
 

  

Abstract— Risk assessment is a common task present in a 

variety of problem domains, ranging from the assignment of 

premium classes to insurance applications, to the evaluation of 

disease treatments in medical diagnostics, situation assessments in 

battlefield management, state evaluations in planning activities, 

etc. Risk assessment involves scoring alternatives based on their 

likelihood to produce better or worse than expected returns in 

their application domain. Often, it is sufficient to evaluate the risk 

associated with an alternative by using a predefined granularity 

derived from an ordered set of risk-classes. Therefore, the process 

of risk assessment becomes one of classification.  Traditionally, 

risk classifications are made by human experts using their domain 

knowledge to perform such assignments.  These assignments will 

drive further decisions related to the alternatives. We address the 

automation of the risk classification process by exploiting risk 

structures present in sets of historical cases classified by human 

experts. We use such structures to pre-compile risk signatures 

that are compact and can be used to classify new alternatives. 

Specifically, we use Dominance relationships, exploiting the 

partial ordering induced by the monotonic relationship between 

the individual features and the risk associated with a candidate 

alternative, to extract such signatures. Due to its underlying 

logical basis, this classifier produces highly accurate and 

defensible risk assignments. However, due to its strict 

applicability constraints, it covers only a small percentage of new 

cases. In response, we present a weaker version of the classifier, 

which incrementally improves its coverage without any 

substantial drop in accuracy. Although these approaches could be 

used as risk classifiers on their own, we found their primary 

strengths to be in validating the overall logical consistency of the 

risk assignments made by human experts and automated systems. 

We refer to potentially inconsistent risk assignments as outliers 

and present results obtained from implementing our technique in 

the problem of insurance underwriting.  
 

Index Terms — Risk classification, Automated insurance 

underwriting, inconsistency detection, Pareto Dominance, 

rational risk assignment Pareto Optimality. 
 

I. INTRODUCTION 

HE problem of assigning risk to an alternative is 

common in many domains. It is also fairly typical for these 

risk assignments to come from a predefined set of risk classes, 

in which case the problem becomes one of risk classification. 

Typically human experts apply their domain knowledge to 

evaluate a given alternative before assigning an appropriate 

risk class to it based on its characteristics. In this paper, we 
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tackle the problem of automating risk classification processes. 

In any risk classification problem, it is fair to assume that 

the human expert reasons with the help of his domain 

knowledge to assign a risk class to a given alternative. The 

reasoning principles used by the expert for risk classification is 

expected to be embedded as risk signatures in a set of 

alternatives that have already been classified by the expert. We 

describe a technique based on the concept of Pareto 

dominance [1], [2], which extracts such risk signatures. More 

specifically, we use the set of alternatives classified by the 

expert to produce two subsets for each risk class in the 

problem: the Pareto best subset and the Pareto worst subset 

by using Dominance. Algorithmically, producing these two 

subsets is equivalent to producing what is more commonly 

known as the Pareto-optimal set. The two subsets are different 

from each other only in the sense that they optimize the 

multiple objectives along opposing directions of goodness.  By 

doing so, these two subsets can be seen as representing the 

least risky (the Pareto-best) and the most risky (Pareto worst) 

candidates within a given risk class. If there are a sufficient 

number of candidates in these two subsets, then the candidates 

in these two subsets can be seen as samples from the two 

hypothetical risk surfaces in the feature space that bound the 

risk class from above and below respectively. 

We would like the mention that for the problem being 

described in this paper, we tried out other traditional 

classification approaches with great success. The other 

approaches include the use of fuzzy rule-based and case-based 

classifiers. The fuzzy rule based classifier [3] used the concept 

of soft constraint satisfaction to determine the degree to which 

an applicant would belong to a given rate class.  The case-

based classifier [4] used a similarity metric in the feature space 

to retrieve applications or cases similar to an application at 

hand; the retrieved cases were now used to determine the risk 

class of the given application. Reference [5] describes and 

compares both these approaches; it also presents other details 

relevant to the maintenance of a classifier over its life cycle. 

The approach described in this paper presents a technique that 

possesses high classification accuracy but potentially low 

coverage. Hence it is more suitable for use as a complementary 

technique as far as classification is concerned.  

In a hybrid approach described in [6] we show how the 

classifier based on Dominance can be used in Quality 

Assurance of a more traditional rule-based fuzzy classifier. 

The use of Dominance as an outlier detector for the detection 

of logically inconsistent risk assignments by human experts is 

also shown to be quite effective. 

Automated Risk Classification and Outlier Detection 
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Figure 1 indicates the architecture of the hybrid approach 

from paper [6], which describes the use of a fusion module to 

combine the outputs of several classifiers to determine the 

correct rate class for an insurance application. The purpose of 

the fusion module is one of Quality Assurance (QA) for testing 

and monitoring a Production Decision Engine that makes the 

rate class assignment in real-time. The fusion module exploits 

the possibility that the various classifiers contribute to 

decisions that rely on different informational aspects of the 

data; as a result, these decisions are independent and can 

therefore be either in agreement or conflict with each other. 

The degree of agreement or conflict is used to quantify the 

confidence in the output of the fusion module. The fusion is 

expected to produce a classification that is more accurate as 

result of its dependence upon multiple, but independent, 

sources of decision-making. As shown, both the dominance-

based classifier and the outlier detector are part of this quality 

assurance architecture.  
 

LEGEND 

Abbreviation Description 

FLE Fuzzy Rule Based reasoning 

RF Random Forests 

MARS Multivariate Adaptive Regression Splines 

NN Neural Networks 

SVM Support Vector Machine 

DOM Dominance-based 

Fig 1. Architecture for a hybrid approach with the outlier detector for 
detecting inconsistent risk assignments and quality assurance.  

 

Since our approach is analogous to clustering-based 

classification, we describe some previous work done in 

clustering as well as dominance in section II, which also 

provides a more detailed description of the insurance 

underwriting problem that we have attempted to automate. 

Section III and its subsections motivate and define key 

principles of dominance-based risk classification that are 

central to our approach; we also present results of applying the 

classifier to the underwriting problem.  In section IV we 

present a slightly modified version of our approach in an effort 

to improve the coverage of the classifier along with the 

associated results. We describe how our approach can be used 

to detect potentially inconsistent risk assignments in section V 

some instances of such potentially inconsistent assignments 

that were found using our technique are also presented in the 

same section.  Finally, the conclusions are summarized in 

section VI. 

II. BACKGROUND  

A. Previous Work 

In some sense, our approach parallels approaches in 

clustering for classification problems. However, our technique 

applies only to a subclass of classification problems where 

there is a total ordering of the individual classes, and where the 

class of a candidate is a monotonic function of the feature-

values of the candidate (as is true of {\em risk classification} 

problems). In traditional clustering approaches, distance and 

similarity measures are used to represent individual clusters in 

terms of centroids; in our approach, we represent a cluster in 

terms of superior and inferior Pareto boundaries. We then 

verify if a given point lies inside these boundaries before 

classifying it as belonging to the cluster. Since the definition of 

a cluster in our approach is based on the logical equivalence of 

the riskier_than relation and the dominance relation, the use of 

our approach to assign a risk class to a given candidate is 

logically defensible. Because of the same reason, the violation 

of this condition by a labeled candidate can be interpreted as 

the candidate being inconsistently labeled by the expert (we 

refer to such a candidate as an outlier). Our technique can be 

extended to detect such outliers, which we also describe in this 

paper. 

There are several endeavors in literature related to the use of 

dominance in clustering although we could not locate any that 

uses dominance in the manner described in this paper. In [7] 

for example, the author presents equivalence theorems 

between dominance and circuit faults in order to establish a 

parsimonious number of faults that need to be tested for circuit 

correctness. This approach is slightly similar to our own in its 

philosophy since both approaches tend to use dominance 

relations to find a parsimonious set of instances needed to 

solve the problem; whereas [7] compresses the number of 

faults that need to be tested to ensure circuit correctness, we 

compress the number of labeled risk assignments that need to 

be stored in order to assign risk class to a new instance. Both 

[8] and [9] deal with the problem of finding the optimal 

dendrogram by using dominance relations between competing 

sub-clustering schemes.  Reference [8] uses homogeneity and  

separation as criteria while [9]  uses cluster diameter and 

intercluster separation as the criteria. Reference [10] presents 
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a technique called CPEA (Clustering Pareto Evolutionary 

Algorithm) where each population is clustered in the genotypic 

space and locally Pareto-optimal points of the individual 

clusters in the phenotypic space are maintained and resolved as 

the algorithm proceeds from one generation to another. The 

primary aim of the CPEA approach is to ensure a suitably 

diverse representation of solutions in the genotypic space 

although they are only locally Pareto-optimal. This concludes 

our survey of some of the previous efforts that seem related to 

what we describe in this paper. 

For ease of understanding, we present our work in the 

context of a concrete problem on which we implement our 

automation technique - it is the problem of assigning 

appropriate premium classes to insurance applications.  

However, we want to state that the technique described applies 

generically to risk classification processes that are similar in 

structure to the problem of premium-class assignment for 

insurance applications. 
 

B. Domain Description: Insurance Underwriting 

Insurance underwriting is a complex task traditionally 
performed by trained experts or underwriters.  An underwriter 
evaluates each insurance application in terms of its potential 
risk, such as mortality in the case of term life insurance. 
Typically, an application is compared against standards 
adopted by the insurance company, which are derived from 
actuarial principles related to mortality.  Based on this 
comparison, the application is classified into one of the risk 
categories available for the type of insurance requested by the 
applicant.  The accept/reject decision is also part of this risk 
classification, since risks above a certain tolerance level will 
typically be rejected. The estimated risk, in conjunction with 
other factors such as gender, age, and policy face value 
together determine the appropriate price (premium) for the 
insurance policy. In order to keep the expected return on a 
policy to a fair value, a higher risk typically corresponds to a 
higher premium, all other factors remaining the same. 

An insurance application can be represented by a set of 
features taking values that can be continuous, discrete, or 
categorical in nature. These features represent the applicant's 
medical and demographic information that have been 
identified as pertinent to the estimation of the applicant's claim 
risk, based on actuarial studies. Since it is difficult to represent 
the risk associated with an application by a single number, a 
discrete number of risk classes or bins are identified to which a 
given application is assigned based on assessment of its 
associated risk. Therefore, the insurance underwriting problem 
is a discrete classifier that maps a given set of features to a 
discrete decision space. 

There are several properties that make automating this 
problem a complex one: 

 

1. The mapping to the decision space is highly nonlinear; 
in other words, incremental changes to one of the input 

components can change the most appropriate risk class 
for the application. 

2. Most features are derived and based on interpretations 
made by the underwriter. Therefore, the underwriter's 
subjective judgment will almost always play a role in 
the overall risk assignment process, thereby making it 
crucially dependent on factors such as underwriter 
training and experience leading to potential variability 
in the decision. 

3. The risk assignment is essentially a process of balancing 
tolerance for risk (in order to preserve price 
competitiveness) with aversion to risk (in order to 
prevent overexposure to risk). The making of these 
tradeoff judgments requires flexibility. 

4. Legal and compliance regulations require that the 
models used to make the underwriting decisions be 
transparent and interpretable. 

 

The approach presented in this paper tries to address most of 
the above properties. In response to the issue of subjectivity, 
our approach reduces the irrationality that can be potentially 
introduced due to subjectivity by two means:  

 

1. With respect to the labeled set of applications, our 
approach imposes logical consistency on the labeled set 
by finding outliers that are potentially incorrect risk 
assignments. As a result, it uses only a logically 
consistent set of labeled applications to capture the risk 
profiles related to a risk class. 

2. All new applications that are classified by our 
automated classifier are logically defensible in the 
context of the labeled set applications. This property 
addresses the issue of transparency and interpretability 
quite well. 

 

A comprehensive description of the Automated Underwriting 
(UW) System addressing all the above requirements can be 
found in reference [3].  In the next section we will describe the 
concept of dominance-based risk classification, which was the 
logical constraint used to validate the results of such 
automated system. 

III. DOMINANCE BASED RISK CLASSIFICATION 

In insurance underwriting, as in most risk classification 
problems, the classification proceeds according to the feature-
values taken by the insurance application along a predefined 
set of features.  The direction in which the risk associated with 
the application changes with change in a feature value is also 
typically known. Based on this knowledge, we can state if an 
insurance application is better than another application along 

a feature using the feature values taken by two applications.  
For example, if the Cholesterol Level of some applicant C 
were to be higher than the Cholesterol Level of another 
applicant D, then since higher Cholesterol Level implies higher 
risk in an application, we say that D is better than C along the 
feature Cholesterol Level. If two applications take the same 
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value along some feature, then we say that the two applicants 
are equally good along that feature. We introduce the term A 

dominates B involving two applicants A and B, and denoted 
by dominates(A,B), as per the following definition of 
Dominance. 
 

Dominance: 
Given two applicants A and B we say that A dominates B if 

and only if A is at least as good as B along all the features 

and there is at least one feature along which A is better than 

B, i.e.:  

Dominates(A,B) ) B (A j ) B (A i jjii <∃∧≤∀⇔  

where Ai denotes the value taken by applicant A on feature i, 
and so on.  Note that without loss of generality we assume 
lower values along features to be better in the above definition. 
The relation dominates(A,B) is a trichotomous relation, 
meaning that given two applicants A and B, either A dominates 
B, or B dominates A, or neither dominates the other. In the 
case where neither applicant dominates the other, each 
applicant will be better than its counterpart along different 
features. In such a case we say that A and B are dominance-
tied. For example if we consider three applicants A, B, and C 
with feature values as indicated in Table I. 
 

TABLE I 
EXAMPLE OF DOMINANCE  

Applicant BMI1 Cholesterol Systolic Blood Pressure 

A 25 255 115 
B 26 248 120 

C 24 248 112 
 

By the definition, we see that C dominates both A and B, since 
C is at least as good (i.e. as low) as A and B along each feature 
and moreover there is at least one feature along which C is 
better than (i.e. strictly lower than) A and B.  On the other 
hand, applicants A and B are dominance-tied since each is 
better (i.e. lower) than the other along some feature (A has the 
better Cholesterol Level value while B has the better BMI 
value). 
 

As mentioned previously, the risk categories that can be 
assigned to the insurance applications can be totally ordered so 
that a higher risk category pertains to a higher premium or a 
riskier application. We represent the ordering between the risk 
categories by using “<”. In other words, if rA is a higher risk 
category compared to rB, then we use the relation rB < rA to 
assert that applications assigned to category rB are less risky 
than those assigned to category rA.  Based on this, we next 
introduce the No_Riskier_Than(A,B) relation between two 
applicants A and B. 
 
 
 

 
1 BMI is the Body-Mass-Index, which is defined as the ratio of the weight 

(in kilograms) divided by the square of the height (in meters). It measures 
body fat as a function of an individual’s height and weight; it is a good 
surrogate to estimate the individual’s health.    

No_Riskier_Than(A,B):  
The relation No_Riskier_Than(A,B) is said to hold if and only 

if the risk class assigned to A (say rA is no better than that 

assigned to B (say rB). Or, 

No_Riskier_Than(A,B) BA rr ≤⇔ . 

Based on the knowledge that the risk associated with an 
applicant is a monotonic, non-decreasing function of the 
feature values, it can be seen that, for any pair of insurance 
applications, if the dominates-relation holds between the two 
applications in a certain direction (say A dominates B), then 
the relation No_Riskier_Than will also hold in the same 
direction - i.e., No_Riskier_Than(A,B) holds. In other words, 
the dominates-relation is a sufficiency condition for the 
No_Riskier_Than-relation. That is: 

dominates(A,B) → No_Riskier_Than(A,B). 

 

Now, we define the trinary relation Bounded_Within(B,(A,C) 
as follows 
 

Bounded_Within(B,(A,C)):  
The relation Bounded_Within(B,(A,C)) is said to hold if and 

only if the relations, dominates(A,B) and dominates(B,C), hold 

together.  Or, 
 

Bounded_Within(B,(A,C)) ⇔ dominates(A,B) ∧ dominates(B,C) 
 

We read the above relation as B is bounded within A and C. 
We are now ready to express and prove the principle 
underlying the technique described in this paper. 
 

Principle of Dominance based risk classification: 

If A, B, and C are applicants such that B is bounded within A 

and C, and if the risk category assigned to A and C is the 

same, say r, then the risk category of applicant B must be the 

same as that of A and C. In other words, 
 

 [Bounded_Within(B,(A,C)) ∧ (rA=rC=r)] → (rB =r). 
 

Proof 

Suppose we have,  
[Bounded_Within(B,(A,C)) ∧ (rA=rC=r)] 

 

This implies that,  
dominates(A,B) ∧ dominates(B,C) ∧  (rA=rC=r). 

Or, 
 

No_Riskier_Than(A,B) ∧ No_Riskier_Than(B,C) ∧ (rA=rC=r). 
 

Based on our definitions, we can rewrite the above as, 

(rA ≤  rB) ∧  (rB ≤  rC ) ∧  (rA = rC =r), which leads to, (rB =r). 
 

This proves the Principle of Dominance based risk 

classification.� 
 

This principle is the basis of our approach. For any given 
application B with unassigned risk category, we check if there 
exist two applications A and C such that the left hand side of 
the principle is satisfied; if so, we declare the risk category of 
B to be the same as that of A and C.  
 

275

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)



 

The proof works because of the equivalence established 
between the No_Riskier_Than relation and the dominates 
relation. Since the No_Riskier_Than relation is not described 
in terms of a strict inequality, it is possible for the dominates 
relation to hold between pairs of applications even if they 
belong to the same risk category. This implies that we can 
further partition the applications within a risk category into the 

best, non-dominated subset and worst, non-dominating subset, 
which are defined as below: 
 

Best, non-dominated subset:  
The best, non-dominated subset, labeled O, for a given risk 

category, is one that contains all such applications that are 

not dominated by another application within that risk 

category. 
 

Worst, non-dominating subset:  
The worst, non-dominating subset, labeled P, for a risk 

category is one that contains all those applications that do not 

dominate even a single application in that risk category. 
 
Because the two subsets are defined in terms of Pareto 

Dominance, we call the set O the Pareto best subset and the 
set P, the Pareto worst subset, for a given risk category. To 
visualize these two subsets geometrically, consider Figure 2, 
which shows a plot of features f1 and f2 for 1000 insurance 
applications. The insurance applications are plotted as points 
in the 2-dimensional feature space. Suppose for simplicity that 
these are the only two features used while assigning a risk 
category to an application, and that lower values along a 
feature correspond to lower risk. Then, the circles denote the 
Pareto best set while the squares denote the Pareto worst set. 
Also, based on the definition of the Pareto best and the Pareto 
worst sets, we know that each of remaining points is such that 
at least one circle dominates it, and it dominates at least one 
square. In other words we know that for each point X that is 
not in the Pareto best set (O) or in the Pareto worst set (P) in 
the figure, there is at least one square S and one circle C such 

Figure 2. Indicating the Pareto-best (circles) and Pareto-worst (squares) 
subsets for a set of applicants.   

that Bounded_Within(X,(C,S) holds. If we additionally knew 
that the risk categories assigned to C and S are the same, then 
we can infer the risk category for application X to be the same 
as well. In general, for the example shown in Figure 2, if we 
knew that every circle and square in the figure was assigned 
the same risk category, say r, then by applying Principle of 

dominance-based risk classification, all the points shown in 
the figure can 
be assigned the risk category r as well. The production of the 
two subsets O and P is identical to the production of the 
Dominance subset in discrete alternative decision problems. 
Algorithms presented in [12], [13] can create these subsets in 

))(log( 1 nnO m−  time, where n is the number of candidates 

involved and m is the number of features along which the 
dominance comparisons are being done.  For an insurance 
underwriting problem with r risk categories, there will be 2r 
such subsets, or one pair for each risk category representing 
the risk surfaces that form the upper bound and the lower 
bound. 

A. Dominance based risk classification: System Description 

In this section, we describe the algorithms for application of 
dominance based risk classification. We use the term 
Dominance(X,k) to indicate the application of the above 
algorithm to the set X(n,m), where k is either +1 or -1 
depending upon whether we want higher or lower feature 
values to be respectively considered as better during 
dominance comparisons.  Basically, there are two modules 
involved in the risk classification process: 

1. The Tuning module computes the Pareto best and 
Pareto worst subsets for each risk category from set 
$A$ of labeled applications. A pseudocode appears 
below 

   TUNE(A,i) 

 { 

   for each risk  category ri 

  Compute O(ri)=Dominance(A,-1). 

  Compute P(ri)=Dominance(A,+1). 

 } 
   

2. The Classification module uses the results of tuning to 
classify the set U of new applications. The pseudocode 
for the Classification module is presented below 

   CLASSIFY(U,i) 
 { 

   for each unlabeled application z ∈U 

   for each risk category ri  { 
 

    if(x ∈ O(ri), y ∈P(ri) : Bounded_Within(z,(x,y))) 
 

    assign risk category ri  to z 

    break 

   } 

  } 
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During classification, given an insurance application, if the 
system is unable to find a risk category for which the bounded 

within condition mentioned in the pseudocode is satisfied, then 
the application at hand is marked as unresolved by the system. 
 
Figure 3 shows results obtained by applying the automated 
dominance based risk classification to a set of applications for 
an example insurance underwriting problem with 3 risk 
categories (labeled as R1, R2, R3). In the experiment, the 
system initially used Tuning in order to compute the Pareto 

best and the Pareto worst subsets for each of the 3 risk 
categories.  The system was then made to classify a set of 
applicants, which were not used during the Tuning.  For these 
applications, risk assignments were also obtained from human 
underwriters. This allows us to compare the performance of 
the automated system with that of the experts using the 
comparison matrix shown in Figure 3. 
 

ΣΣΣΣ

R1 R2 R3 UW

R1 28 0 0 32 60

R2 0 8 0 62 70

R3 0 0 3 33 36

ΣΣΣΣ 28 8 3 127 166

Dominance based Risk 

Classification

Underwriter 

Classification

 

Figure 3. Comparison matrix from a pilot run conducted for the dominance 
based risk classifier. 

As mentioned earlier, an application that is not bounded 

within any of the 3 risk categories is marked as unresolved by 
the system. These applications are shown in the column 
labeled UW. As can be seen, quite a large number of 
applicants are marked as unresolved by the system. However, 
for the applications that do get assigned a risk category by the 
system, we see that the system is accurate $100% of the time. 
Hence, the principle of dominance based risk classification 
presented here has the potential to produce risk assignments 
with a high degree of confidence. In order for an application to 
be assigned a risk category, it is required to be dominated by 
some application in the Pareto best set for the risk category 
and additionally it should dominate at least one application in 
the Pareto worst set for the same risk category. This 
requirement can end up being too strict especially if the size of 
the Pareto subsets for a risk category is small. As a result, 
many of the applications will end up with unresolved risk 
assignments. It is possible to improve the coverage by 
allowing a minor relaxation to the classification rule for the 
extreme rate classes (i.e. the best and worst rate class).  This 
modified version of the classifier is described next. 

 
 

IV. MODIFYING THE CLASSIFICATION RULE FOR THE EXTREME 

RISK CATEGORIES  
 

This section shows how the principle of dominance based risk 
classification can be relaxed for the best and the worst risk 
categories. This relaxation is expected to improve the coverage 
of the automated classification system. The statements and 
proofs of the relaxed principles of risk classification for the 
best and the worst risk classes appear below. 
 

Relaxed principle of dominance based risk classification 

for the best risk category: 

If application X dominates application A such that the risk 

category assigned to A is the best risk category for the 

problem, say rbest , then the risk category of X is also rbest i.e., 
 

[dominates(X,A) ∧  (rA = rbest )] → (rX = rbest ). 
 

Proof: 

Let us start by assuming that there is an application X such that 
it dominates application A, where it is known that A has been 
assigned the best risk category. In other words,  

rA = rbest. 
Now since applicant A is assigned the best risk category, no 
other applicant can be assigned a better risk category that A. 
Or, 

rX ≥ rA . 
However, since dominance is a sufficiency condition for an 
applicant to be no riskier than another applicant, and since we 
know that X dominates A, we must also have, 

rX ≤ rA . 
Based on the previous 3 expressions we can therefore infer 
that, 

rX = rbest, 
 
which proves the relaxation condition for the best risk 
category. � 
 

Relaxed principle of dominance based risk classification 

for the worst risk category: 
If applicant A dominates applicant X such that the risk 

category assigned to A is the worst risk category for the 

problem, say rworst, then the risk category of X is also rworst.  
 

[dominates(A,X) ∧  (rA = rworst )] → (rX = rworst )]. 
 

Proof 

Let us start by assuming that there is an application X such that 
it is dominated by application A, where it is known A is 
assigned the worst risk category. i.e., rA = rworst.  Now, since 
applicant A belongs to the worst risk category, every other 
applicant belongs to a risk category that is better than or equal 
to that of A. In other words,  

rX ≤ rA . 
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However since we also know that A dominates X and that 
dominance is a sufficiency condition for an applicant to be no 
riskier than another applicant, we must also have 

rX ≥ rA . 
 
From the previous 3 expressions we can therefore infer that, 

rX = rworst , 
which proves the condition for the worst risk category. � 
 

In other words, for the extreme risk classes an application is 
required to satisfy only one dominance condition instead of the 
two required for the intermediate risk classes. This is expected 
to reduce the number of applications that are left unresolved 
by the system for the extreme risk categories. Figure 4 presents 
the comparison matrix for same problem presented previously 
but with the relaxed principle of risk classification being used. 

 
Figure 4. Comparison matrix from a pilot run conducted for the modified 
dominance based risk classifier. 

 
As seen from the matrix, the number of applications that are 
left unresolved reduces for both the extreme classes (by 10 
applications for the best risk category and by 3 applications for 
the worst risk category). This improves the overall coverage of 
the classification system without loss to accuracy as seen from 
the matrix. 

V. DETECTING INCONSISTENT RISK ASSIGNMENTS 

The technique described here can also be used to check the 
global consistency of the risk assignments made by human 
experts. In other words, ensuring that every application that is 
riskier than a counterpart is not assigned a worse risk category 
relative to the counterpart. More specifically, our system can 
identify all such pairs of applications for which at least one 
risk assignment must be changed in order to maintain global 
consistency. We refer to such pairs of applications as outliers 
defined as follows. 
 

Outliers: 

 Applications X and Y are marked as outliers if and only if one 

of the following two conditions is satisfied: 
 

1. X dominates Y, and X is assigned a risk category that 

associates greater risk with X compared to Y, or 

2. Y dominates X, and Y is assigned a risk category that 

associates greater risk with Y compared to X. 

 

In other words, 

(X, Y are outliers) ⇔ [(dominates(X,Y) ∧  (rX > rY)) ∪ 

(dominates(Y,X) ∧  (rY > rX)]. 
 

Claim: Outliers are potentially inconsistent risk assignments. 
 

Proof: Suppose applications X and Y are outliers. By 
definition, this implies that, 

[dominates(X,Y) ∧ (rX > rY) ∪ [dominates(Y,X) ∧  (rY > rX)]. 

Since, dominates(X,Y) → No_Riskier_Than(X,Y) → rX ≤ rY , 
we must have 

[(rX ≤  rY) ∧  (rX > rY)] ∪  [(rY ≤ rX) ∧ ( rY  > rX)], 
which results in a contradiction. � 
 

Since dominance depends upon the feature values of the 
applications, if the feature values are accurate and if the same 
features were used by the human underwriter to assign risks to 
the applications, then the only way to resolve the above 
contradiction is to change either rX or rY or both so that the 
reassignments correspond to the dominance relation between 
the two applications. In other words, all outliers are potentially 
inconsistent risk assignments. We applied the outlier detection 
technique to a set of 541 labeled applications.  This resulted in 
the identification of more than a dozen inconsistencies in risk 
assignment by the experts. An example of the results produced 
by the outlier detector is shown in Figure 5 with a few relevant 
features. 
 

 

Figure 5. Example of an inconsistency identified as an outlier. 
 

Each row represents an insurance application for which the 
risk classification had already been determined, as shown in 
the first column. The risk class labeled R2 is a better risk class 
compared to the risk class labeled R1.  In other words, the 
premium associated with risk class R2 is lower than that 
associated with class R1. Yet, based on the above feature 
values, we see that the application indicated in row 1 of the 
table dominates (and is therefore less riskier than) the 
application in the lower row. Upon sending these two 
applications to the underwriters for reconsideration, the risk 
classifications for the applications were reversed. This simple 
example illustrates the use of an outlier to obtain more 
consistent risk assignments from human underwriters. 

VI. CONCLUSIONS 

We presented an automated, dominance based risk 
classification technique using insurance underwriting as an 
example. The technique produces highly confident and 
accurate risk assignments to new insurance applications.  We 
also presented an outlier detection technique based on 
dominance which can be used to detect potentially inconsistent 

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13

R1 62 146 112 80 258 4.1 21 16 17 0 27 0 0
R2 77 229 132 84 278 4.6 25 22 17 0 27 0 0

Application Feature ValuesUnderwriter 

Classification

ΣΣΣΣ

R1 R2 R3 UW

R1 38 0 0 22 60

R2 0 8 0 62 70

R3 0 0 11 25 36

ΣΣΣΣ 38 8 11 109 166

Underwriter 

Classification

Dominance based Risk 

Classification
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risk assignments by human experts. The use of the two Pareto 
surfaces to characterize risk-classes is admittedly weak (as 
characterized by the low coverage of the dominance-based 
classification approach). However, this weakness is, in 
principle, because the dominance condition becomes difficult 
to obtain for large number of criteria/features. What is 
interesting is that the approach is able to find outliers violating 
the dominance condition, despite the fact that it was based on a 
large number of criteria, and flag them for review by the 
underwriter. Information overload from large number of 
features is precisely the situation under which we expect 
human underwriters to become inconsistent in their labeling. 
As stated by Tversky [14], [15] “in choosing among many 

complex alternatives… optimal policies for choosing among 

such alternatives require involved computations based on 

weights assigned to the various relevant factors, or on the 

compensation rates associated with the critical variables. 

Since man's intuitive capacities are quite limited, the above 

method is quite difficult to apply.”  In such circumstances, 
humans have been known to use various decision heuristics to 
solve the decision-making problem so as to strike a reasonable 
balance between the complexity of the problem and the 
resources at hand [16]-[18]. As shown in [14], [15], the use of 
a decision heuristic will not always lead to the best choices 
from the viewpoint of the decision-maker.  Conversely, if the 
number of criteria for the problem being considered happens 
to be low, we expect the approach to do well in terms of its 
coverage because the dominance condition is easier to obtain. 
  

The identification of an outlier is identification of an 
indefensible and inconsistent risk labeling by the underwriter 
along with witness-labels to prove it.  Hence the number of 
outliers produced by the underwriter is in some sense intrinsic 
to the underwriter and his global consistency. From points of 
view of fairness, transparency and accountability, these are 
necessary virtues an underwriting company would desire in its 
underwriting process. What the outliers show is consistent with 
findings in behavioral research, namely how when faced with 
complex information processing, humans have no mechanism 
of ensuring global consistency across all labeled applications. 
The outlier detector is meant to be an automated mechanism to 
provide a process for that global check.  
 

For all classification problems, the borderline where two 
risk-classes meet are intrinsically the most difficult instances to 
classify (given true lack of separability) and most classifiers 
would require added complexity to have a good performance 
for such borderline cases. What is interesting about the 
dominance-based approach is that it would mostly declare such 
borderline cases as 'unknown risk class'. In terms of ROC 
(receiver operating curves), the dominance-based classifier can 
be thought of as the classifier at one of the corner points of the 
ROC curve with 100% true positive rate but a large false 
negative rate (false negative being one where it is unable to 
identify the class of an application), with the false negative 

rate deteriorating as the number of features increases. The goal 
of the technique is not to replace human underwriters as much 
as to augment their rationality and computational capacities.  A 
very important dimension of decision support is the provision 
of computational support to the decision maker so that the 
employment of suboptimal decision heuristics is curtailed or at 
least limited [19]. We contend that the technique presented 
here serves this goal of valuable decision support for the 
complex decision-making task of risk classification. 
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