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Abstract— Molecular sequence alignment is one of the most
essential tools of the molecular biology. It permits to track
changes and similarities between molecular sequences. In this
paper the molecular sequence alignment problem is formulated
suitable for an Evolutionary Algorithm (EA), and two problem
instances are solved using Generalized Differential Evolution 3
(GDE3), which is a general purpose EA. Regardless of relatively
large number of decision variables, the instances were solvable
and results were comparable to those by sequence alignment
solvers in comparison.

I. INTRODUCTION

Alignment of two nucleic acid sequences is very important
for the understanding of the functions of novel genes and the
proteins encoded by them. It also helps to determine evolu-
tionary relationships between the genes. The latter question is
mostly answered by multiple sequence alignment, one method
of doing which is progressive pairwise sequence alignment. In
order to understand the function of a gene and/or the protein
encoded by the gene, comparison of the gene sequence with
a sequence of a gene of known function in a different species
can be done and a putative function can be identified for the
gene of interest. Thus, pairwise sequence alignment helps to
predict the functions of novel genes within any species or
genera. Particularly, these methods allow us to determine the
similarity between genome segments of two or more organisms
belonging to the same genera. Additionally, such techniques
can also be used to study hosts of other processes such as
molecular evolution, RNA folding, and gene regulation to
name a few. These algorithms have also been used to determine
homologies between proteins in order to predict structural
and functional relationships. Various algorithms have been
designed to carry out this task. These roughly fall into
two categories: those that carry out global alignments and
those that carry out local alignments. For pairwise sequence
comparison, there is the well-known Smith and Waterman
algorithm [1]. Algorithms using dynamic programming have
been widely used for solving the sequence alignment problem.
Additionally, various heuristic approaches have been devel-
oped to optimize accuracy and computational complexity such
as ClustalW [2], T-Coffee [3], and BLAST [4]. Ant Colony
Optimization (ACO) has also been used with Evolutionary

Algorithms in sequence alignment [5], [6].
Evolutionary Algorithms (EAs) are search and optimization

procedures that are motivated by the principles of natural evo-
lution [7], [8]. Some fundamental ideas of natural genetics are
borrowed and used artificially to construct search algorithms
that are generally robust and require minimal problem infor-
mation. They are developed in a way to simulate biological
evolutionary process and genetic operations on chromosomes.
It is now common knowledge that unlike the majority of the
conventional search algorithms, an EA starts with a population
of candidate solutions instead of a single one. In each step of a
search, it emulates a number of biological processes, crossover,
and mutation, for example to generate new and expectedly
better progeny. The population-based approach of the EAs is
very efficient for a global search. Unlike many gradient-based
techniques they are also far less prone to get stranded in a local
optima. Therefore, EAs are suitable for complex problems
where the nature of the search space is not very clearly known
a priori. Differential Evolution (DE) [9] is a relatively novel
real-coded EA and it has been gaining popularity due to
its good observed performance in practice. Its extension for
constrained multi-objective optimization, Generalized DE, has
been used here.

EAs have been used already earlier in multiple molecular
sequence alignment [10], [11]. However, these methods have
considered the alignment problem as a single-objective prob-
lem, whereas the nature of the problem is multi-objective as
it will be described in Section III.

The rest of the paper is organized as follows: In Section II
the concept of multi-objective optimization with constraints
is handled briefly. In Section III, the molecular sequence
alignment problem has been described in optimization point
of view. Section IV describes the optimization method used to
solve the problem. The problem formulation and experiments
are reported in Sections V and VI. Finally, conclusions are
drawn in Section VII.

II. MULTI-OBJECTIVE OPTIMIZATION WITH

CONSTRAINTS

Many practical problems have multiple objectives and sev-
eral aspects cause multiple constraints to problems. For ex-
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ample, mechanical design problems have several objectives
such as obtained performance and manufacturing costs, and
available resources may cause limitations. Constraints can be
divided into boundary constraints and constraint functions.
Boundary constraints are used when the value of a decision
variable is limited to some range, and constraint functions
represent more complicated constraints, which are expressed
as functions.

A mathematically constrained multi-objective optimization
problem (MOOP) can be presented in the form [12, p. 37]:

minimize {f1(~x), f2(~x), . . . , fM (~x)}

subject to (g1(~x), g2(~x), . . . , gK(~x))
T
≤ ~0.

(1)

Thus, there are M functions to be optimized and K constraint
functions. Maximization problems can be easily transformed
to minimization problems and different constraints can be
converted to form gj(~x) ≤ 0, Thereby the formulation in (1)
is without loss of generality.

Typically, MOOPs are often converted to single-objective
optimization problems by predefining weighting factors for
different objectives, expressing the relative importance of each
objective. Optimizing several conflicting objectives simulta-
neously without articulating the relative importance of each
objective a priori, is often called Pareto-optimization. An ob-
tained solution is Pareto-optimal if none of the objectives can
be improved without impairing at least one other objective [12,
p. 11]. If the obtained solution can be improved in such a way
that at least one objective improves and the other objectives
do not decline, then the new solution dominates the original
solution. The objective of Pareto-optimization is to find a set
of solutions that are not dominated by any other solution.

A set of Pareto-optimal solutions form a Pareto front, and
an approximation of the Pareto front is called a set of non-
dominated solutions, because the solutions in this set are not
dominating each other in the space of objective functions.
From the set of non-dominated solutions the decision-maker
may pick a solution, which provides a suitable compromise
between the objectives. This can be viewed as a posteriori
articulation of the decision-makers preferences concerning the
relative importance of each objective.

Weak dominance relation � between two vectors is defined
such that ~x1 weakly dominates ~x2, i.e., ~x1 � ~x2 iff ∀i :
fi(~x1) ≤ fi(~x2). Dominance relation ≺ between two vectors
is defined such that ~x1 dominates ~x2, i.e., ~x1 ≺ ~x2 iff ~x1 �
~x2 ∧ ∃i : fi(~x1) < fi(~x2). The dominance relationship can be
extended to take into consideration constraint values besides
objective values. A constraint-domination ≺c is defined here
so that ~x1 constraint-dominates ~x2, i.e., ~x1 ≺c ~x2 iff any of
the following conditions is true [13]:

• ~x1 and ~x2 are infeasible and ~x1 dominates ~x2 in con-
straint function violation space.

• ~x1 is feasible and ~x2 is not.
• ~x1 and ~x2 are feasible and ~x1 dominates ~x2 in objective

function space.
The definition for weak constraint-domination �c is analo-

gous dominance relation changed to weak dominance in above

ATCCTGACGGT
||| || ||
CCT ACCGT

Fig. 1. Optimal alignment between DNA sequences ATCCTGACGGT and
CCTACCGT.

definition. This constraint-domination is a special case of more
general concept of having goals and priorities that is presented
in [14].

III. THE MOLECULAR SEQUENCE ALIGNMENT PROBLEM

Deoxyribonucleic acid (DNA) sequences are typical molec-
ular sequences and consist of four nucleotides, adenine (A),
cytosine (C), guanine (G), and thymine (T), which identify
DNA sequences [15]. For example, string ATCCTGACGGT
could code one short DNA sequence. In nature, DNA strings
are replicating, e.g., during cell division. Sometimes errors
occur in DNA replication and resulting strings differ from each
other. The replicated DNA sequence might contain altered,
missing, or additional bases compared to the original DNA
sequence. Tracking these changes between two molecular
sequences is known as the molecular sequence alignment
problem, where maximal number of matching base pairs (bps)
is tried to find by shifting sequences and adding minimal
amount of gaps between bases. For example, this kind of align-
ment between sequences ATCCTGACGGT and CCTACCGT is
shown in Fig. 1. The sequences contain seven matching base
pairs and there is one gap added into the shorter sequence.

The alignment problem is a multi-objective optimization
problem since it has two main goals: maximizing matching
bases and minimizing number of gaps. Traditionally objectives
have been combined to a single objective function and solved
using a single-objective optimizer. However, this will provide
only one alignment between sequences at one optimization
run. Probably, there are several different ways to explain
difference between sequences, e.g., true changes might have
caused less gaps and more mismatching nucleotides than
predicted by maximizing matching bases. Multi-objective op-
timization is a way to find several alternatives. Especially,
a multi-objective EA can provide these at one optimization
run [16]. Besides several objectives, the problem might have
constrains, e.g., maximal number of gaps between two bases
and maximal number of gaps in whole molecular sequence.
In these cases, an optimization method for constrained multi-
objective optimization is needed in order to solve the problem.
Such kind of method is described in following Section.

IV. GENERALIZED DIFFERENTIAL EVOLUTION

A. Differential Evolution

The DE algorithm [9], [17] was introduced by Storn and
Price in 1995. The design principles of DE are simplicity,
efficiency, and the use of floating-point encoding instead of
binary numbers. As a typical Evolutionary Algorithm (EA),
DE has a random initial population that is then improved using
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selection, mutation, and crossover operations. Several ways
exist to determine a stopping criterion for EAs but usually a
predefined upper limit Gmax for the number of generations to
be computed provides an appropriate stopping condition. Other
control parameters for DE are the crossover control parameter
CR, the mutation factor F , and the population size NP .

In each generation G, DE goes through each D dimensional
decision vector ~xi,G of the population and creates the corre-
sponding trial vector ~ui,G as follows [18]:

r1, r2, r3 ∈ {1, 2, . . . , NP} , (randomly selected,
except mutually different and different from i)

jrand = floor (rand i[0, 1) · D) + 1
for(j = 1; j ≤ D; j = j + 1)
{

if(rand j [0, 1) < CR ∨ j = jrand)
uj,i,G = xj,r3,G + F · (xj,r1,G − xj,r2,G)

else
uj,i,G = xj,i,G

}

(2)

This is the most common DE version, DE/rand/1/bin. Both
CR and F remain fixed during the entire execution of the
algorithm. Parameter CR ∈ [0, 1], which controls the crossover
operation, represents the probability that an element for the
trial vector is chosen from a linear combination of three
randomly chosen vectors and not from the old vector ~xi,G.
The condition “j = jrand” is to make sure that at least one
element is different compared to the elements of the old vector.
The parameter F is a scaling factor for mutation and its value
is typically (0, 1+]. In practice, CR controls the rotational
invariance of the search, and its small value (e.g., 0.1) is
practicable with separable problems while larger values (e.g.,
0.9) are for non-separable problems. The control parameter F

controls the speed and robustness of the search, i.e., a lower
value for F increases the convergence rate but also the risk of
getting stuck into a local optimum. Parameters CR and NP

have the same kind of effect on the convergence rate as F has.
After the mutation and crossover operations, the trial vector

~ui,G is compared to the old vector ~xi,G. If the trial vector
has an equal or better objective value, then it replaces the old
vector in the next generation. This can be presented as follows
in the case of minimization of an objective [18]:

~xi,G+1 =

{

~ui,G if f(~ui,G) ≤ f(~xi,G)
~xi,G otherwise

. (3)

DE is an elitist method since the best population member
is always preserved and the average objective value of the
population will never get worse.

B. Generalized Differential Evolution

The first version of a Generalized Differential Evolution
(GDE) extended DE for constrained multi-objective optimiza-
tion, and it modified only the selection rule of the basic
DE [13]. The basic idea in the selection rule of GDE is
that the trial vector is selected to replace the old vector in
the next generation if it weakly constraint-dominates the old

vector. This means that the trial vector is required to dominate
compared old population member in the constraint violation
space or in the objective function space, or at least provide
an equally good solution as the old population member. There
was no explicit sorting of non-dominated solutions [16, pp.
40 – 44] during the optimization process or any mechanism
for maintaining the distribution and extent of solutions. Also,
there was no extra repository for non-dominated solutions.

The second version, GDE2, made a decision based on
the crowdedness when the trial and old vector were feasi-
ble and non-dominating each other in the objective function
space [19]. This improved the extent and distribution of the
obtained set of solutions but slowed down the convergence of
the overall population because it favored isolated solutions far
from the Pareto-front until all the solutions were converged
near the Pareto-front.

The third and latest version is GDE3 [20], [21], which is
formally presented in (4). Notation CD means crowding dis-
tance [16, pp. 248–249], which approximates the crowdedness
of a vector in its non-dominated set. Besides the selection,
another part of the basic DE has also been modified. Now, in
the case of feasible and non-dominating solutions, both vectors
are saved for the population of next generation. Before starting
the next generation, the size of the population is reduced
using non-dominated sorting and pruning based on diversity
preservation. The pruning technique used in GDE3 is based on
crowding distance, which provides good crowding estimation
in the case of two objectives. However, crowding distance
fails to approximate crowdedness of solutions when number
of objectives is more than two [21], and other crowdedness
estimation technique – such as presented in [22] – should be
used instead.

Because the constraint handling of GDE versions is based
on dominance principle, it can be implemented in such a way
that the number of function evaluations is reduced because not
always all the constraints and objectives need to be evaluated,
i.e., inspecting constraint violations (even one constraint) is
often enough to determine, which vector to select for the
next generation [9]. This reduces number of needed constraint
function evaluations, which is helpful in the case of many
and/or computationally heavy constraint functions.

All the GDE versions handle any number of M objectives
and any number of K constraints, including the cases where
M = 0 (constraint satisfaction problem) and K = 0 (uncon-
strained problem). When M = 1 and K = 0, versions are
identical to the original DE, and this is why they are referred
as Generalized DEs.

V. PROBLEM FORMULATION

As described in Section III, the molecular sequence align-
ment problem is to find minimal amount of gaps between
consecutive bases in order to maximize number of matching
base pairs between two molecular sequences. In problem
coding, the number of gaps between consecutive nucleotides
was coded with variables, each variable coding one gap.
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Input :D, Gmax, NP ≥ 4, F ∈ (0, 1+], CR ∈ [0, 1], and initial bounds: ~x(lo), ~x(hi)

Initialize :

{

∀i ≤ NP ∧ ∀j ≤ D : xj,i,G=0 = x
(lo)
j + rand j [0, 1] ·

(

x
(hi)
j − x

(lo)
j

)

i = {1, 2, . . . , NP} , j = {1, 2, . . . , D} , G = 0, m = 0, rand j [0, 1) ∈ [0, 1),
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Mutate and recombine:
r1, r2, r3 ∈ {1, 2, . . . , NP} , randomly selected,

except mutually different and different from i

jrand ∈ {1, 2, . . . , D} , randomly selected for each i

∀j ≤ D, uj,i,G =







xj,r3,G + F · (xj,r1,G − xj,r2,G)
if rand j [0, 1) < CR ∨ j = jrand

xj,i,G otherwise
Select :

~xi,G+1 =

{

~ui,G if ~ui,G �c ~xi,G

~xi,G otherwise

Set :

m = m + 1
~xNP+m,G+1 = ~ui,G

if


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While m > 0

Select ~x ∈ {~x1,G+1, ~x2,G+1, . . . , ~xNP+m,G+1} :






∀i ~x ⊀c ~xi,G+1

∧
∀(~xi,G+1 : ~xi,G+1 ⊀c ~x) CD (~x) ≤ CD (~xi,G+1)

Remove ~x

m = m − 1

G = G + 1

(4)

In addition, one variable coded transition between first nu-
cleotides of sequences. This means that total number of
variables was one smaller than the total number of nu-
cleotides in sequences. For example, variable vector ~x =
[−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] represents align-
ment shown in Fig. 1. First variable in the vector codes the
transition between first nucleotides of sequences and its value
is -2 since the first nucleotide of the first sequence locates
two nucleotide locations to left from the first nucleotide of the
second sequence in Fig. 1. After the first variable are gaps for
the first sequence and then gaps for the second sequence coded
into variables. The problem coding is illustrated in Fig. 2.

The problem formulation contained also constraints. The
total number of gaps was limited to be at most 50% from the
number of nucleotides in a sequence, and the number of gaps
between consecutive bases was limited to be at most 10% from
the number of nucleotides in a sequence. Transition between
sequences was limited according to number of nucleotides in

[−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]

ATCCTGACGGT

−−CCT−ACCGT

Fig. 2. Illustration of coding between decision variables and a sequence
alignment.

sequences and minimal number of gaps was (naturally) limited
to be 0. The whole alignment problem for molecular sequences
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S1 and S2 had following formulation:

Maximize number of matching base pairs

Minimize
∑|S1|+|S2|−1

i=2 xi

Subject to
∑|S1|

i=2 xi ≤ 0.5|S1|
∑|S1|+|S2|−1

i=|S1|+1 xi ≤ 0.5|S2|

xi ≤ 0.1|S1|, i = 2, . . . , |S1|
xi ≤ 0.1|S2|, i = |S1| + 1, . . . , |S1| + |S2| − 1
−|S1| + 1 ≤ x1 ≤ |S2| − 1
xi ≥ 0, i = 2, . . . , |S1| + |S2| − 1,

(5)
where xi is ith variable from a decision variable vector ~x and
|S| is a number of nucleotides in molecular sequence S.

Boundary constraint violations can be handled different
ways. One way is to reflect violating variable values back
from the violated boundary using following rule before the
selection operation of GDE3:

uj,i,G =











2x
(lo)
j − uj,i,G if uj,i,G < x

(lo)
j

2x
(up)
j − uj,i,G if uj,i,G > x

(up)
j

uj,i,G otherwise

, (6)

where x
(lo)
j and x

(up)
j are lower and upper limits respectively

for a decision variable xj . This boundary constraint violation
method was used in experiments.

Fig. 4 illustrates how a trial vector is generated using the
problem coding and DE operators.

VI. EXPERIMENTS

Three DNA sequences were taken from a public GenBank
database of the National Center for Biotechnology Informa-
tion [23]. Code names of these sequences are AY216995,
AY217003, and Z36014, and they contain 1551, 1178, and
1710 bases, respectively (sequences are shown in Appendix).
Two alignment problem instances were solved: AY216995 vs.
Z36014 with 3260 variables and AY217003 vs. Z36014 with
2887 variables. Relatively large number of integer variables
and non-linear functions make the instances challenging for a
general purpose optimizer.

Problems and GDE3 optimizer were implemented in the C
programming language. All the variables are internally real
numbers and their value was rounded to nearest integer prior
evaluation of objectives and constraints. Variables coding gaps
were uniformly initialized to range [0, 2].

The alignment problem instances were tried to solve
using different control parameter combinations CR ∈
{0.0, 0.1, . . . , 1.0}, F ∈ {0.1, 0.3, 0.5}, and NP ∈
{100, 500, 1000} with a couple of repetitions. Maximum num-
ber of generations was 100 000 in all the cases. With the
both problem instances it was observed that F = 0.5 is
too large value to have converged solutions in number of
generations used. Also, CR = 0.0 value should not be used
for the same reason. For the smallest population size (100), F

should be 0.3, for the larger population sizes, also F = 0.1
was usable parameter value for the first problem instance.

900 950 1000 1050 1100
0

10

20

30

40

50

Number of matching base pairs

N
um

be
r 

of
 g

ap
s

AY216995 vs. Z36014

GDE3
ClustalW
BLAST

Fig. 3. Solutions for the AY216995 vs. Z36014 alignment problem instance.

It appeared that the crossover parameter should be in the
value range 0.1 ≤ CR ≤ 0.7, smaller values providing better
convergence in general. There is little difference in results
between population sizes 500 and 1000, thus it appears that
population size 500 is already big enough for the problem
instances.

Fig. 3 shows the best obtained set of solutions for the
AY216995 vs. Z36014 problem instance. The control pa-
rameters values of GDE3 were CR = 0.6, F = 0.1, and
NP = 500. Results obtained with ClustalW and BLAST
are also shown1. Maximal number of matching base pairs
was 1116 with ClustalW. Corresponding number of gaps was
44 and largest number of gaps between consecutive bases
was seven. BLAST gave the worst solution, which had 882
matching base pairs and one gap. GDE3 found 17 different
solutions with different number of matching base pairs and
gaps. Maximal number of matching base pairs with GDE3
was 1071 and corresponding number of gaps was 17. Any
consecutive bases did not have more than one gap. Apparently,
solutions with more gaps between consecutive bases were
not found because of the relatively small initialization range.
DE is capable to advance search outside of the initialization
range, but this would had needed larger F value and/or larger
population size. Probably better choice would had been to use
larger initialization range. All these options would slow down
convergence.

Fig. 5 shows the best obtained set of solutions for the
AY217003 vs. Z36014 problem instance. Corresponding con-
trol parameters values of GDE3 were CR = 0.5, F = 0.3,
and NP = 500. All the methods found the same solution,
which has 1167 matching base pairs and one gap. Besides,
GDE3 found two other solutions from which one is better
than found by ClustalW and BLAST. This alignment has 1168
matching base pairs and two gaps. Decision variable values
for this solution were zero except x1 = 148, x1178 = 1, and
x2458 = 1.

Since ClustalW and BLAST are specialized to solve the
molecular sequence alignment problem, they solved problem
instances much faster than GDE3; ClustalW and BLAST give

1ClustalW tool used is at http://www.ebi.ac.uk/clustalw/ and BLAST tool
is at http://www.ncbi.nlm.nih.gov/blast/bl2seq/wblast2.cgi (15.1.2007).
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X   = [−3.1, 0.3, 0.1, 0.9, 0.3, 0.2, 0.0, 0.4, 1.3, 0.2, 0.1, 0.0, 0.3, 1.1, 0.0, 0.2, 0.1, 0.4]i

X    = [1.2, 0.1, 0.2, 0.2, 0.0, 1.7, 0.0, 0.1, 0.3, 0.2, 0.1, 0.1, 0.3, 0.1, 0.1, 0.2, 0.0, 0.4]r1

X    = [−1.8, 0.1, 0.2, 0.0, 0.3, 0.1, 1.3, 0.0, 0.4, 0.6, 0.1, 0.2, 0.0, 0.2, 1.4, 0.0, 0.1, 0.3]r2

X    = [−2.2, 0.0, 0.3, 0.2, 0.1, 0.1, 0.2, 0.4, 0.3, 0.2, 0.1, 0.3, 0.0, 0.2, 0.3, 0.1, 1.3, 0.2]r3

ATC−CTGAC−GGT

−−−CCT−ACCGT
−ATCCT−−GACGGT

CCTACGT
ATCCTG−ACG−GT

−−CCTA−CCGT

−

F * +

V   = [−0.7, 0.0, 0.3, 0.3, −0.05, 0.9, −0.45, 0.45, 0.25, 0.0, 0.1, 0.25, 0.15, 0.15, −0.35, 0.2, 1.25, 0.25]i

−−−CCT−ACCGT

ATC−CTGACGGT

i

iU’   = [−3.1, 0.0, 0.3, 0.9, 0.05, 0.2, 0.0, 0.4, 0.25, 0.0, 0.1, 0.0, 0.15, 1.1, 0.0, 0.2, 0.1, 0.25]

U   = [−3.1, 0.0, 0.3, 0.9, −0.05, 0.2, 0.0, 0.4, 0.25, 0.0, 0.1, 0.0, 0.15, 1.1, 0.0, 0.2, 0.1, 0.25]

ATCCTGACGGT

−−CCTACC−GT

F = 0.5

Fixing variable boundary constraint violations

CR = 0.5

Fig. 4. Creation of a trial vector using the problem coding and DE operators.

a solution in seconds whereas 100 000 generations with a
population of 500 individuals takes hours to evolve with
GDE3. Still, it is notable that GDE3, a general purpose EA,
was able to solve the problem instances despite large number
of discrete decision variables.

Figs. 6 and 7 show convergence curves of objective values
during GDE3 runs corresponding to Figs. 3 and 5. Curves rep-
resent the average objective values of the population through
generations. For the AY216995 vs. Z36014 alignment problem
instance in Fig. 6, the first objective value change most during
20 000 first generations and after this its value is improving
very slowly. Corresponding number of gaps is reducing till
40 000 generations and after that it is increasing with the
first objective. Also in the case of the AY217003 vs. Z36014
alignment problem instance in Fig. 7, the conflict between
objectives cause non-monotonic convergence, this time to the
curve of the first objective: the value of the first objective

increases except when the number of generations is 30 000.
The number of gaps is larger in Fig. 7 than in Fig. 6 during
early generations because of larger F value – number of
gaps is large at the beginning of generations also for the first
problem instance when F = 0.3. Example about this is shown
in Fig. 8, where the same control parameter values are used
for the AY216995 vs. Z36014 alignment problem instance as
for the AY217003 vs. Z36014 alignment problem instance in
Fig. 7.

VII. CONCLUSIONS

The molecular sequence alignment problem with two in-
stances has been solved using GDE3, a general purpose EA.
Although problem is non-linear and it has relatively large num-
ber of integer variables, it was solvable. Obtained results were
found comparable to those obtained with two problem solvers
designed for the molecular sequence alignment problem. In
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Fig. 6. Convergence curves of the objectives for the AY216995 vs. Z36014
alignment problem instance (CR = 0.6, F = 0.1, and NP = 500).
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Fig. 7. Convergence curves of the objectives for the AY217003 vs. Z36014
alignment problem instance (CR = 0.5, F = 0.3, and NP = 500).
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Fig. 8. Convergence curves of the objectives for the AY216995 vs. Z36014
alignment problem instance (CR = 0.5, F = 0.3, and NP = 500).

one instance, GDE3 found even better alignment than the other
solvers in comparison.
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APPENDIX

The DNA sequences used in the experiments. The source
of sequences is [23].

AY216995 (1551 bases):
TTTCTCAAGAAAGGTCTCGTGCCACGGCGCCATTGTGAAAATGCTTC
TTCCGTCAAGAAATGAGTCAAGGCCATGCCAATAAGATCTATCAATT
TTGACATCAGGCGACGCGGCCCTAGTCAAACTCTTCGTATAAATACC
ATGAGACAAGAAAGCAAAGGGATAGACATATTTCTCGAGCAATTATA
GTTTCCGTTTAGTGGGGCGGGTGCTAGAAGTATAATTCAAAAATTCT
GGTCTACTATATATCAACGCAACCTAACTATGTCTTCGCAAGCTATT
CCCGAAAGCCAAAAGGCAATCGTTTTTTATGAAACAAACGGTAAGCT
GGAATACAAGGACATTGCAGTCCCAGAGCCTAAAGCCAATGAAATTC
TAGTTCATGTCAAATATTCCGGTGTTTGTCACAGCGATTTACACGCA
TGGCGTGGCGATTGGCCATTCCAATTGAAATTTCCATTGATTGGTGG
GCATGAGGGTGCAGGTGTTGTTGTTAAGTTGGGCTCCAACGTCAAGG
GCTGGAAAGTCGGTGACTTGGCAGGTATCAAATGGTTGAACGGTACG
TGTATGTCCTGTGAATATTGTGAAGTTGGTAACGAATCTCAATGTCC
CCATTTGGATGGTACCGGCTTCACTCATGATGGTACTTTTCAAGAGT
ATGCAACTGCCGATGCTGTTCAGGCTGCTCATCTCCCAGAGAATGTC
GACCTTGCGGAAGTTGCCCCAATTTTGTGTGCAGGGGTTACAGTTTA
TAAAGCACTGAAAAGAGCCAATTTAATTCCCGGTCAATGGGTTACTA
TTTCTGGTGCTTGCGGAGGATTAGGTTCCCTGGCCATTCAGTATGCT
ACGGCTATGGGTTACAGGGTCATTGGTATTGACGAAGGGGAGACCAA
AAAACAGCTATTCGAAGGACTAGGTGGGGAAGTATTTATCGATTTCA
CAAAAGAAAAGGATATCGTTGGTGCCGTTATCAAAGCCACTGACGGT
GGTTCCCATGGTGTTATCAACGTGTCTGTTTCTGAAGCAGCCATCGA
AGCTTCAACGAGATACTGTAGACCCAACGGTACTGTTGTCTTGGTTG
GTATGCCGGCTCATGCTTATTGCAAATCCGACGTCTTCAATCAAGTT
GTTAAATCCATTTCCATTGTCGGATCTTGCGTTGGTAACAGAGCTGA
CACAAGGGAAGCTTTGGACTTTTTCGCCAGAGGATTGATTAAATCTC
CAATTCACTTGGCTAGCCTATCTGATGTTCCAGAGATTTTTGAAAAG

ATGGAAAAGGGTGAAATCGTTGGCAGATATGTTATTGACACTTCTAA
ATAATCTCTTTAACGAATGTAACGAATTGTATCTTTGATTTTATATA
ATCACATATTCTGCAAGTATGATCTTTTTTAACATGTATTTTTAAGA
AAGCGAATCTTTCTTACGTCCTTCGAAATTCTTATAAGCAAGACTGC
TTCGAGAATTTGCGTCATAAAACTCAGCACGCCCTGAGTATATATTA
GATTATCAGATGTATGATTCAGCACAGTACATTTTATTTGGGGTTGT

AY217003 (1178 bases):
TTGTCTCTGATTGGAAGATACCTAAAAAAGTTATTTAACTACATATC
AACAAAATCAAAGCAACATGCCCTCGCAAGTCATTCCTGAAAAACAA
AAGGCTATTGTCTTTTATGAGACAGATGGAAAATTGGAATATAAAGA
CGTCACAGTTCCGGAACCTAAGCCTAACGAAATTTTAGTCCACGTTA
AATATTCTGGTGTTTGTCATAGTGACTTGCACGCGTGGCACGGTGAT
TGGCCATTTCAATTGAAATTTCCATTAATCGGTGGTCACGAAGGTGC
TGGTGTTGTTGTTAAGTTGGGATCTAACGTTAAGGGCTGGAAAGTCG
GTGATTTTGCAGGTATAAAATGGTTGAATGGGACTTGCATGTCCTGT
GAATATTGTGAAGTAGGTAATGAATCTCAATGTCCTTATTTGGATGG
TACTGGCTTCACACATGATGGTACTTTTCAAGAATACGCAACTGCCG
ATGCCGTTCAAGCTGCCCATATTCCACCAAACGTCAATCTTGCTGAA
GTTGCCCCAATCTTGTGTGCAGGTATCACTGTTTATAAGGCGTTGAA
AAGAGCCAATGTGATACCAGGCCAATGGGTCACTATATCCGGTGCAT
GCGGTGGCTTGGGTTCTCTGGCAATCCAATACGCCCTTGCTATGGGT
TACAGGGTCATTGGTATCGATGGTGGTAATGCCAAGCGAAAGTTATT
TGAACAATTAGGCGGAGAAATATTCATCGATTTCACGGAAGAAAAAG
ACATTGTTGGCGCTATAATAAAGGCCACTAATGGCGGTTCTCATGGA
GTTATTAATGTGTCTGTTTCTGAAGCAGCTATCGAGGCTTCTACGAG
GTATTGTAGGCCCAATGGTACTGTCGTCCTGGTTGGTATGCCAGCTC
ATGCTTACTGCAATTCCGATGTTTTCAATCAAGTTGTAAAATCAATT
TCCATCGTTGGATCTTGTGTTGGAAATAGAGCTGATACAAGGGAGGC
TTTAGATTTCTTCGCCAGAGGTTTGATCAAATCTCCGATCCACTTAG
CTGGCCTATCGGACGTTCCTGAAATTTTTGCAAAGATGGAGAAGGGT
GAAATTGTTGGTAGATATGTTGTTGAGACTTCTAAATGATCTTTTGT
AACGAAATTTGATGAATATATTTTTACTTTTTATATAAGCTATTTTG
TAA

Z36014 (1710 bases):
GTGACAATGAAATAATCAAATTGTGACATCTGCTGACGCGGGATCGT
TCCTTCGTATTGTCTAGATTGTAATCTATATAACATACTACGAATAT
AAAAGAGGGACTACAAGATATTTCTAGCGCAAACTACTGCTTTACTG
TCTCACAATGTCTCTGATTGGAAGATACCTAAGAAAATTATTTAACT
ACATATCTACAAAATCAAAGCATCATGCCTTCGCAAGTCATTCCTGA
AAAACAAAAGGCTATTGTCTTTTATGAGACAGATGGAAAATTGGAAT
ATAAAGACGTCACAGTTCCGGAACCTAAGCCTAACGAAATTTTAGTC
CACGTTAAATATTCTGGTGTTTGTCATAGTGACTTGCACGCGTGGCA
CGGTGATTGGCCATTTCAATTGAAATTTCCATTAATCGGTGGTCACG
AAGGTGCTGGTGTTGTTGTTAAGTTGGGATCTAACGTTAAGGGCTGG
AAAGTCGGTGATTTTGCAGGTATAAAATGGTTGAATGGGACTTGCAT
GTCCTGTGAATATTGTGAAGTAGGTAATGAATCTCAATGTCCTTATT
TGGATGGTACTGGCTTCACACATGATGGTACTTTTCAAGAATACGCA
ACTGCCGATGCCGTTCAAGCTGCCCATATTCCACCAAACGTCAATCT
TGCTGAAGTTGCCCCAATCTTGTGTGCAGGTATCACTGTTTATAAGG
CGTTGAAAAGAGCCAATGTGATACCAGGCCAATGGGTCACTATATCC
GGTGCATGCGGTGGCTTGGGTTCTCTGGCAATCCAATACGCCCTTGC
TATGGGTTACAGGGTCATTGGTATCGATGGTGGTAATGCCAAGCGAA
AGTTATTTGAACAATTAGGCGGAGAAATATTCATCGATTTCACGGAA
GAAAAAGACATTGTTGGTGCTATAATAAAGGCCACTAATGGCGGTTC
TCATGGAGTTATTAATGTGTCTGTTTCTGAAGCAGCTATCGAGGCTT
CTACGAGGTATTGTAGGCCCAATGGTACTGTCGTCCTGGTTGGTATG
CCAGCTCATGCTTACTGCAATTCCGATGTTTTCAATCAAGTTGTAAA
ATCAATCTCCATCGTTGGATCTTGTGTTGGAAATAGAGCTGATACAA
GGGAGGCTTTAGATTTCTTCGCCAGAGGTTTGATCAAATCTCCGATC
CACTTAGCTGGCCTATCGGATGTTCCTGAAATTTTTGCAAAGATGGA
GAAGGGTGAAATTGTTGGTAGATATGTTGTTGAGACTTCTAAATGAT
CTTTTGTAACGAATTTGATGAATATATTTTTACTTTTTATATAAGCT
ATTTTGTAGATATTGACTTTTTACGATTTATTTGTAACAATGAGAAT
TACTCCATTTCTGAACTTCAGTAAATAGCGAGTGATTCTGTACTTTG
CGAGAACCGGTGGACATTTGGTATTTTGCCTTACAAGAACAACCTAT
ACAAACGTTTCAATATCTAATTCTTTGTAATCCATTGTTTTACGAGA
CATATAATGTGATATATAGATGAACTTTACGTATAAAATGATATATT
TAAAACTAGCAACTGCGTGCGTAAGACAAACTGAAATAGGCCATTTA
CGGAAAAGAAATTTAATAATGTCGACTGGAAACTGAAACCAGGAGGA
GTAGAAATTGGTTAAATTGATTAGCTAAAATTTACTCGTTGTGGACA
GAGTTTGAGCCAAGCGGA
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