
  

 

 

 

 

 

 

Abstract—We develop a multi-objective approach to optimize 

3-Dimensional (3D) highway alignments using a genetic 

algorithm. Multi-objective genetic algorithms have been very 

popular in recent years for handling trade-offs among various 

objectives. The concept of pareto optimally has been introduced 

in recent works and multi-objective genetic algorithms have 

been developed for this purpose. What we have found is that 

every problem is unique and there is no black box approach to 

implement multi-objective genetic algorithms in all problems. 

We implement the pareto-optimality concept to develop a multi-

objective genetic algorithm for the 3D highway alignment 

optimization problem on which we have worked for the last 10 

years. We apply the multi-objective optimization approach to 

an example problem on which we had previously worked. The 

results suggest that the multi-objective approach has great 

promise for obtaining the best trade-off among various 

objectives to reach an optimal solution.  

I. INTRODUCTION 

UR research team has worked for over last eight years 

[1-7] to develop a 3-Dimensional (3D) highway 

alignment optimization (HAO) model.  A state-of-the-art 

integrated genetic algorithms and geographic information 

systems-based approach was developed for optimizing 3D 

highway alignments by comprehensively formulating [7] 

alignment sensitive user and operator costs, such as 

pavement and constructions costs, earthwork cost, right-of-

way cost, vehicle operating cost, accident cost, and travel 

time delay cost. 

 One of the weaknesses of the HAO model that prevented 

its widespread applicability in real-world projects was its 

inability to handle different user preferences and a trade-off 

analysis, since cost minimization was the only criteria used 

for optimization.  After extensive industry feedback we have 

decided to expand the model capability to incorporate a 

multiobjective approach in optimization so that different 

objectives reflecting diverse user preferences can be 

incorporated into evaluating several alignments.  This paper 

reports preliminary findings of the multiobjective approach 

to 3D highway alignment optimization that has the ability to 

incorporate various user preferences.  It can thus prove to be 

an effective and versatile tool for decision-making and can 

be used by highway agencies while allowing quick 

evaluation of several competing alternatives, and performing  

 
 

 

 

 

 

 

 

 

a trade-off analysis.  Before proceeding to the discussion of 

the multiobjective approach and to put things into 

perspective we present an overview of our previously 

completed work in Highway Alignment Optimization (HAO) 

II. HIGHWAY ALIGNMENT OPTIMIZATION (HAO) MODEL 

 
As noted above a single objective 3D Highway Optimization 
Model (HAO) that uses genetic algorithms (GAs) and 
Geographic Information Systems (GISs) was developed by 
our team in previous works [1-7].  It was shown that GAs 
were able to search in a continuous space without getting 
trapped in local optima.  Before our research efforts several 
studies were reported in the literature for highway alignment 
optimization [1] but they did not realistically solve the HAO 
problem due to algorithmic limitations or imprecise and 
incomplete cost formulations. In our work integration of 
GAs with GIS [6] allowed working with real maps and 
performing a trade-off analysis with varying degree of 
environmental impacts, although with the limitation of a 
single objective minimization.  The unique aspect of GA 
application [3, 5] is to formulate the encoded string of 
decision variable and develop problem-specific operators.  
While GAs do not guarantee optimal solution the extensive 
research conducted by our research team [1, 3, 5] suggest 
that a reasonably good solution (usually within 1% tolerance 
interval) can be found when searched through sufficient 
number of generations depending on the problem size.  For 
the HAO problem it should be noted that computational 
burden increases as the size of the search space increases.  A 
stepwise GAs can be developed for reducing the 
computation burden as suggested in one of our recent works 
[8]. 
 Since the objective function for HAO cannot be 
represented as explicit function of the decision variables 
application of traditional search algorithms (such as, linear 
programming, numerical search, and gradient-based search) 
are either not suited or the problem has to be oversimplified 
before such algorithms could be applied [1]. A suitable 
objective function can be developed by assuming that the 
proposed alignment can be sufficiently described by a set of 

intermediate points sP
i
' between given start and end points.  

In order to describe an alignment, first a straight line is 
drawn connecting given start and end points. Next, 
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orthogonal planes at random intervals are drawn across that 

line (Figure 1). sP
i
' are randomly placed along those 

orthogonal planes. If a 
i

P  falls along the straight line then a 

tangent section is obtained, otherwise a curved section is 
obtained.  Appropriate curves can be fitted using American 
Association of State Highway and Transportation Officials 
(AASHTO) [9] design criteria.  Thus, an alignment can be 
sufficiently described by: (1) random location of cutting 

planes; (2) random location of sP
i
' along the planes.  Once 

an alignment is described its associated costs (such as, right-
of-way, pavement, construction, environmental impact, 
accident, travel-time delay, and vehicle operating costs) can 
be calculated by developing cost functions in sufficient detail 
[5, 7].  Note that in Figure 1 each intersection point in the 3D 
space can be determined by only two decision variables (the 
abscissa and ordinate on the vertical cutting plane). This 
helps reduce the dimension of the search space. Then by 
trigonometry, we can further transform these intersection 

points into the Cartesian coordinate system.  Let 
i

O  be the 

point at which the line segment SE  intersects the th
i  cutting 

plane, where S  and E  are the start and end points of the 

alignment. Then the X  and Y coordinates of 
i

O  can be 

obtained by simple trigonometric transformation. On each 

vertical cutting plane, the abscissa, denoted by 
i

d , is defined 

as the axis that passes through 
i

O  and parallels the 

XY plane, with 
i

O  as its origin. The ordinate on the th
i  

cutting plane is simply defined as the Z  coordinate in the 
Cartesian coordinate system to reduce coordinate 
transformation requirements.  
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Fig. 1. Representation of a 3-D alignment for optimization 
formulation 

 

Let 
i

P  be the intersection point on the th
i  cutting plane, 

whose coordinates are ),(
ii

zd . Then the Cartesian 

coordinates of 
i

P , denoted by ),,(
iii PPP

zyx  can be obtained 

by: 
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where: ),(
ii OO

yx  are the coordinates of the origin of the 

abscissa on the 
th

i  cutting plane  and θ  = the angle of 

cutting planes on the XY  plane 
 

III. SINGLE OBJECTIVE OPTIMIZATION 

 
The single objective optimization included formulation of a 
single objective function, and a set of constraints.  The 
objective function consists of alignment sensitive costs, such 

as user cost (
U

C ), right-of-way cost (
R

C ), pavement cost 

(
P

C ), earthwork cost (
R

C ) and structure cost (
S

C ) as shown 

in Eq. (2a).  These costs are formulated as functions of 
decision variables, which are reported in our previous works 
[5, 7]. Additional cost functions can be formulated as 
desired.   
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where ),,(
000

zyx and ),,(
maxmaxmax

zyx are upper and lower 

limits of the search space, respectively [1-3]. 
 The user cost consists of travel–time cost, vehicle 
operating cost, and accident cost.  The right-of-way cost 
consists of the land area taken by the alignment and damage 
to the properties and is calculated directly from a GIS and 
transmitted to GA during optimal search.  The detailed 
formulations of alignment sensitive costs shown in Eq. (2a) 
are provided in previously published works [5, 7] and have 
been skipped here for brevity.  To eliminate any confusion it 
is pointed out here that effects of traffic congestion, travel-
time delay, and topography are all considered in the 
developed cost functions. There are also many design and 
operational constraints to be met in alignment optimization. 
Among those, minimum length of vertical curves, gradient 
constraint, sight-distance constraint, and environmental 
constraints are important ones, which have been sufficiently 
formulated in previous works. 

A. Genetic Encoding of Decision Variables 

 

In GAs the decision variables are encoded as binary or real 
numbers, called chromosomes.  In our HAO approach real 
numbers are used to represent decision variables within the 
specified bounds. For an alignment represented by n  points 

of intersections, the encoded chromosome is composed of 
n3  genes. Thus, the chromosome is defined as: 
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where: Λ  = chromosome 

 
i

λ = the 
th

i  gene, for all ni 3,.......,1=  

 ( )
iii PPP

zyx ,,  = the coordinates of the 
th

i  point of 

intersection, for all ni ,.......,1=  

 

B. Genetic Operators 

Eight problem-specific genetic operators are designed [3, 5] 
to work on the encoded points of intersection rather than on 
individual genes.  Those are: uniform mutation, straight 
mutation, non-uniform mutation, whole non-uniform 
mutation, simple crossover, two-point crossover, arithmetic 
crossover, and heuristic crossover. Extensive tests are 
conducted to ensure that these operators assist in obtaining 
efficient solution while exploiting the entire search space and 
without getting trapped in local optima. 

IV. MULTI-OBJECTIVE (MO) APPROACH 

In highway route planning there are different golas and 
objectives that need to be satisfied before reaching at a 
consesus.  These goals and objectives can often be 
conflicting and building a concesus can take exhaustive 
amout of time.  For example, there may be a situation where 
impact to a historic site may take domimance over impct to 
parklands requiring several iterations of reoptimization to 
ensure that there is absolutely no impact to the historic site 
while also satisfying other objectives (to the extent possible), 
such as minimizing impact to parklands and expensive 
rights-of-way.   

 

A. A MO Optimization Scenario 

In one of the Maryland State Highway Administration 
funded research projects [10] on which we recently worked, 
two relevant issues were noted in searching for the best 
highway alignment. The first issue was to find the best 
alignment that minimized total cost. The other issue was to 
find the best alignment that minimized impacts to 
environment and other sensitive areas, such as parkland and 
historic site. The proposed alignment should have 
simultaneously satisfied these two key issues.  

Using the single objective HAO model the only way to 
control the impacts to environmentally and socio-
economically sensitive areas is to impose a very high penalty 
when such areas are affected. The penalty function acts as a 
“dummy cost” added to the total cost function such that the 
optimization algorithm has a tendency to minimize the 
impact since it’s driven by the “single objective cost 
minimization” principle.  In real-world road projects 
however, there may exist different types of sensitive areas.  
For example, in the recently complemented project two types 
of sensitive areas were noted: (1) type 1 area that the 
proposed alignment must avoid (we call it “hard constraint”) 
and (2) type 2 area to which impacts should be minimized, to 
the extent possible (we call it “soft constraint”) while 
satisfying the “hard constraints.” A multiobjective 

optimization approach thus becomes inevitable.  It should be 
noted that minimizing varying levels of impacts is frequently 
encountered in real-world highway projects leading to 
frequent scope changes and cost overruns. 

Let’s consider the following case shown in Figure 2. 
Suppose a highway agency is considering the construction of 
a new bypass to avoid traffic congestion in the City of 
Brookeville, and wants to apply the existing single objective 
HAO model to obtain the best bypass route. Two socio-
economically sensitive areas (a Community Center and a 
historic site) exist within the project area. With the current 
controlling method for the sensitive region, the HAO model 
finds the best alignment (alignment B), which detours the 
Community Center and the Historic site as shown in Figure 
2. The alignment B can be considered the optimized 
alignment only if the Community Center does not want any 
of its areas to be affected by the new road, i.e., it is treated as 
a “hard constraint.” However, it may be possible that the 
Community Center allows its site to be taken by the new 
road up to a very small quantity; for instance, 200 sq. ft (or 
up to a user-specified upper bound). In other words, impact 
to the community center is treated as a soft constraint.  In 
that case alignment A may be the preferred alternative. When 
comparing the optimal costs of Alignments A and B it is 
found that Alignment B costs more than A.  Such 
multiobjective optimization and trade-off analysis scenarios 
are currently not handled by the single objective HAO 
methodology. 
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Fig. 2. A Real-World Road Project Requiring Multiobjective 
Optimization 

 
The need for multi-criteria decision making and 

multiobjective optimization has long been recognized.  A 
number of articles dealing with these issues can be found in 
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the literature [11-24].  Holguin-Veras [11] performed a 
comparative assessment of analytic hierarchy process (AHP) 
and multiattribute value (MAV) functions.  Some researchers 
also performed goal programming [15].  The multiobjective 
optimization methodology to be developed for HAO is 
different than AHP, MAV, and goal programming in that 
these approaches require that the number of alternatives to 
be analyzed be given a priori.  In the multiobjective HAO 
approach alignments are randomly generated and evaluated. 
The need for multiobjective optimization arises primarily 
because one is generally interested to quickly examine 
changes in different objectives (such as changes in total cost, 
environmental damage, rights-of-way, and alignment length) 
as one or more variables are changed.   

It is realized that among multi-objective (MO) 
optimization problems, multiple objectives under 
consideration are often noncommensurable and cannot be 
integrated into a single one. With this observation, the notion 
of Pareto optimality has been introduced in recent years 
instead of the optimality concept in single-objective 
optimization [20-22, 24]. However, the Pareto optimal 
solutions cannot be uniquely determined, i.e. there usually 
exist a set of solutions that all satisfy Pareto optimality, 
which form the Pareto Front in the solution space. Hence, 
decision makers usually cannot find a best solution that 
dominates all the others. On the contrary, they may prefer to 
seek a Pareto Front which is formulated by the Pareto 
optimal solutions, so that they can evaluate the trade-offs 
among these solutions and make decisions accordingly [20]. 

 

B. Pareto Optimum 

The notion of Pareto optimum was from Pareto’s original 
work [24]. Consider a k-objective min optimization problem: 
 

T

kk
xfxfxfxfxfMin )](.,),........(),(),([)(

332211
=  

subject to 

0)( ≥xg  

0)( =xh  

(4a) 
 

(4b) 
 

(4c) 

where x is the decision vector, g is the inequality 

constraint, and h is the equality constraint.  A solution 

vector 
*

x is said to dominate another solution vector x if 

and only if: 

},...,3,2,1{),(,)()(, * kixfixfxfi
iii

∈∃∧≤∀  (5) 

 
A solution is called Pareto optimal if no other solutions 
dominate it. In practical MO optimization problems, it is 
usually impossible to find a unique solution that dominates 
all other solutions. Instead, it is expected that a number of 
Pareto optimal (or called non-dominated) solutions can be 
found. A Pareto Front is formed by those Pareto optimal 
solutions, where an increase in one objective will surely 
cause a decrease in another or more in other objectives. The 
goal of MO optimization is to generate feasible solutions that 
are on, or close to, the Pareto Front. From those alternatives 

that are situated on or around the Pareto Front, decision 
makers can make their final decision. 
 

C. Pareto Ranking 

A common measure to convert a MO optimization problem 
into a single objective one is to use scalarization methods, 
e.g. weighting method or minimax method. However, these 
methods cannot efficiently characterize the Pareto Front for a 
MO optimization problem. To overcome these, Goldberg 
(see, [24]) first proposed a selection strategy based on Pareto 
dominance; the strategy has then been modified and 
improved by other researchers [24]. 
 

V. MULTIOBJECTIVE GENETIC ALGORITHM  

In order to treat simultaneously several objective functions, it 
is necessary to substitute the single-fitness-based procedure 
employed in the single objective GA for comparing two 
proposals of solution. The comparison of two chromosome-
coded solutions with respect to several objectives may be 
achieved through the introduction of the concepts of Pareto 
optimality and dominance as described above [20,24], which 
enable solutions to be compared and ranked without 
imposing any a priori measure as to the relative importance 
of individual objectives, neither in the form of subjective 
weights nor arbitrary constraints. In practice, often, 
constraints exist, based on experience, which impose 
restrictions that the candidate solutions have to satisfy.   

Such constraints may be handled, just as in the case of 
single-objective GAs, by testing for the fulfillment of the 
criteria by the candidate solutions during the population 
creation and replacement procedures. The introduction of 
external constraints speeds up the convergence of the 
algorithm because it reduces the search space. In the 
multiobjective applications it is suggested not to impose any 
constraint a priori on the proposed candidate solutions. This 
is done so as to ascertain that the experience-based 
constraints are consistent with the set of input data governing 
the problem. Results quite different from those suggested by 
experience would imply a deeper investigation to find 
whether a suboptimal solution is achieved or a more careful 
analysis on the input data and model consistency. 

Let us consider N different objective functions, 

NiXf
i

,..,1),( = where X represents the vector of 

independent variables identifying a generic proposal of 
solution. We say that solution X dominates solution Y if X is 
better on all objectives [20], i.e., if 

NiYfXf
ii

,...,1),()( =∀> .  If a solution is not dominated 

by any other in the population, it is said to be a 
nondominated solution. Using this definition, a ranking of 
the population can be readily performed. All nondominated 
individuals in the current population are identified. These 
solutions are considered the best solutions, and assigned the 
rank 1. Then, these solutions are virtually removed from the 
population and the next set of nondominated individuals are 
identified and assigned rank 2. This process continues until 
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every solution in the population has been ranked.  The 
selection and replacement procedures of the multiobjective 
GAs are based on this ranking: every solution belonging to 
the same rank class has to be considered equivalent to any 
other of the class, i.e. it has the same probability of the 
others to be selected as a parent and survive the replacement. 

During the optimal search, an archive of a given number 
of nondominated solutions representing the dynamic Pareto 
optimality surface can be recorded and updated. At the end 
of each generation, nondominated solutions in the current 
population can be compared with those already stored in the 
archive and the following archival rules are implemented: 
(1) If the new solution dominates existing members of the 
archive, those are removed and the new solution is added. 
(2) If the new solution is dominated by any member of the 
archive, it is not stored. 
(3) If the new solution neither dominates nor is dominated by 
any member of the archive then: 

• If the archive is not full, the new solution is stored. 

• If the archive is full, the new solution replaces the 
most similar one in the archive.  

 
The setup of an archive of nondominated solutions can also 
be exploited by introducing an elitist parents' selection 
procedure which should in principle be more efficient.  
Every solution in the archive (or a pre-established fraction of 

the population size 
p

N , typically 4/
p

N , if the archive's size 

is too large) is chosen once as a parent in each generation. 
This should guarantee a better propagation of the genetic 
code of nondominated solutions, and thus a more efficient 
evolution of the population towards Pareto optimality.  At 
the end of the search procedure, the result of the 
optimization is constituted by the archive itself which gives 
the Pareto optimality region. 

 

A. Multi-Objective Genetic Algorithm for Alignment 

Optimization 

Based on the preceding discussion a multiobjective genetic 
algorithm is developed for the HAO problem, to handle the 
objectives of (1) total cost minimization; (2) minimization of 
floodplain impact area; and (3) minimization of wetland 
impact area. The approach is similar to that proposed by 
Busacca et al. [20] in which a multiobjective genetic 
algorithm is designed to compare the tradeoff between 
reliability and system safety. We modify the chromosome of 
the single objective optimization (Eq. (3)) to include two 
additional genes, one each for floodplain and wetland 
impacts. Those genes can take up real values between 0-3 
where 0 implies no impacts to floodplain and wetland areas 
whereas 3 implies high impact (within a user-specified range 
of allowable impact area). The ranking or candidate 
solutions in the populations leading to selecting replacement 
scheme is described in the preceding section. 
 

VI. NUMERICAL EXAMPLE 

We apply the multiobjective approach to an example study 
[4] on which we had previously worked using the single 
objective genetic approach. Two environmental factors were 
considered: wetlands and floodplains.  Impacts to these 
factors acted as hard constraints, i.e., impacts to these factors 
must be minimized even though total alignment cost was 
more than that obtained from single objective cost 
minimization algorithm.   
 The study area (Fig. 3) consists of a section of Anne 
Arundel County, Maryland.  It is desired to search for a best 
alignment alternative connecting existing Interstate Rt. 97 
and Reece Rd. (Maryland Rt. 174) between a given start and 
end points.  Existing major highways and environmental 
factors such as floodplains and wetlands falling in the study 
section are also shown.  The shaded portions represent 
wetlands.  The area of the study section is about 8 square km 
and the Euclidean distance between the start and end points 
is 2.68 km.  The terrain height in the study section ranges 
from 40 to 55 meters. 
 A single objective optimization yielded an optimized 
alignment with impacts to floodplains at 3 locations.  The 
optimum cost was found to be $11.005 millions (Table 1).  
The length of the optimized alignment was 2.89 km, impact 
to the floodplain was 635 square meters and no wetland 
impact was noted. 

 

#

#

 
 
Fig. 3. Study Area for the Example Study 
 

 A single objective optimization yielded an optimized 
alignment with impacts to floodplains at 3 locations.  The 
optimum cost was found to be $11.005 millions (Table 1).  
The length of the optimized alignment was 2.89 km, impact 
to the floodplain was 635 square meters and no wetland 
impact was noted. 
 In the multiobjective approach three objectives were 
imposed: (1) minimize total alignment cost; (2) minimize 
floodplain impact; and (3) minimize wetland impact.  Using 
the pareto optimality approach with GAs as described above 
the best solution was obtained with an alignment length of 
3.45 km, total cost of $13.453 millions, impact to floodplain 
impact= 496 square meters, and no impact to floodplain (see, 
Table 1).  The results are consistent with our previous 
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findings using a criteria-based decision support system that 
used a single objective optimization [4] for similar analysis.  
 
 

Table 1. Comparison of Single and Multiobjective 
Optimization Results 

 

Optimization 
Scenario 

Length 
(km.) 

Cost 
($M) 

Floodplain 
Impact 
(sq. m.) 

Wetland 
Impact 
(sq. m.) 

Single 
Objective 
(cost min.) 

2.89 11.005 635 0 

Multiobjective 3.45 13.453 496 0 

 

VII. RESULTS AND DISCUSSION 

We found very interesting results with the multiobjective 
optimization approach. In our previous works we had saved 
the candidate solutions in every population of the search 
generation under the single-objective cost minimization 
approach. We then manually retrieved those solutions for 
which cost, floodplain, and wetland impacts were smaller. 
Since in 100 generations of search nearly 3,200 candidate 
solutions are explored the manual ranking of the solutions 
tended to be very time-consuming and did not ensure a best 
trade-off among the three objectives. The multiobjective 
approach certainly seems promising since it automates the 
trade-off procedure eliminating the manual ranking 
requirement as well as manual approximation in obtaining 
the best trade-off solution. Additional tests need to be carried 
out to examine the general applicability of the multiobjective 
approach. 
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