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Abstract – This paper investigates the convergence paths, rate 

of convergence and the convergence half-space associated with a 

class of descent multi-objective optimization algorithms.  The 

first order descent algorithms are defined by maximizing the 

local objectives’ reductions which can be interpreted in either 

the primal space (parameters) or the dual space (objectives).  It 

is shown that the convergence paths are often aligned with a 

subset of the objectives gradients and that, in the limit, the 

convergence path is perpendicular to the local Pareto set.  

Similarities and differences are established for a range of p-

norm descent algorithms.  Bounds on the rate of convergence 

are established by considering the stability of first order 

learning rules.  In addition, it is shown that the multi-objective 

descent algorithms implicitly generate a half-space which 

defines a convergence condition for family of optimization 

algorithms.  Any procedure that generates updates that lie in 

this half-space will converge to the local Pareto set.  This can be 

used to motivate the development of second order algorithms. 

 
I. INTRODUCTION 

Any multi-objective optimization process, whether it is 

point-wise or population-based, is uniquely defined by the 

design parameters, the objectives and the set of constraints. 

For industrial design problems, the objectives typically 

include cost, performance, appearance and robustness 

measures.  Jointly minimizing each quantity is, in general, not 

possible as the objectives typically conflict close to optimal 

solutions.  In fact, Pareto optimality is sometimes referred to 

as “zero sum optimality”, as it is not possible to decrease an 

objective without increasing at least one other [4,5].  

There are many approaches to solving multi-objective 

optimization problems, including evolutionary algorithms 

where the aim is to approximate the complete Pareto set with 

a population of points, and the population tries to improve its 

overall fitness at each iteration using operators inspired by 

evolutionary concepts.  These techniques have been applied 

to difficult problems, large search space, discrete solution 

sets, categorical variables etc. with some success [4,5].  Other 

approaches have investigated how the optimal solution set 

can be iteratively calculated by finding (at least) one point on 

the local Pareto set and then spanning out from that point, 

calculating the exact solution [5].  This paper is mainly 

concerned with analyzing the convergence of point-wise 

optimization where the aim is to project a point onto the local 

Pareto set.  Population-based procedures can be analysed 

point-wise, or by taking statistical quantities [14] to analyze 

the average convergence of a set of points. 

The algorithms are derived from attempting to minimize 

the maximum change across all objectives at each iteration, 

for a fixed size parameter update, [2,3,8].  It has been shown 

that such a strategy converges to a locally Pareto optimal 

solution, and this paper investigates the properties of these 

descent trajectories.  It is shown that the descent trajectories 

are perpendicular to the tangent to the local Pareto set at the 

accumulation point, and this is equivalent to requiring that all 

objectives should be reduced equally at each iteration.  It also 

shows that every point on the boundary of the local Pareto set 

is the corresponding accumulation point of a descent 

trajectory, and is hence reachable.  These results are true for 

the complete set of p-norm steepest descent algorithms, as 

differences in their descent trajectories only appear far from 

the local Pareto set.  This work is then expanded to consider 

how orthogonal descent trajectories in the objective space and 

be constructed and how the theory can be expanded to handle 

diverse, rather than strict descent, trajectories.  It is shown 

that the local descent trajectories implicitly defines a local 

convergence half-space where so long as any diverse update 

lies in this half-space, convergence to the local Pareto set is 

guaranteed.  Simple, illustrative examples are used 

throughout the paper. 

 
II. DIRECTED MULTI-OBJECTIVE OPTIMIZATION 

ALGORITHMS 

In this section, the basic notation and concepts associated 

with directed multi-objective optimization and its 

convergence are reviewed. 

 
A. Multi-Objective Optimization 

The standard formulation for a multi-objective problem is 

of the form: 

 
min ( )

( )

( )

st =

≤

f x

g x 0

h x 0

 (1) 

The design parameters, x, lie in an n-dimensional space X, 

and are assumed to be continuous.  The objectives, f, are lie 

in an m-dimensional space F, and may represent raw 

measurements or transformed quantities.  In this paper, it is 

assumed that F is differentiable.  The constraints are specified 

by two vector functionals g() and h(), that represent the 

equality and inequality constraints, respectively.  The 

constraints represent sections of the design space that are not 

feasible or parts of the objective space that the design must 

beat, when the aim is to evolve rather than innovate a new 

design.  In this paper, constraints are not explicitly considered 

in the theory, although many of the results can be simply 

extended when the constraints are linear. 

The basic requirement of (1) is to jointly minimize f, which 

imposes a partial ordering on the set of potential solutions.  

One design x1 dominates a design x2 when: 

( ) ( )21 xfxf ≤         (2) 

and the vector comparison is taken element wise.  Strictly 

speaking, there should be at least one objective that is strictly 

less in value.  This can be written as  
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21 xx f≤            (3) 

When a design is globally Pareto optimal, there does not 

exist any other point that dominates it.  The set of all such 

points is the solution to (1).  The Pareto set is the set of all 

such optimal points in parameter space and the Pareto front 

is the set of all such points in objective space.  Like 

conventional single objective optimization, the Pareto set is 

invariant to positive linear transformations of the objectives. 

A point is locally Pareto optimal if (2) or (3) is satisfied in 

a local neighbourhood about that point.  The set of all such 

locally Pareto optimal points is a superset of the set of 

globally Pareto optimal points.  This paper is largely 

concerned with calculating locally Pareto optimal points, and 

then the globally Pareto optimal points can be found by 

performing the dominance test (2) on the complete set of 

locally optimal points [4,5,13]. 

 
B. Primal Descent Problem 

For a current candidate solution xk, the aim of a point-wise, 

iterative optimization process is to update it according to: 

1k k µ+ = +x x s          (4) 

where s is the n-dimensional search direction and µ is the step 
size.  This obviously has parallels with conventional (single 

objective) optimization theory [7], and when the (single) 

objective is continuously differentiable, a variety of 1st and 

2
nd
 order methods are used to specify the search direction and 

step size.  

So consider extending the 1
st
 order, single objective 

optimization process to the multi-objective case.  Assuming 

that the objectives are continuously differentiable, there are 

no constraints and it is required that the reduction in each 

objective at each iteration is maximal [13] (this implicitly 

defines a dynamic min/max scalarization on the objectives’ 

updates).  Then the aim is to calculate a multi-objective 

descent direction s which solves: 
2* * 1

2 2
( , ) argmin

Tst

α α

α

= +

≤

s s

J s 1
          (5) 

which is a convex, quadratic programming (QP) problem 

with linear inequality constraints [2,3,8].  Here the inequality 

constraints ensure that s is a multi-objective descent direction 

as long as α is negative, as T α∆ = ≤f J s 1  represents the 

local, 1
st
 order reduction in the objectives.  When α is 

negative, locally, the new point dominates the old one: 

1k k+ ≤fx x                    (6) 

The objective in Equation 5 simply normalizes the length of 

the search direction, whilst minimizing the largest change in 

the objectives. 

A number of properties about this steepest descent criterion 

can be shown [8]: 

• If x is locally Pareto optimal, then s∗(x) = 0, and α∗(x) 
= 0. 

• If x is not locally Pareto optimal, then α∗(x) < 0 and 
2

* *1
2 2

* *

( ) ( ) 0

( ) ( ) ( )
T

α

α

≤ − <

≤

x s x

J x s x 1 x

        (7) 

• The mappings x -> s∗(x) and x -> α∗(x) are continuous. 

which show that solving this constrained optimization 

problem will produce a vector descent direction.  In the 

following sections, the star superscript to denote the optimal 

value will be dropped, and s and α, will refer to their optimal 
values.  In [8] it is shown that this steepest descent procedure 

causes a point to converge to an accumulation point on the 

local Pareto set. 

Given that the parameter updates occur in the direction of 

the descent vector, s, the step size still needs to be 

determined.  As long as all the objectives are decreasing (not 

increasing), a line search can proceed along this direction and 

simply stop when one of the objectives starts to increase.  

Standard techniques can be used to automatically calculate an 

initial estimate of the step size, based on previous values [8]. 

Finally, it should be noted that it is possible to put 

preference/scaling information into the primal problem [3], 

by instead of specifying that all objectives should be reduced 

by the same amount, to require then to be reduced by ββββ: 

     

2* * 1
2 2

( , ) argmin

Tst

α α

α

= +

≤

s s

J s β
         (8) 

where ββββ is an m-dimensional vector containing the relative 
importance of each objective.  This work does not explicitly 

consider the problem of objective scaling [12], but this is 

important as Equation (6) implicitly assumes that the 

objectives are of a similar scale as the aim is to reduce them 

equally. 

 
C. Dual Descent Problem 

Instead of solving or analyzing the primal QP optimization 

sub-problem in Equation (5), consider the following 

Lagrangian: 

    1
2

( , , ) ( )T T TL α α α= + + −s λ s s λ J s 1          (9) 

where λλλλ>0000 is the m-dimensional vector of Lagrange 
multipliers.  This is solved when the KKT conditions are 

satisfied: 

      

1 0

(( ) ) 0 1,...,

T

T

j j

L

L

j m

α

λ α

∂
= − =

∂
∂
= + =

∂
− = ∀ =

≥

1 λ

s Jλ 0
s

J s

λ 0

       (10) 

Re-arranging, the following relationships are produced: 

      

1
T

= −

≥

=

s Jλ

λ 0

1 λ

       (11) 

so the multi-objective descent direction is lies in, or on the 

boundary of, the convex simplex generated by the individual 

(negative) gradients, as shown in Figure 1.  In this figure, the 

negative gradient simplex V is defined as: 

  V = {-Jλλλλ: λλλλ≥0, 1Tλλλλ=1} 
and, by definition, the search direction must lie on this 

simplex. 
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-g1 

x1 

x2 

s = -λ1g1-λ2g2 

-g2 

V 

 

Figure 1 A geometric interpretation of calculating a 

vector gradient by minimising the Euclidean norm within 

the convex hull of the individual gradients. 

 

Substituting these relationships into the primal sub-problem 

generates the dual QP problem [8]: 

                 

* 1
2argmin

1

T

T

st

=

≥

=

λ λJ Jλ

λ 0

1 λ

        (12) 

Again, as in the previous section, the star notation will be 

subsequently dropped. A simple interpretation of this is that 

the multi-objective descent s lies in the (negative) simplex 

defined by the individual columns of J (the individual 

gradients).  Another point to notice is that the solving either 

the primal or dual QP problem is a superset of a test for local 

Pareto optimality, so only one QP problem actually needs to 

be solved if the aim is to calculate a descent direction onto 

the Pareto front, but checking first that the design is not 

already Pareto optimal.  When a point is locally optimal, the 

solution to the dual problem will be Jλλλλ = 0.  Also, it should 
be noted that the Lagrange multipliers can be thought of as 

representing dynamic “scalarization weights”. The optimal 

values are a function of x, λλλλ(x), and because they multiply the 
functions’ derivatives, the procedure converges even when 

the Pareto front is concave.  Typically, static weights are used 

to explicitly set prior preferences about the desired 

accumulation point, and while these are generated 

dynamically by the algorithms, it is shown in Section III that 

these dynamic weights will uniquely specify a descent 

trajectory which implicitly specifies the accumulation point.  

Finally, by considering the linear inequality constraints in the 

primal QP problem, it can be easily seen that the negative 

multi-objective gradient always has a non-negative dot 

product with each of the individual gradient vectors, and so 

locally, each of the objectives will be non-increasing and the 

iterations will be locally dominant. 

When one (or more) of the Lagrange multipliers is zero, it 

means that that objective does not influence the calculation of 

s and the corresponding objective reduction is strictly less 

than α.  Typically, when a point is far from the Pareto set and 
the gradients are aligned but of differing magnitudes, many of 

the Lagrange multipliers will be zero.  However, as a point 

approaches the Pareto set, the gradient vectors become 

conflicting and all of the Lagrange multipliers will be strictly 

positive.  

Two important concepts arise from this work which will be 

used in evaluating the algorithms’ convergence properties.  

The multi-objective gradient, g, (MOG) is defined as: 

1
T

=

≥

=

g Jλ

λ 0

1 λ

 

where λλλλ solves Equation (12).  Obviously, for the multi-
objective, 2-norm, steepest descent algorithm the search 

direction is simply the negative gradient, although this will be 

relaxed later in the paper when other search directions are 

considered.  Obviously, ⊥g V  (which holds in the subspace 

defined by the non-zero Lagrange multipliers).  Also, the 

descent cone D is defined as the set of updates that locally 

reduce all the gradients.  It is defined in parameter space as 

the intersection of all the half-spaces, each of which 

corresponds to reducing one objective [2].  By definition, s 

must lie in D and when D is empty, the point must be locally 

Pareto optimal. 

 
D. Alternative p-norm updates 

As noted in [8], other p-norms could be used to bound the 

size of the parameter update when the min/max objective 

reduction is being calculated in (6), with two obvious 

candidates being the 1-norm and ∞-norm.  The (scaled) 

primal descent problems would be expressed as: 

1

min

1

T

α

α≤

=

J s 1

s

  

min

1

T

α

α

∞

≤

=

J s 1

s

      (13) 

where it has been assumed that the parameter update s is 

normalised to length 1, which is slightly different from the 2-

norm steepest descent algorithm described in Sections II.B 

and II.C.  Both can be expressed as more familiar Linear 

Programming (LP) problems: 

min

[ ]

1

T T

T

α

α− ≤

− ≤

=

J J z 1

z 0

1 z

 

min

T

α

α≤

≤

− ≤

J s 1

s 1

s 1

       (14) 

where z is a vector of length 2n defined by zi=si if si>0, zn+i=-

si if si<0 and zi=0 otherwise.  Many solvers are available for 

calculating these steepest descent directions and the 

convergence properties noted in Section II.B also hold for 

these alternative formulations, as well as the more general p-

norm measure. 

As with any LP algorithm, it is possible to express the 1-

norm and ∞-norm problems in their dual form.  However, in 

both of these cases, the number of linear inequality 

constraints is approximately m+2n, which is substantially 

larger than the 2-norm case and less insight is gained about 

the structure of the problem in dual space.  An analysis of the 

relative performance of these alternative steepest descent 

algorithms is performed in Section III.C.  It is also 

worthwhile noting that for these alternative p-norms, s will 
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not, in general, lie in the negative gradient simplex because 

its size is constrained to be 1, although the direction will lie 

in the descent cone D. 

 
III. CONVERGENCE OF 1ST ORDER DESCENT 

METHODS 

In [8] it was shown that with a suitable step size 

calculation, the 2-norm steepest descent method converged to 

an accumulation point on the local Pareto set.  In this section, 

the convergence of the 2-norm steepest descent algorithms 

are initially considered and it is shown that the descent 

trajectories are orthogonal to the local tangent to the Pareto 

set at the accumulation point.  This is used to prove results 

about the reachability of points on the local Pareto sets and is 

then extended to analysing the convergence 

behaviour/trajectories of more general p-norms and 

considering the behaviour of descent trajectories in objective 

space. 

 
A. Descent Trajectories and Point-Wise Convergence 

Using the 2-norm steepest descent algorithm developed in 

Sections II.B and II.C, it is possible to consider the discrete 

parameter updates as an approximation to a continuous 

descent trajectory.  The descent trajectory for a point shows 

the continuous path taken to reach the accumulation point in 

the local Pareto set.  By (7), each descent trajectory is unique 

and they do not intersect.  The descent trajectories are formed 

from solving either the primal or dual optimization problems 

(5) or (10) and taking infinitely small steps.  The set of 

descent trajectories for a simple 2 parameter, 2 objective 

optimization problem is shown in Figure 2. The red arrows 

indicate points involving only two non-zero Lagrange 

multipliers, whereas the blue and green arrows involve only 

one.  

The problem illustrated in Figure 2, is described by: 

( ) ( ) ( )( )

( ) ( ) ( )( ) 







−+−−−=









−+−−−=

5.02

2

2

12

5.02

2

2

11

9.07.0exp

1.03.0exp

xxf

xxf

x

x

 

where the two parameters are assumed to lie in the interval 

[0,1].  The Pareto set is a straight line and the Pareto front is 

concave. 

 
Figure 2 The objective (top) and parameter (bottom) 

convergence for a non-convex optimization problem.  The 

plots show the negative multi-objective gradients.  Red 

arrows involve both objectives, whereas blue and green 

arrows only involve a single objective in the calculation.  

 
B. Descent Trajectory Properties 

Theorem 1. As a descent trajectory approaches the local 

Pareto set, it is perpendicular to the tangent of the local 

Pareto set at the accumulation point. 

 

Proof.  It is assumed that the steepest descent calculation has 

two or more non-zero Lagrange multipliers, otherwise the 

local Pareto set is simply a point and the concept of a tangent 

is not defined.  In this case, the descent trajectory is the same 

as for single objective optimization. 

By (12), the negative gradient simplex (involves two or 

more non-zero Lagrange multipliers), is orthogonal to multi-

objective gradient at that point. 

⊥g V                                     (15) 

In the limit, as the point approaches the local Pareto set, the 

negative gradient simplex is tangentional to the local Pareto 

set.  The definition of local Pareto optimality is; 

=Jλ 0  
which also corresponds to the negative gradient simplex 

subspace.  Combining these two results proves the theorem. 

QED. 

 

Corollary 2. At any point on the boundary of a local Pareto 

set, the tangent’s normal specifies a local change in 

objectives ∆f α -1. 
 

Proof.  Simply by combining (15) with Theorem 1.        QED 
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These results demonstrate the 2-norm steepest descent 

algorithm locally updates a point towards to the “closest” 

point in the Pareto set, even though any point in the complete 

Pareto set could be seen as a potential accumulation point.  

This “perpendicular closeness” in parameter space ensures 

that all objectives are, in general, reduced by the same 

amount.   

 

Theorem 3. Every point on the boundary of the local Pareto 

set is reachable. 

 

Proof The dimension of the Pareto set is min(n,m-1), 

therefore the dimension of the subspace normal to the Pareto 

set is n-min(n,m-1).   In the proof below it is assumed that 

n<m-1.  Let s be a direction in the null space, then locally any 

point x*+µs will converge to x*.  Therefore, the point is 
reachable by the trajectories that converge to that point. 

Consider now when n≥m-1, so the local Pareto set is an n-
dimensional subspace.  As the descent trajectories are 

continuous, points in the interior of the Pareto set will not be 

reachable.  However, for any point lying on the Pareto set’s 

boundary and by considering the one-sided normal s to that 

tangent at that point, it is locally reachable by the x*+µs. 
QED 

  

These results can be combined to provide some obvious 

results such as the fact that for each local Pareto set, there is a 

unique basin of attraction from which every initial point will 

descent onto that local Pareto set, and the basins of attraction 

form a mutually exclusive coverage of the parameter space X. 

As with conventional single objective steepest descent 

methods, the condition of the underlying optimization 

problem determines the overall rate of convergence.  Some 

simple results for the convergence of multi-objective steepest 

descent algorithms are now given. 

 

Theorem 4.  When each objective is quadratic and the 

Hessian matrices have the same set of eigenvectors, then the 

rate of convergence is dependent on: 

 
max

( )
min

i

ij j

i i

jij

C
σ

σ
< > =H    

where 
i

jσ  is the j
th
 eigenvalue of the i

th
 Hessian matrix Hi. 

 

Proof The dynamic scalarization that occurs along the 

descent trajectory ensures that the (static) learning rate, µ, 
should be selected to stabilize the fastest mode (largest 

eigenvalue) of the set of single objective optimization 

problems.  However, the trajectory path may include sections 

that are dominated by the objective with the smallest 

eigenvalue (slowest convergence).  The worst case rate of 

parameter convergence will therefore be determined by the 

ratio of these two eigenvalues and will be determined by the 

condition of the multi-objective problem (max/min 

eigenvalue).           QED 

 

In practice, the convergence properties along a particular 

trajectory may be significantly better than this worst case 

performance.  This could be due to several factors, such as 

the dynamic scalarization weights not changing significantly 

along the trajectory, or the local Pareto set lying along the 

eigenvector with the smallest eigenvalue.  However, the 

worst case performance is at least as bad as any of the 

individual Hessians. 

 
C. Convergence of the 1 and ∞–norm Descent Trajectories 

The descent trajectories for the 1 and ∞-norm steepest 

descent algorithms for the 2 parameter/objective problem 

described in Section III.A are illustrated in FFigure 3.  It can 

be seen that close to the Pareto set, the descent trajectories of 

all three steepest descent algorithms are similar, however, 

further away from the Pareto set, the descent trajectories in 

FFigure 3 have a very distinct structure.  For the 1-norm 

descent trajectories, the updates often parallel to the 

coordinate axes while for the ∞-norm trajectories, the updates 

are often at 45
o
 to the coordinate axes.  These observations 

are proved in this section, in particular it is shown that, close 

to the Pareto set, all three steepest descent algorithms have 

the same descent trajectories, and hence the convergence 

results shown in Section III.B apply to all these methods and 

more generally to any p-norm where 1≤p≤∞. 

 

x1 

x2 

x2 

x1 F

Figure 3 Convergence in parameter space for the 1-norm 

(top) and ∞-norm (bottom) steepest descent algorithms. 
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Theorem 5 As a descent trajectory approaches the local 

Pareto set, it is perpendicular to the tangent to the local Pareto 

set for any p-norm steepest descent method. 

 

Proof Let x be a point in parameter space which is close to 

the local Pareto set, λλλλ be the corresponding set of Lagrange 
multipliers, and s be the corresponding optimal update 

direction for the steepest descent 2-norm optimization 

criterion.  As x is close to the local Pareto set, λλλλ>0, all the 
objectives are reduced by the same amount 

 J
T
s = 1α 

and ⊥s V , so V represents the local tangent to the 2-norm 

ball at that point.                                                                QED 

 

Consider using any p-norm steepest descent algorithm, 

where [1, )p∈ ∞ , and consider the solution at the point s.  

The set of all the p-norm local contours at that point 

generates two cones  P1 and P2 which have as extrema the 1 

and ∞-nom contours, as illustrated in Figure 4.  Now consider 

a local update ∆s which lies in either cone along one p-norm 

tangent.  To show that this point is optimal for all p-norms, it 

is necessary to show that for each potential update.  ∆s along 

the corresponding contour, at least one objective will increase 

and hence α is larger. 

Figure 4 An illustration of the p-norm cones for a point 

close to the local Pareto set.  The intersection with the 

descent cone, D, is zero. 
 

As x is close to the Pareto set, the descent cone D is narrow 

and contains s.  Therefore, in the limit, ⊥D V .  In addition, 

1 2⊂ ∪V P P  and the maximum angle between V and an 

edge of either of the cones is 45o.  

Therefore
1 2( )∩ ∪ =∅D P P  and there does not exist an 

update to s which simultaneously reduces both objectives, α, 
while keeping the step size constant, for any p-norm. 

 

Based on this observation, Corollary 2 and Theorem 3 also 

apply to any p-norm steepest descent algorithm. 

 

Theorem 6 When the descent trajectory is far from the local 

Pareto set, the descent trajectory moves parallel or 45
o
 to the 

coordinate axes for the 1-norm and ∞-norm steepest descent 

algorithms, respectively. 

 

Proof When a point is far from the Pareto set it can be 

assumed that the objectives’ gradient are aligned, in general, 

and the descent cone D, approaches a half-space.  By 

definition, any update in this cone will cause the objectives to 

be reduced and if the p-norm’s tangent/contour passing 

through s lies in D, then the update is not optimal because the 

objectives can be simultaneously reduced without changing 

the norm’s value.  It therefore remains to show that, in 

general, the tangent to a p-norm’s contour at s will lie in D.  

The orientation of D depends on the orientation of the 

individual gradients, although as they are aligned, D is 

approximately a half-space.  When D is a half-space, the 

boundary corresponds to the tangent to the 2-norm contour.  

Therefore, one side of the tangent to any other p-norm 

contour must lie in D.                  QED 

 

This is illustrated in Figure 5 where the descent cone 

approaches a half-space and it has a non-zero intersection 

with both P1 and P2.  In the former, the update s is not 

optimal with respect to an ∞-norm steepest descent algorithm 

as s2 can be made larger which does not change the norm’s 

value but does reduce all objectives simultaneously.  

Similarly, in P2 the update s is not optimal with respect to a 

1-norm steepest descent algorithm as s1 can be increased 

while s2 is reduced, not changing the norm’s value, which 

simultaneously reduces all the objectives. 

`  

Figure 5 When a point is far from the local Pareto set, the 

descent cone, D, has a non-zero intersection with either P1 

and/or P2, in general. 
 

D. Orthogonal convergence in the objective space 

All of the min/max, steepest descent learning rules have the 

property that close to the Pareto set, the descent trajectory is 

perpendicular to the Pareto set’s local tangent.  The 

objectives are all decreased by an equal amount.  While this 

is desirable in some cases, it amounts to a strong prior on the 

type of solution that is preferred.  Another prior would be to 

desire the convergence in objective space to be normal to the 

tangent to local Pareto front.  This would embody the idea of 

converging to the “closest point” in objective space. 

P1 

-g1 
s1 

s2 D 

P2 

-g2 

V 

-g1 

-g2 

s1 

s2 

D 

P1 

P2 
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Theorem 7 When a point is updated according to  

  s = (JJ
T
)
-1
Jλλλλ 

where λλλλ solves the dual steepest descent problem (12), the 
descent trajectory in objective space will be locally 

orthogonal to the local Pareto front. 

 

Proof At a point on the local Pareto front, λλλλ represents the 

normal to the local tangent.  As all change in objectives is 

equal to 

∆f  = J
T
s = λλλλ 

and this will occur when 

s = (JJT)-1Jλλλλ    
assuming JJ

T
 is full rank.        QED 

 

Other researchers have proposed studying convergence and 

distribution concepts in the objective space [5], and explicitly 

specifying the objectives associated with the descent 

trajectories is an important aspect for these steepest descent 

methods as they implicitly specify the final accumulation 

point.  

 
IV. DIVERSITY AND CONVERGENCE 

This paper has mainly considered multi-objective descent, 

however a fundamental part of multi-objective optimization 

theory is concerned with how diversity can be represented 

and interpreted, where diversity refers to spreading points 

along the Pareto set or front, rather than descending towards 

Pareto front.  In practice, the diversity can be represented 

within a more general multi-objective convergence theory, 

and this section considers how such generalised measures can 

be created. 

 
A. Local Pareto Set Reachability 

Theorem 8 Any point on the local Pareto set is reachable 

from any initial point within the local neighbourhood of 

attraction by updating the point when the step direction lies in 

the negative gradient span. 

 

Proof There exists a unique descent trajectory that will map 

the initial point onto a point in the Pareto set.  The diversity 

sub-space (negative gradient span) then spans the local Pareto 

set, so any other point on the local Pareto set is reachable. 

QED 

 

While this proof may seem a little strange it should be 

noted that rather than taking the steepest descent update to 

reach the Pareto set, it is possible to combine descent and 

diverse updates by selecting an update that lies within the 

negative gradient simplex.  Minimising along any of the 

vertices will cause the point to minimise the individual 

objectives whereas moving in the interior of the subspace will 

jointly minimize the equivalent combination of objectives.  

This is now considered further. 

 
B. Diversity Convergence 

The steepest descent algorithms converge because they 

maximally reduce each objective at each iteration.  However, 

when the parameter updates are chosen simply to lie in the 

negative gradient simplex V, or even outside it, the idea of 

parameter convergence must be relaxed, because some 

objective may increase.  To motivate a measure of 

convergence, consider the half-spaces which are defined by V 

passing through the point xk.  Then the negative multi-

objective gradient, -g, and all of the individual negative 

gradients -gi lie in the same half-space as illustrated in Figure 

6.  Minimizing along -gi will mean that a single objective is 

minimized, and when the aim is to consider any potential 

update, in the negative gradient simplex for instance, it is not 

possible simply to measure distance to an accumulation point, 

as it is not unique, or to ensure that a single/all objective is 

reduced, as some of the objectives may increase.  This section 

uses the size of the multi-objective gradient as a measure of 

convergence.  It is zero for any point on the local Pareto set 

and (locally) decreases if the update direction lies in the 

negative half-space.  It should be noted that, in a first order 

sense, an update that lies in the negative gradient cone will 

locally dominate any other update that lies outside it and 

these updates span the space of converging to the local Pareto 

set.  However, when a more general set of methods for 

constructing the search direction are considered (second 

order, …), the descent half-space may still provide a useful 

tool for analysing convergence. 

 

 
Figure 6 The descent, H

-
, and ascent half-spaces, H

+
, 

defined by the multi-objective gradient, g, which is 

normal to the separating plane. 
 

Theorem 9.  When the parameter update lies in the negative 

gradient half-space, the iterative optimization algorithm 

converges to the local Pareto set as the size of the multi-

objective gradient tends to zero. 

 

Proof Using a first order Taylor series for the i
th
 objective, 

the new gradient is related to the original gradient via: 

1( ) ( ) ( ) ( )i k i k i k kµ+ = +g x g x H x s x  

when the step size is small, so second order terms can be 

neglected.  Now consider the weighted size of the multi-

objective gradient, given by: 

1

2 1

2,

T
−

−=
H

g g H g  

where ∑= i iiHH λ  and is assumed to be positive definite.  

The use of the inverse scalarized Hessian to measure the size 

of the multi-objective gradient normalizes the locally 

quadratic performance function.  After updating, the size of 

the new multi-objective gradient is given by: 

H
-
 

H
+
 

-g2 

-g1 V 

-g 

x1 

x2 
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Therefore, when s is orthogonal to g(xk), the size of the 

MOG is locally unchanged.  When the dot product is 

negative, it decreases and when it is positive, it increases, so 

when the search direction lies in the negative gradient half-

space the MOG’s decreases and convergence to the local 

Pareto set will occur as long as the angle between s and the 

negative gradient half-space boundary does not tend to zero.   

It has been assumed that the search direction is oriented away 

from the separating hyperplane by a small, but fixed amount 

during the complete trajectory.       QED 

 

The proof has also assumed that H is positive definite.  

This is similar to the assumption made when many first and 

second order single objective algorithms are analysed.  In 

practice, this can be relaxed. 

The importance of using the size of the multi-objective 

gradient for analysing the convergence is an important 

concept from this work.  As long as an update lies in the 

negative gradient half-space, convergence to the local Pareto 

set should result.  This allows a wide range of diverse 

learning rules and second order learning algorithms to be 

derived, and this will be addressed in future work. 

Updating points in this manner moves the analysis of MOO 

convergence from one based on descent/ascent/diversity 

cones (or negative efficiency preserving regions/rules [9]) to 

one based around local convergence half-spaces.  The 

problem of a MOO algorithm producing not negative 

efficiency preserving sequences where after two or more 

diverse updates, the new point has increased all the objectives 

relative to the starting point [10] cannot occur. 

As a final point, as the negative gradient simplex always 

lies in the negative gradient half-space, any first-order 

learning algorithms (descent or diversity-based) should 

always ensure that the updates lie in the negative gradient 

simplex, as such updates dominate any other updates in a 

first-order sense. 

 
V. CONCLUSIONS 

This paper has considered the update trajectories associated 

with a class of first order, multi-objective descent algorithms.  

In general, they aim to maximally reduce the objectives 

equally (dynamic min/max scalarization) and this causes the 

trajectory to approach the local Pareto set perpendicularly.  

This is true for any of the p-norm descent algorithms.  The 

rate of convergence depends on the eigenvalue span of the 

complete set of eigenvalues for all the objectives which is 

always larger than any single objective. However, the most 

general result is using the concept of the multi-objective 

gradient to define a convergence half-space which as long as 

the update direction lies in this half-space, convergence to 

some point on the local Pareto set is assured.  This forms the 

basis for current work as well as investigating how second 

order gradient methods, which lie in the convergence half-

space, can be developed to improve the rate of convergence.  

In addition, issues associated with sampling a local 

population of points to obtain relevant gradient information 

and introducing diversity into the problem statement [3] are 

being addressed. 
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