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Abstract— The realization of co-evolutionary interactions in
evolutionary algorithms results in increased population diver-
sity and speciation. General model of co-evolution in multi-agent
system allows for modeling and realization of agent-based co-
evolutionary systems in which many species and sexes may exist
and interact. In this paper one exemplary agent-based system
with predator-prey mechanism is presented. The results from
experiments with various multi-objective test problems conclude
the paper.

I. Motivation

In evolutionary algorithms (EAs) techniques based on

models of co-operative or competitive interactions between

species are primarily used when there arises difficulties with

explicit formulation of fitness function—such cases include

for example games. Such co-evolutionary techniques also

help to improve adaptive capabilities of EAs, introducing

open-ended evolution and maintaining useful population

diversity through speciation (formation of species—sub-

populations—within the search space).

In the case of multi-objective optimization the loss of

population diversity in EA (which limits the applicability

of EAs in the case of some problems) can result not only

in the stagnation of evolutionary process and locating the

population in areas located faraway from the ideal Pareto

frontier but also in locating only selected parts of Pareto

frontier or locating local Pareto frontier instead of a global

one when we have to deal with multi-modal multi-objective

problems ([1]).

The basic model of evolutionary multi-agent system

(EMAS) results from the attempts to decentralize the process

of simulated evolution and to formulate evolutionary compu-

tation models which are closer to real evolutionary processes

[2]. Such systems are consisted of environment, agents which

are able to reproduce and die and resources for which agents

compete. The research on speciation mechanisms for such

systems resulted in the formulation of general model of co-

evolution in multi agent system (CoEMAS) [3], [4], [5]. This

model includes also the possibility of co-existing of several

species and sexes and to define co-evolutionary relations

between them.

The paper is organized as follows. First the short introduc-

tion to multi-criteria decision making processes followed by
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the previous work on the application of co-evolutionary al-

gorithms to such problems are presented. Then the proposed

system is presented. Results of experiments with different

kinds of multi-criteria optimization problems conclude the

paper.

II. Multi-Objective Optimization

The most natural process of decision making for human

being consists in analyzing many—often contradictory—

factors and searching for peculiar compromise among them.

Such decisive process is known as a multi-criteria decision

making (MCDM). Obviously, human being is equipped with

natural abilities for making multi-criteria decisions. If such

natural gifts are—as the matter of fact—sufficient in everyday

life they are not sufficient in more complex technical, busi-

ness or scientific decisive processes. In such cases decision

maker—to make a proper decision has to be supported with

appropriate mathematical apparatus and efficient computing

units and algorithm built on the basis of this very apparatus.

The most frequently, MCDM process is based on appropri-

ately defined multi-objective optimization problem (MOOP).

Following [1]—multi-objective optimization problem in its

general form is being defined as minimizing/maximizing the

set of objectives fm(x̄), where m = 1,2 . . . ,M.

The set of constraints—both constraint functions (equal-

ities hk(x̄)) defined as hk(x̄) = 0, where k = 1,2 . . . ,K, in-

equalities g j(x̄)) defined as g j(x̄) ≥ 0, where j = 1,2 . . . , J

and decision variable bounds (lower bounds x
(L)

i
and upper

bounds x
(U)

i
) defined as x

(L)

i
≤ xi ≤ x

(U)

i
, where i= 1,2 . . . ,N—

define all possible (feasible) decision alternatives (D).

Because there are many criteria—to indicate which solu-

tion is better than the other—specialized ordering relation

has to be introduced. To avoid problems with converting

minimization to maximization problems (and vice versa of

course) additional operator � can be defined. Then, notation

x̄1 � x̄2 indicates that solution x̄1 is simply better than

solution x̄2 for particular objective. Now, the crucial concept

of Pareto optimality i.e. so called dominance relation can

be defined. It is said that solution x̄A dominates solution x̄B

(x̄A ≺ x̄B) if and only if:

x̄A ≺ x̄B⇔

{
f j(x̄A) � f j(x̄B) f or j = 1,2 . . . ,M

∃i ∈ {1,2, . . . ,M} : fi(x̄A) � fi(x̄B)

A solution in the Pareto sense of the multi-objective opti-

mization problem means determination of all non-dominated

alternatives from the set D. The Pareto-optimal set consists
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of globally optimal solutions, however there may also ex-

ist locally optimal solutions, which constitute locally non-

dominated set (local Pareto-optimal set) [1]. The set Plocal ⊆

D is local Pareto-optimal set if [6]:

∀�xa ∈ Plocal : ��xb ∈ D such that

�xb 
 �xa∧
∥∥∥�xb− �xa

∥∥∥ < ε∧ ∥∥∥F(�xb)−F(�xa)
∥∥∥ < δ

where ‖·‖ is a distance metric and ε > 0, δ > 0.

The set P ⊆ D is global Pareto-optimal set if [6]:

∀�xa ∈ P : ��xb ∈ D such that �xb 
 �xa (1)

These locally or globally non-dominated solutions create

(in the criteria space) so-called local (PF local) or global

(PF ) Pareto frontiers that can be defined as follows:

PF local =
{
�y = F

(
�x
)
∈ IRM | �x ∈ Plocal

}
(2a)

PF =
{
�y = F

(
�x
)
∈ IRM | �x ∈ P

}
(2b)

Multi-objective problems with one global and many local

Pareto frontiers are called multi-modal multi-objective prob-

lems [1].

During over 20 years of research on evolutionary multi-

objective algorithms (EMOAs) quite many techniques have

been proposed. Generally all of these techniques and al-

gorithms can be classified as elitist (which give the best

individuals the opportunity to be directly carried over to the

next generation) or non-elitist ones [1].

III. Co-EvolutionaryMulti-Objective Algorithms

Co-evolution is the biological process responsible for spe-

ciation, maintaining population diversity, introducing arms

races and open-ended evolution. In co-evolutionary algo-

rithms (CoEAs) the fitness of each individual depends not

only on the quality of solution to the given problem (like in

EAs) but also (or solely) on other individuals’ fitness [7]. As

the result of ongoing research quite many co-evolutionary

techniques have been proposed. Generally, each of these

techniques belongs to one of two classes: competitive or

cooperative.

There were also some attempts of applying co-

evolutionary algorithms to multi-objective problems. Lau-

manns, Rudolph and Schwefel proposed predator-prey evo-

lutionary strategy (PPES) (i.e. competitive co-evolutionary

algorithm with predator-prey model and spatial graph-like

structure) for multi-objective optimization [8]. In their model

prey were placed in the nodes of graph (they could not

migrate) and predators could migrate from node to node

killing the “weakest” prey (each predator had one criteria

assigned to it and evaluated prey on the basis of that criteria).

Deb introduced modified algorithm in which predators

eliminated prey not only on the basis of one criteria but on the

basis of the weighted sum of all criteria [1]. Li proposed other

modifications to Deb’s algorithm [9]. The main difference

was that not only predators were allowed to migrate within

the graph but also prey could do it. The model of cooperative

co-evolution was also applied to multi-objective optimization

Fig. 1. CoEMAS with predator-prey mechanism

([10]). In this technique each sub-population was responsible

for one variable xi. The complete solution was the group

of individuals, each of them chosen from different sub-

population. The reproduction and recombination processes

took place independently within sub-populations (individuals

from different sub-populations interacted with each other

only during fitness evaluation).

It seems that co-evolution applied to multi-objective prob-

lems should introduce open-ended evolution, improve adap-

tive capabilities of EA (especially in the case of dynamic

environments) and allow speciation (the formation of species

located in different areas of Pareto frontier or at different

local Pareto frontiers in case of multi-modal multi-objective

problems [1]) but this is still an open issue and the subject

of ongoing research.

IV. Agent-Based Co-Evolutionary System for

Multi-Objective Optimization

In this section the agent-based co-evolutionary system

used in experiments is presented. The system is composed

of the following elements: the environment with graph-like

structure, resources, and two interacting species of agents

(predators and prey) (see fig. 1). All types of agents live

within the environment, can migrate between nodes, and try

to get resources which are used for all kinds of activities,

like reproduction and migration. Agents which amount of

resource is below the minimal level die and are removed

from system. Agents of prey species—which represent solu-

tions of the multi-objective problem—can reproduce when

the amount of the possessed resource is above the given

level. When two such agents meet within the same node

of the environment the new agent is created with the use of

recombination and mutation operators. Parents also give to

the newly created offspring some of their resources.

The role of predators is to remove from the system

dominated prey. Each of the predators is associated with one

criteria and seeks for the worst prey—located within the same
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node as the given predator—according to its criteria. Then

such a prey is killed and all of its resources are transferred

to the predator. Below, more formal definition of the system

is presented.

A. CoEMAS

The co-evolutionary multi-agent system with predator-prey

interactions (CoEMAS) is defined as follows [3]:

CoEMAS = 〈E,S ,Γ,Ω〉 (3)

E is the environment of the CoEMAS system, S is the set of

species (s ∈ S ) that exist and co-evolve in CoEMAS , Γ is the

set of resource types (the amount of type γ resource which is

possessed by the given element of the system will be denoted

by rγ), Ω is the set of information types (the information

of type ω, which can be used or possessed by the given

element of the system is denoted by iω). Two information

types (Ω= {ω1,ω2}) and one resource type (Γ = {γ}) are used.

Informations of type ω1 denote nodes to which agent can

migrate. Informations of type ω2 denote such prey that are

located within the particular node in time t.

The selection mechanism is based on the closed circulation

of resource within the system. The whole amount of resource

is constant, the resource can be possessed by the agents, and

is transferred from dominated prey to dominating prey, and

from prey to predators during killing prey.

The environment E is defined in the following way:

E =
〈
T E ,ΓE = ∅,ΩE = Ω

〉
(4)

T E is the topography of the environment E. ΓE is the set of

resource types that exist within the environment. ΩE is the

set of information types that exist within the environment.

The topography of the environment T E = 〈H, l〉, where H is

directed graph with the cost function c defined (H = 〈V,B,c〉,

V is the set of vertices, B is the set of arches). In the case of

the presented system every node is connected with its four

neighbors, which results in the torus-like environment. The

l : A→V (A is the set of agents) function makes it possible

to locate particular agent in the environment space.

Vertice v is given by:

v =
〈
Av,Γv = ΓE ,Ωv = ΩE ,ϕ

〉
(5)

Av is the set of agents that are located within the vertice v.

There are two types of informations in the vertice. The first

one includes all vertices that are connected with the vertice

v:

iω1,v = {u : u ∈ V ∧〈v,u〉 ∈ B} (6)

The second one includes all agents of species prey that are

located within the vertice v:

iω2,v =
{
aprey : aprey ∈ Av} (7)

B. Species

The set of species S = {prey, pred}. The prey species

(prey) is defined as follows:

prey =
〈
Aprey,S Xprey = {sx} ,Zprey,Cprey〉 (8)

where S Xprey is the set of sexes which exist within the prey

species, Zprey is the set of actions that agents of species prey

can perform, and Cprey is the set of relations of prey species

with other species that exist in the CoEMAS .

The set of actions Zprey is defined as follows:

Zprey = {die,get,give,accept, seek,clone,rec,mut,migr} (9)

die is the action of death (prey dies when it is out of

resources). get action gets some resource from another aprey

agent located within the same node, which is dominated

by the agent that performs get action or is too close to

it in the criteria space, give action gives some resource to

another agent (which performs get action), accept action

accepts partner for reproduction when the amount of resource

possessed by the prey agent is above the given level, seek

action seeks for another prey agent that is dominated by the

prey performing this action or is too close to it in criteria

space. This action is also used in order to find the partner

for reproduction when the amount of resource is above the

given level and agent can reproduce. clone is the action of

producing offspring (parents give some of their resources to

the offspring during this action), rec is the recombination

operator (intermediate recombination is used [11]), mut is

the mutation operator (mutation with self-adaptation is used

[11]). The migr is the action of migrating from one node to

another. During this action agent loses some of its resource.

The set of relations of prey species with other species that

exist within the system is defined as follows:

Cprey =

{
prey,get−
−−−−−−−→,

pred,give+
−−−−−−−−→

}
(10a)

The first relation models intra species competition for limited

resources (“-” denotes that as a result of performing get

action the fitness of another prey is decreased):

prey,get−
−−−−−−−→= {〈prey, prey〉} (10b)

The second one models predator-prey interactions (“+” de-

notes that when prey gives all its resources to the predator,

the predator fitness is increased):

pred,give+
−−−−−−−−→= {〈prey, pred〉} (10c)

The predator species (pred) is defined as follows:

pred =
〈
Apred,S Xpred = {sx} ,Zpred,Cpred

〉
(11)

All the symbols used have analogical meaning as in the case

of prey species—see eq. (8). The set of actions Zpred is

defined as follows:

Zpred = {seek,get,migr} (12)

The seek action allows finding the “worst” (according to

the criteria associated with the given predator) prey located
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within the same node as the predator, get action gets all

resources from the chosen prey, migr action allows predator

to migrate between nodes of the graph H—this results in

losing some of the resources.

The set of relations of pred species with other species that

exist within the system are defined as follows:

Cpred =

{
prey,get−
−−−−−−−→

}
(13a)

This relation models predator-prey interactions:

prey,get−
−−−−−−−→= {〈pred, prey〉} (13b)

As a result of performing get action and taking all resources

from selected prey, it dies.

C. Agents

Agent a of species prey (a ≡ aprey) is defined as follows:

a =
〈
gna,Za = Zprey,Γa = Γ,Ωa = Ω,PRa〉 (14)

Genotype of agent a is consisted of two vectors (chromo-

somes): �x of real-coded decision parameters’ values and �σ of

standard deviations’ values, which are used during mutation

with self-adaptation. Za = Zprey (see eq. (9)) is the set of

actions which agent a can perform. Γa is the set of resource

types used by the agent, and Ωa is the set of information

types.

The partially ordered set of profiles includes resource

profile (pr1), reproduction profile (pr2), interaction profile

(pr3), and migration profile (pr4):

PRa = {pr1, pr2, pr3, pr4} (15a)

pr1 � pr2 � pr3 � pr4 (15b)

Each profile pr is defined as follows:

pr =
〈
Γpr,Ωpr,Mpr,S T pr,GLpr〉 (16)

Γpr is the set of resource types used in the pr profile (Γpr ⊆

Γa). Ωpr is the set of information types (Ωpr ⊆Ωa). Mpr is the

set of informations (the model) which represent the agent’s

knowledge about the environment and other agents. S T pr is

the partially ordered set of strategies which agent can use in

order to realize the active goal of the given profile. GLpr is

the partially ordered set of goals.

Each time step agent tries to realize active goals (goals

which should be realized) of the profiles taking into account

the priorities of the profiles (pr1 has the highest priority—

see eq. (15)) and also the priorities of the active goals. In

order to realize goals of the given profile agent uses strategies

(consisted of simple actions) which can be realized within

this profile. In this process also the priorities of strategies are

considered.

The goal of the pr1 profile is to keep the amount of

resources above the minimal level or to die. In order to

realize such goal agent can use the following strategies: 〈die〉,

〈seek,get〉. This profile uses the model Mpr1 = {iω2 } (see

eq. (7).) The only goal of the pr2 profile is to reproduce.

In order to realize this goal agent can use strategy of

reproduction: 〈seek,clone,rec,mut〉. The model is defined in

the following way: Mpr2 = {iω2 }. The goal of the pr3 profile is

to interact with predators with the use of strategy 〈give〉. The

goal of the pr4 profile is to migrate within the environment.

In order to realize such goal the migration strategy is used:〈
migr
〉
. The model used is defined as follows: Mpr4 = {iω1 }

(see eq. (6).) As a result of migrating prey loses some

resource.

Agent a of species pred is defined analogically to prey

agent (see eq. (14)). There exist two main differences.

Genotype of predator agent is consisted of the information

about the criterion associated with the given agent. The set

of profiles is consisted only of two profiles, resource profile

(pr1), and migration profile (pr2): PRa = {pr1, pr2}, where

pr1 � pr2.

The goal of the pr1 profile is to keep the amount of

resource above the minimal level with the use of strategy

〈seek,get〉. The model used within this profile is defined

as follows: Mpr1 = {iω2 }. The goal of pr2 profile is to

migrate within the environment. In order to realize this goal

the migration strategy
〈
migr
〉
) is used. The model of the

environment is defined in the following way: Mpr2 = {iω1 }.

The realization of the migration strategy results in losing

some of the resource possessed by the agent.

V. Multi-Objective Test Problems

In order to investigate whether the proposed system prop-

erly solves the multi-objective problems and to compare it

to “classical” evolutionary multi-objective algorithms, two

standard test problems and one hard, real-life problem were

used.

Firstly, slightly modified so-called Laumanns multi-

objective problem was used, which is defined as follows ([8],

[12]):

Laumanns =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(x) = x2

1
+ x2

2

f2(x) = (x1+2)2+ x2
2

−5 ≤ x1, x2 ≤ 5

It is a test problem with convex and coherent Pareto frontier,

which has some interesting properties and in consequence be-

comes a suitable candidate for initial testing and comparative

studies. Visualization of the Pareto frontier for this problem

is presented in fig. 2.

 0

 1

 2

 3

 4

 5

 0  1  2  3  4  5

f2

f1

Model Pareto frontier for Laumanns problem

Fig. 2. Laumanns test problem: visualization of the Pareto frontier

Secondly the so-called Kursawe problem was used. Its
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definition is as follows ([12]):

Kursawe =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f1(x) =

∑n−1
i=0

(
−10exp

(
−0.2

√
x2

i
+ x2

i+1

))
f2(x) =

∑n
i=1 |xi|

0.8+5sin x3
i

n = 3 −5 ≤ x1, x2, x3 ≤ 5

Visualization of the Pareto set and Pareto frontier for the

Kursawe problem is here omitted because of space limitation.

This is quite difficult multi-objective problem. Its character-

istic features include: disconnected two-dimensional Pareto

frontier, disconnected three dimensional Pareto set, and the

fact that very small changes in the space of decision variables

can seriously affect the results in the space of objectives.

Proposed co-evolutionary agent-based approach has also

been preliminarily assessed using the problem of effective

portfolio building. The meaning of symbols used in the

definitions below, are as follows:

p - the number of shares in the wallet;

n - the number of rate of return;

αi,βi - coefficients of the equations;

ωi - percentage participation of i-th share in the wallet;

ei - random component of the equation;

Rit - the rate of return in the period t;

Rmt - the rate of return related to market index in period

t;

Rm - the rate of return of market index;

Ri - the rate of return of the i-th share;

Rp - the rate of return of the wallet;

sep
2 - the variance of the i-th share;

sei
2 - the variance of the random index of the i-th share;

sep
2 - the variance of the wallet;

Ri - arithmetic mean of rate of return of the i-th share;

Rm - arithmetic mean of rate of return of market index;

The algorithm (based on the Sharpe model) of computing

the expectation of the risk level and, generally speaking,

income expectation related to the wallet of p shares is as

follows:

1) Compute the arithmetic means on the basis of rate of

returns;

2) Compute the value of α coefficient:

αi = Ri−βiRm (17)

3) Compute the value of β coefficient:

βi =

∑n
t=1(Rit −Ri)(Rmt −Rm)∑n

t=1(Rmt −Rm)2
(18)

4) Compute the share expectation:

Ri = αi−βiRm+ ei (19)

5) Compute the variance of random index:

sei

2 =

∑n
t=1(Rit −αi−βiRm)2

n−1
(20)

6) Compute the variance of market index:

sm
2 =

∑n
t=1(Rmt −Rm)2

n−1
(21)

7) Compute the risk level of the investing wallet:

βp =

p∑
i=1

(ωiβi) (22)

sep

2 =

p∑
i=1

(ω2
i sei

2) (23)

risk = β2
psm

2+ sep

2 (24)

8) Compute the investing wallet expectation:

Rp =

p∑
i=1

(ωiRi) (25)

The goal of the optimization is to maximize the investing

wallet expectation and minimize the risk level. Model Pareto

frontiers for two cases (three and seventeen stocks set), which

are analyzed in the following section, are presented in fig. 3.

a)
 0

 0.05

 0.1

 0.15

 0.2
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Fig. 3. Building of effective portfolio: visualization of the model Pareto
frontier obtained using utter review method for a) three and b) seventeen
stocks set

VI. Results of Experiments

In this section the results of experiments with different

types of multi-objective test problems are presented. Also,

the results obtained by proposed system are compared with

results obtained by “classical” (i.e. non agent-based) predator

prey evolutionary strategy (PPES) [8] and another “classi-

cal” evolutionary algorithm for multi-objective optimization:

niched pareto genetic algorithm (NPGA) [6]. In order to

deeper analyze the results obtained by compared algorithms

values of HV and HVR metrics (which can be found in [1])

are also presented.

In the very first experiments with CoEMAS system rel-

atively simple Laumanns test problem was used. In fig. 4

there are presented Pareto frontier approximations obtained

by CoEMAS and PPES algorithms and in table I there

are presented values of HV and HVR metrics for all three

algorithms being compared. As it can be seen the differ-

ences between algorithms being analyzed are not so distinct,

however proposed CoEMAS system seems to be the best

alternative.

The second problem used is quite demanding multi-

objective Kursawe problem with disconnected both Pareto

set and Pareto frontier. In fig. 5 there are presented ap-

proximations of Pareto frontier obtained by CoEMAS and

by reference algorithms after 10, 600 and 6000 time steps.

As one may notice initially, i.e. after 10 (see fig. 5a,b,c)
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CoEMAS frontier after 1 step
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PPES frontier after 1 step
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CoEMAS frontier after 50 steps
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PPES frontier after 50 steps
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CoEMAS frontier after 100 steps
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PPES frontier after 100 steps
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CoEMAS frontier after 600 steps
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PPES frontier after 600 steps
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CoEMAS frontier after 6000 steps
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PPES frontier after 6000 steps

Fig. 4. Pareto frontier approximations in selected consecutive steps obtained
by CoEMAS and PPES algorithms for Laumanns problem

steps, Pareto frontiers obtained by all three algorithms are—

in fact—quite similar if the number of found non-dominated

individuals, their distance to the model Pareto frontier and

their dispersing over the whole Pareto frontier are considered.

Afterwards yet, definitely higher quality of CoEMAS-based

Pareto frontier approximation is more and more distinct (it

is enough to compare results obtained by CoEMAS, NPGA

and PPES algorithms after 600 and 6000 time steps—see

fig. 5d,e,f and fig. 5g,h,i). Generally, there is no doubt that

CoEMAS is definitely the best alternative since it is able to

obtain Pareto frontier that is located very close to the model

solution, that is very well dispersed and what is also very

important—it is more numerous than PPES and NPGA-based

solutions. The above observations are fully confirmed by the

values of HV and HVR metrics presented in table II.

In the case of optimizing investing portfolio each individ-

ual in the prey population has p-dimensional vector encoded

in its genotype. Each dimension represents the percentage

TABLE I

Comparison of proposed CoEMAS approach with selected classical

EMOAs according to the HV and HVR metrics obtained during solving

Laumanns problem

HV / HVR

Step CoEMAS PPES NPGA

1 59.24 / 0.982 58.45 / 0.969 58.41 / 0.968

10 59.57 / 0.987 58.45 / 0.969 59.72 / 0.990

20 59.78 / 0.991 58.45 / 0.969 53.30 / 0.883

30 59.81 / 0.991 58.45 / 0.969 51.02 / 0.846

40 59.79 / 0.991 58.45 / 0.969 49.37 / 0.818

50 59.81 / 0.991 58.45 / 0.969 48.62 / 0.806

100 59.77 / 0.991 58.45 / 0.969 47.25 / 0.783

600 59.79 / 0.991 59.11 / 0.980 47.04 / 0.780

200 59.73 / 0.990 59.59 / 0.988 47.04 / 0.780

4000 59.76 / 0.991 59.64 / 0.988 47.04 / 0.780

6000 59.75 / 0.990 59.34 / 0.983 47.04 / 0.780

TABLE II

Comparison of proposed CoEMAS approach with selected classical

EMOAs according to the HV and HVR metrics obtained during solving

Kursawe problem

HV / HVR

Step CoEMAS PPES NPGA

1 541.21 / 0.874 530.76 / 0.857 489.34 / 0.790

10 588.38 / 0.950 530.76 / 0.867 563.55 / 0.910

20 594.09 / 0.959 531.41 / 0.858 401.79 / 0.648

30 601.66 / 0.971 531.41 / 0.858 378.78 / 0.611

40 602.55 / 0.973 531.41 / 0.858 378.73 / 0.611

50 594.09 / 0.959 531.41 / 0.858 378.77 / 0.611

100 603.04 / 0.974 531.42 / 0.858 378.80 / 0.6117

600 603.79 / 0.975 577.44 / 0.932 378.80 / 0.611

200 611.43 / 0.987 609.47 / 0.984 378.80 / 0.611

4000 611.44 / 0.987 555.53 / 0.897 378.80 / 0.611

6000 613.10 / 0.990 547.73 / 0.884 378.80 / 0.611

participation of i-th (i ∈ 1 . . . p) share in the whole portfolio.

Because of the space limitation in this paper only a kind

of summary of two single experiments will be presented

(of course during our research a lot of experiments have

been conducted and—moreover—we are still working on

this demanding problem.) During presented experiment quo-

tations from 2003-01-01 until 2005-12-31 were taken into

consideration. Simultaneously the portfolio consists of the

following three (in experiment I) or seventeen (in experiment

II) stocks quoted on the Warsaw Stock Exchange. In exper-

iment I portfolio is consisted of: RAFAKO, PONARFEH,

and PKOBP stocks. In the case of experiment II portfolio is

consisted of: KREDYTB, COMPLAND, BETACOM, GRA-

JEWO, KRUK, COMARCH, ATM, HANDLOWY, BZWBK,

HYDROBUD, BORYSZEW, ARKSTEEL, BRE, KGHM,

GANT, PROKOM, and BPHPBK stocks. As the market

index WIG20 has been taken into consideration.

In fig. 3 there are presented model Pareto frontiers ob-

tained for effective portfolio building problem for three

and seventeen stocks obtained using utter review method.

Consecutive Pareto frontiers obtained by both—system that

is being analyzed and by reference algorithms as well are

presented in details in [13]. In this paper authors decided to
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Fig. 5. Pareto frontier approximations for Kursawe problem in selected
consecutive steps obtained by CoEMAS, PPES and NPGA

present rather in details portfolio composition. It is of course

impossible in the course of this paper to present consecutive

portfolios proposed by all non-dominated solutions—that is

why we decided to choose average non-dominated solution

in first step and then to follow during consecutive steps

solutions proposed by this very solution (or its descen-

dant(s)). Such hypothetical non-dominated average portfolios

for experiment I and II are presented in fig. 6 and in fig. 7

respectively (in fig. 7 shares are presented from left to right in

the order in which they were mentioned above). Generally,

it can be said that during experiment I—average solution

proposed by CoEMAS system is a kind of balanced portfolio

(percentage share of all three stocks are quite similar),

whereas during experiment II there are more important stocks

(with given assumptions and parameters of course)—i.e.

HANDLOWY, HYDROBUD, ARKSTEEL.

In fig 8 there are presented Pareto frontiers obtained

by CoEMAS, NPGA and PPES algorithms after 900 time

steps for both experiments. In both cases CoEMAS-based
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Fig. 6. Effective portfolio in consecutive steps consisting of three stocks
proposed by CoEMAS

frontier is quite numerous and quite close to the model Pareto

frontier—unfortunately diversity of population in CoEMAS

system is visibly worse than in the case of NPGA or

PPES-based frontiers (it is also confirmed by values of HV

and HVR metrics, but because of space limitations these

characteristics are omitted in this paper). What is more, with

time the tendency of CoEMAS-based solver for focusing

solutions around small part of the whole Pareto frontier is

more and more distinct (see [13]).

VII. Summary and Conclusions

Growing interest in co-evolutionary algorithms and their

application in the area of multi-objective optimization results

from the ability of CoEAs to promote the useful population

diversity and their improved adaptive capabilities as com-

pared to evolutionary algorithms.

The system presented in this paper is based on the idea

of realization of co-evolutionary processes in the multi-

agent system what results in the decentralization of evolu-

tionary processes and co-evolutionary interactions. Presented

results of experiments with Laumanns and Kursawe problems

clearly show that CoEMAS not only properly located Pareto

frontiers of these two test problems but also the results

of this system were better than in the case of two other

“classical” algorithms. The population of CoEMAS was
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Fig. 7. Effective portfolio in consecutive steps consisting of seventeen
stocks proposed by CoEMAS

located very close to the “ideal” Pareto frontier. Also, the

Pareto frontier was very well “covered” by individuals, and

solutions were more numerous than in the case of PPES and

NPGA algorithms. This was the result of the tendency to

maintain high useful population diversity.

The results of experiments with the effective portfolio

building problem shows however that in the case of some

problems the proposed co-evolutionary mechanism is not

fully sufficient. It turned out that, in spite of the fact that

the Pareto frontier formed by the proposed system was more

numerous than in the case of “classical” multi-objective

evolutionary algorithms, the tendency to lose population

diversity appeared. This resulted in the fact that in the case

of this problem PPES and NPGA algorithms were able to

form frontiers better “covered” with individuals.

The results of experiments show that still more research

is needed on the proposed co-evolutionary mechanism—

especially when we consider the stable maintaining of useful

population diversity.
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