).

The three dots in Fig. 3 represent the (unique)
individual minima of the three objectives, y 1 =
(11, 11, 14), y2 = (15, 9, 17), y3 = (19, 14, 10).
The normal of the CHIM is n̂ = (1,−40,−28),
which is not positive. Placing reference points on
the CHIM, we can not find nondominated points
on the face defined by (11, 11, 14), (19, 14, 10)
and (13, 16, 11). Therefore, for this example, the
CHIM based algorithms NBI and NC do not work
very well.

10

15

20

25

0
10

20
30
10

12

14

16

18

20

22

y
1y

2

y 3

y1

y2

y3

Fig. 3: Y ′ and the nondominated set YN .

4 REVISED NBI METHOD

The global shooting method has the advantage
of guaranteeing coverage, and the NBI method can
produce evenly distributed nondominated points.
Hence, we propose a revised NBI method which
combines these two methods. This revised NBI
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method has the advantage of guaranteeing cover-
age and uniformity.

Instead of the CHIM, the revised NBI method
uses the subsimplex Ŝ of the simplex S that is
used in global shooting method [2] as the reference
plane. By doing this, we overcome the limitations
of the NBI method, i.e, we have the property of
coverage. By solving subproblems similar to (4),
we obtain evenly spaced nondominated points.

Thus, the revised normal boundary intersection
method involves choosing a reference plane, plac-
ing equidistant reference points on the plane and
computing the intersection point of the normal of
the plane through reference points and the bound-
ary of Y . At last, we need to check if the intersec-
tion point is nondominated or not because not every
intersection point is nondominated. In the follow-
ing paragraphs, we explain the details of the revised
NBI method.

Reference Plane. Here we use the subsimplex
Ŝ of the simplex S used in the global shooting
method [2] as the reference plane.

Let

β = min{< e, y >: y ∈ Y }, (5)

where e ∈ R
p is a vector in which each entry is 1.

Define p + 1 points vk ∈ R
p, k = 0, 1, . . . , p.

Let v0 = yAI and, for k = 1, 2, . . . , p, let

vk
l =

{
yAI

l , if l �= k,
β + yk− < e, v0 >, if l = k,

(6)

l = 1, 2, . . . , p. Then the convex hull S of {vk :
k = 0, 1, . . . , p} is a p-dimensional simplex, and S
contains Y , as shown by Benson and Sayin [2].

The subsimplex of S given by the convex hull Ŝ
of {vk : k = 1, 2, . . . , p} is the reference plane. It
is a supporting hyperplane of YN with normal e.

Equidistant Points on the Reference Plane. We
place equidistant reference points on Ŝ. For p = 2,
Ŝ is a line segment. For p = 3, Ŝ is an equilateral
triangle in the three dimensional objective space.
Therefore, we can use a triangular lattice to pro-
duce the equidistant points, see Fig. 4.

In the general case of p objectives, Ŝ is a p−1 di-
mensional simplex with equal edge length and with
the normal direction e according to the construction
of S. The ith reference point q i is given by

qi =
p∑

k=1

αi
kvk

dsdsds

Fig. 4: Equidistant reference points on the reference plane.

where 0 ≤ αi
k ≤ 1 and

∑p
k=1 αi

k = 1. By vary-
ing αk from 0 to 1 with a fixed increment of ηk

an evenly distributed set of points on the reference
plane can be generated. For the three objective case
in Fig. 4 ηk = 0.25.

Computing the Intersection Points and Check-
ing Nondominance. Given a reference point q
on Ŝ, the revised NBI subproblem searches for the
closest point to the reference point on the boundary
of Y along the normal direction e. The revised NBI
subproblem is as follows:

min{t : q + te ∈ Y ; t ≥ 0}. (7)

2y

Y

1y

AIy

S

2y

Y

1y

AIy

S

Fig. 5: Solutions obtained in the revised NBI method.

There are three scenarios for the solution of (7),
as we can see in Fig. 5 (the same example as Fig.
1 and Fig. 2).

1. There is no intersection between the normal
and the boundary of Y .

2. The normal and the boundary of Y intersect,
but the intersection point is dominated.

3. The intersection point is nondominated.
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If LP (7) is infeasible, then there is no intersec-
tion between the normal and the boundary of Y ,
else there is an intersection point. Not every inter-
section point is a nondominated point. Therefore,
we need to check whether it is dominated or not.

A simple nondomination filter can be used to
exclude some of the dominated points [7]. This
method has the advantage of being fast, but it may
accept some of the dominated points which are near
the boundary of YN as nondominated.

An exact way to check nondominance is accord-
ing to the following theorem.

Theorem 7. Assume that λ ∈ R
p
> and ȳ ∈ Y .

Then ȳ belongs to YN if and only if ȳ is an optimal
solution to the the following problem

min{< λ, y >: y ≤ ȳ; y ∈ Y }. (8)

The reader is referred to [4] for a proof. By solv-
ing (8), we can get rid of all the dominated points
that remain after filtering. In our implementation
we have used λ = e.

4.1 Analysis of the Nondominated Points

Given a nondominated face, the angle between
the reference plane and the plane of the nondomi-
nated face can be calculated as follows:

cos θ =
< m, n >

||m|| ||n|| . (9)

Here, m ∈ R
p, n ∈ R

p are the normal vector of the
reference plane and the plane of the nondominated
face, respectively.

Because the normal m of the reference plane is
equal to e ∈ R

p (9) can be written as:

cos θ =
n1 + · · · + np√

(n1)2 + · · · + (np)2
√

p
. (10)

According to Theorem 5 and Definition 6, a set
F ∈ R

p is a face of YN of the MOLP (1) if and
only if F equals the optimal solution set Y ∗(λ) of
the problem

min{< λ, y >: y ∈ Y } (11)

for some λ ∈ R
p
>. Therefore, we know n ∈ R

p
>

and we have

n1 + · · · + np√
(n1)2 + · · · + (np)2

√
p

>
n1 + · · · + np√

(n1 + · · · + np)
2√p

=
1√
p
. (12)

When m = kn, k �= 0, we have cos θ = 1. So the
range of cos θ is

1√
p

< cos θ ≤ 1 (13)

and θ is in the range of 0 ≤ θ < arccos 1√
p .

If p = 2, 0 ≤ θ < π
4 . If p = 3, 0 ≤ θ <

arccos
√

3
3 . We can see that as p increases, the

range of angles between the reference plane and the
plane of a nondominated face can increase.

Suppose we have equidistant reference points
with distance ds on the reference plane. This im-
plies that the distance between the nondominated
points can be calculated as ds/ cos θ.

Fig. 6 shows an example with two objectives
(p = 2). The nondominated faces are line seg-
ments. F1 is a nondominated face, while F2 is
a weakly nondominated face. The biggest angle
between the nondominated face and the reference
plane is approaching π

4 . The angle between the ref-
erence plane and the weakly nondominated face is
θ = π

4 . The distance between the nondominated
points obtained by the revised NBI method is be-
tween ds and

√
2ds.

ds

αcos/dsd =1

α

θ

θcos/dsd =2

1d

2d

1F

2F

2y

Y

1y

ds

αcos/dsd =1

α

θ

θcos/dsd =2

1d

2d

1F

2F

2y

Y

1y

Fig. 6: Distance of nondominated points.

For p objectives, the distance between the non-
dominated points is ds ≤ d <

√
pds. As p in-

creases, the range of the distance d between the rep-
resentative nondominated points on YN increases.

We have the following result.

Theorem 8. Let all maximal nondominated faces
of Y have dimension p−1. Then the representative
subset R obtained by the revised NBI method is a
ds-uniform d√

pds/2-representation of YN .

This result quantifies the quality of representa-
tion in terms of coverage and uniformity. The pa-
rameter of the method is the distance ds between
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reference points. As ds decreases, the cardinality
of R increases, the coverage error decreases, and
the uniformity decreases.

If the number of objectives is not very big, then
we think the revised NBI method finds good qual-
ity representations. Moreover, to the best of our
knowledge, this is the first method that allows the
computation of a discrete representative set with
guaranteed coverage and uniformity measures.

5 APPLICATION

We apply the revised normal boundary inter-
section method to the beam intensity optimization
problem of radiation therapy planning.

The objectives of radiation therapy are to de-
liver a high uniform dose to the planning target,
while at the same time sparing as much as possi-
ble to the surrounding normal tissues and organs
at risk. Given the number of beams and beam di-
rections, beam intensity optimization needs to de-
termine beam intensity profiles that yield the best
dose distribution under consideration of clinical
and physical constraints. Due to the conflicting ob-
jectives and properties of radiation, the beam in-
tensity optimization problem can be formulated as
an MOLP [5]. In this MOLP the objectives are to
minimize the maximum deviation α, β, γ of deliv-
ered dose from tumor lower bounds, from critical
organ upper bounds and from the normal tissue up-
per bounds, respectively.

Three clinical cases are used: an acoustic neu-
roma (AC), a prostate (PR) and a pancreatic lesion
(PL). They are ordered from simple to complex ac-
cording to the number of constraints and the num-
ber of variables.

In TABLE 1, we list the number of reference
points (RP), the number of intersection points be-
tween the normal and the boundary of Y (IP), the
number of nondominated points (NP), the distance
ds between reference points, and the computation
time (CPU) in seconds for calculating the nondom-
inated points for each case. For all three cases,
more than half of the reference points do not pro-
duce intersection points. No intersection means
that LP (7) is infeasible. Detecting infeasibility
is very simple, so the reference points that do not
yield intersection points do not contribute much to
the computation time. Moreover, we can see from
the prostate and pancreatic lesion cases in TABLE

1, that not every intersection point corresponds to
a nondominated point. Therefore, it is necessary to
check nondominance even though it takes time.

The computation time is related to the number

TABLE 1: DATA FOR THE APPLICATION PROBLEMS.

RP IP NP ds CPU
AC 378 72 72 1.04 56.3
PR 378 144 112 4.79 101.3
PL 378 145 129 3.31 523.9
AC 153 29 29 1.59 27.5
PR 153 62 48 7.30 44.5
PL 153 59 54 5.06 213.9

of reference points which corresponds to the num-
ber of LPs to be solved. Therefore, for the same
case, more reference points need more computation
time as we can see in TABLE 1.

We show the nondominated points of the three
clinical cases in Fig. 7 and 8. We can see from
these pictures that the nondominated points are
evenly distributed. The revised NBI method over-
comes the deficiency of the NBI method, i.e., the
calculated nondominated points cover the whole
nondominated set. As long as we have enough
equidistant points on the reference plane, the non-
dominated points produced will be a good rep-
resentation of the nondominated set according to
coverage, uniformity and cardinality, the three at-
tributes of discrete representation.

6 CONCLUSION

In this paper, we address the problem of pro-
ducing well distributed nondominated points for
an MOLP. A revised normal boundary intersection
method is proposed. By combining features of
the normal boundary intersection method and the
global shooting methods it overcomes the limita-
tion of CHIM based algorithms. This is the first
method for which quality guarantees for coverage
and uniformity have been proved. Moreover, nu-
merical results on intensity optimization problems
from radiotherapy treatment planning show that the
nondominated points are indeed evenly distributed
in practice. The issue of choosing a final solution
from amongst the discrete representation is an is-
sue that deserves further study. It is amenable to
the large variety of methods of multicriteria deci-
sion analysis.
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