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Abstract— Local dominance has been shown to improve sig-
nificantly the overall performance of multiobjective evolutionary
algorithms (MOEAs) on combinatorial optimization problems.
This work proposes the control of dominance area of solutions
in local dominance MOEAs to enhance Pareto selection aiming
to find solutions with high convergence and diversity properties.
We control the expansion or contraction of the dominance area
of solutions and analyze its effects on the search performance
of a local dominance MOEA using 0/1 multiobjective knapsack
problems. We show that convergence of the algorithm can
be significantly improved while keeping a good distribution
of solutions along the whole true Pareto front by using local
dominance with expansion of dominance area of solutions. We
also show that by controlling the dominance area of solutions
dominance can be applied within very small neighborhoods,
which reduces significantly the computational cost of the local
dominance MOEA.

I. INTRODUCTION

Multiobjective evolutionary algorithms (MOEAs) [1], [2]
are being increasingly investigated for solving multiobjective
optimization problems. Some important features of the latest
generation MOEAs are that selection incorporates elitism and
it is biased by Pareto dominance and a diversity preserving
strategy in objective space. Pareto dominance based selection
is thought to be effective for problems with convex and non-
convex fronts and has been successfully applied, especially in
two and three objectives problems.

However, some current research reveals that ranking by
Pareto dominance on problems with an increased number
of objectives might not longer be effective [3], [4], [5]. It
has been shown that the characteristics of multi-objective
landscapes viewed in terms of non-dominated fronts can
change drastically as the number of objectives increases, i.e.
the number of fronts reduces substantially and become denser
(more solutions per front) just by increasing the number of
objectives [5]. In this case, most sampled solutions at a given
time turn to be non-dominated. That is, most solutions are
assigned the same rank of non-dominance and Pareto selection
weakens since it has to discriminate mostly based on diversity
of solutions. Another factor that affects the density of the
fronts is the complexity of the individual single objective
landscapes. It has been shown that the top non-dominated
fronts become denser as the complexity of the landscapes
reduces, and vice-versa [5], which affects the behavior and
effectiveness of conventional Pareto selection. These studies
suggest that for selection to be effective a more careful

analysis of Pareto dominance relation is required when the
number of objectives increases. In addition, for any number
of objectives, the dominance relation should be appropriately
revised according to the characteristics of the multiobjective
landscape.

Aiming to find better ways to perform Pareto selection, in
previous works we have proposed the use of local dominance
in MOEAs. In [6] we introduced a method that creates a
neighborhood around each individual and assigns a local dom-
inance rank after rotating the principal search direction of the
neighborhood by using polar coordinates in objective space.
Experimental results on combinatorial optimization problems
showed that the overall performance of the method in terms
of hypervolume is significantly better than the performance
of algorithms applying dominance globally as conventional
approaches do. Local dominance with alignment of principle
search direction induces the algorithm to search for solutions
along the whole true Pareto front. However, convergence
towards the true Pareto front might slightly deteriorate in
some regions. Also, in order to achieve better performance,
computational cost of the local dominance algorithm might
be greater than a conventional global dominance algorithm.

In order to solve these problems, in this work we propose
to include the control of dominance area of solutions [7] in
local dominance MOEAs and analyze its effects on search
performance. In [7] we showed that the degree of expansion
or contraction of the dominance area of solutions can be
controlled using a user-defined parameter S. The motivation
of the present work is to enhance selection aiming to find
solutions with high convergence properties covering the whole
true Pareto front on combinatorial optimization problems. We
conduct experiments with 0/1 multiple knapsack problems
on m = {2, 3, 4} objectives showing that convergence of
the algorithm can be significantly improved while covering
the whole true Pareto front by using local dominance with
expansion of dominance area of solutions. We also show that
by controlling the dominance area of solutions dominance can
be applied within very small neighborhoods, which reduces
significantly the computational cost of the algorithm.

II. MOEA USING LOCAL DOMINANCE

In this section we explain in detail the local dominance
MOEA [6]. The main steps of our method at each generation
are as follows:
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(a) Before rotation (b) After rotation (c) Alignment

Fig. 1. Neighborhood creation, its rotation, and the obtained fronts after non-dominance sorting in the calculation of Local Dominance (LD), (a) and (b).
Alignment of principle dominance direction with principle search direction, (c).

(i) Calculate Local Dominance (LD) for each individual in
the population P(t) and assign a local non-domination
rank.

(ii) Assign a θ-crowding factor to each individual.
(iii) Truncate the population P(t) to obtain the parent popu-

lation Q(t) taking into account the local non-dominance
ranking and θ-crowding factor.

(iv) Create the offspring population R(t) from Q(t) applying
Local Recombination (LR).

(v) Evaluate the offspring population Q(t).
(vi) Join the parent and offspring population to create the

new population P(t + 1) for the next generation.

Note that the method uses local dominance and local re-
combination with different locality. Below we explain mainly
local dominance, the main focus of this work.

A. Local Dominance (LD)

To calculate local dominance of the individuals in the
population P(t) first the fitness vector of each individual
is transformed to polar coordinates in the objective function
space, i.e. an individual p is expressed by a norm rp and
m − 1 declination angles θ1,p, θ2,p, · · · , θm−1,p, where m is
the number of objectives. Second, the neighborhood for local
dominance SLD of individual p is temporally created as a local
sub-population by choosing the nLD closest individuals to p
from the entire population P(t). The closeness δp,x between
an individual p and another individual x is determined by
their declination angles to each axis of objective function as
follows1

δp,x =

m−1∑

i=1

|θi,p − θi,x| . (1)

Note that p is part of its neighborhood since δp,p = 0. Third,
a principle search direction {θ̂1,p, θ̂2,p, · · · , θ̂m−1,p} for the
neighborhood SLD is established by calculating the angle

1Eq. (1) can also be calculated by using the inner product and norms of two
vectors. However, here we use the declination angles calculated in advance
to perform rotation.

difference between extreme individuals in the neighborhood
of p. That is,

θ̂i,p =
(θmax

i,p − θmin
i,p )

2
+ θmin

i,p (2)

where θmax
i,p = max{θi,x1

, θi,x2
, · · · , θi,xnLD

}, θmin
i,p =

min{θi,x1
, θi,x2

, · · · , θi,xnLD
}, and xj ∈ SLD. Next, the

principle search direction is rotated by {θ̂1,p − π/4, θ̂2,p −
π/4, · · · , θ̂m−1,p − π/4}, so that all its declination angles
would be π/4. Accordingly, all individuals in the local sub-
population are rotated by the same rotation angles, so their
declination angles would be around π/4. Finally, a non-
domination sorting procedure [8] is applied to the rotated
neighborhood S

′

LD, and p is assigned a rank equal to the non-
dominated front it belongs to. Fig. 1 (a) and (b) illustrate for
two objectives the neighborhood creation, its rotation, and the
fronts obtained with non-domination sorting before and after
rotation. Varying the number of elements in the neighborhood
nLD ≤ |P(t)| we can control the degree of locality for
dominance. In the extreme, nLD = |P(t)|, we have global
dominance as in the case of conventional MOEAs.

B. Motivation and Expected Effect from Local Dominance
with Alignment of Principle Search Direction

The motivation to rotate the principle search direction of
the neighborhood, before we calculate non-domination rank, is
to establish more precisely local non-domination relationships
by aligning the direction where the individuals are leading
(search direction) with the direction of their area of influence
(dominance direction), i.e. local dominance with alignment
of principle search direction. The reason to chose π/4 as
the declination angle of the rotated principle search direction
of the sub-population is because precisely at that angle the
principle search direction is coincident with the principle
dominance direction as illustrated in Fig. 1 (c).

As indicated above, the rotation of the sub-population
changes dominance relationships among solutions. This in-
creases the chance of selecting promising solutions rather
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Fig. 2. Fitness modification to change the covered area of dominance

than conventional schemes that apply global dominance. As
shown in Fig. 1 (a), if we calculate dominance with a
conventional scheme, say NSGA-II [8], individuals a and p
would be assigned a lower rank and dismissed with high
probability in the parent selection process since they appear
globally dominated by b. On the other hand, if we take into
account the principle search direction of SLD and properly
rotate declination angles, as shown in Fig. 1 (b), promising
individuals a and p become non-dominated solutions, which
would induce a better coverage of under-represented regions
in the set of non-dominated solutions found so far. In this
example, a and p have the potential to disperse the distribution
of solutions to the direction of objective function f2.

C. Local Recombination (LR) and θ-crowding

In our method offspring are created one at the time. To
create one offspring first we specify a random principle search
direction ν = {ν1, ν2, · · · , νm−1}, where 0 ≤ νi ≤ π/2.
Second, a neighborhood for local recombination SLR is tem-
porally created as a local sub-population around ν by choosing
the nLR closest individuals to ν from the parent population
Q(t). The same notion of closeness specified by Eq. (1) is
used here but using ν instead of the declination angles of
p, δν ,x. Third, mating is performed within the neighborhood
SLR and then recombination followed by mutation are carried
out. For mating binary tournament selection is used, but we
enforce equal participation in the tournaments. Varying the
number of elements in the neighborhood nLR ≤ |Q(t)| we
can control the degree of locality for recombination. In the
extreme, nLR = |Q(t)|, we have global recombination as in
the case of conventional MOEAs.

θ-crowding is used to calculate the crowding factor of each
solution in our method [6]. The procedure to calculate θ-
crowding is inspired from the crowding distance procedure
used by NSGA-II [8], but it is based on declination angles
rather than on fitness values. That is, it sorts the population
by declination angle θj (one at the time, j = 1, · · · , m−1) and
estimates the density of the i ordered point by accumulating
the angle difference between immediate neighbors i − 1 and
i + 1.

III. EXTENSION OF PARETO DOMINANCE

A. Contraction and Expansion of Dominance Area

In this work, we adjust the dominance area of solutions
during the process of calculating local dominance. In general,
the dominance area is uniquely determined with a fitness
vector f(x) = (f1(x), f2(x), · · · ,fm(x)) in the objective

space when a solution x is given. To contract and expand the
dominance area of solutions, we modify fitness value for each
objective function by changing the user defined parameter Si

in the following equation

f ′

i(x) =
r · sin(ωi + Si · π)

sin(Si · π)
(i = 1, 2, · · · , m) (3)

where ϕi = Si · π. This equation is derived from the Sine
theorem. We illustrate the fitness modification in Fig. 2, where
r is the norm of f (x), fi(x) is the fitness value in the i-
th objective, and ωi is the declination angle between f (x)
and fi(x). In this example, the i-th fitness value fi(x) is
increased to f ′

i(x) > fi(x) by using ϕi < π/2 (Si < 0.5).
In case of ϕi = π/2 (Si = 0.5), fi(x) does not change
and f ′

i(x) = fi(x). Thus, this case is equivalent to the
conventional dominance. On the other hand, in case of ϕi >
π/2 (Si > 0.5), fi(x) is decreased so f ′

i(x) < fi(x).
Such fitness modification changes the dominance area of

solutions. We show an example in Fig. 3, where three solutions
a, b and c are distributed in 2-dimensional objective space.
In Fig. 3(a), a dominates c, but a and b, and b and c do not
dominate each other. However, if we modify fitness values for
each solution by using Eq. (3), the location of each solution
moves in the objective space, and consequently the dominance
relationship among solutions changes. For example, if we
use S1 = S2 < 0.5 as shown in Fig. 3(b), the dominance
area of solutions a′, b

′ and c′ is expanded from the original
one of a, b and c. This causes that a′ dominates b′ and
c′, and b′ dominates c′. That is, expansion of dominance
area by smaller Si(< 0.5) works to produce a more fine
grained ranking of solutions and would strengthen selection
especially of solutions with higher projection on the π/4
direction (middle regions of objective space). On the other
hand, if we use S1 = S2 > 0.5 as shown in Fig. 3(c), the
dominance area of solutions a′, b′ and c′ is contracted from
the original one of a, b and c. This causes that a′, b′ and
c′ do not dominate each other. That is, contracting the area
of dominance by larger Si(> 0.5) works to produce a coarse
ranking of solutions and would weaken selection by giving
high rank to solutions located towards the extreme regions.
We refer the reader to other few works on relaxed forms of
Pareto dominance, such as ε-dominance [9] and α-domination
[10].

B. Effects of Controlling Dominance Area

As indicated above, expanding or contracting the domi-
nance area of solutions change the dominance relation of
some solutions and therefore modify the distribution of the
fronts (number of fronts and solutions per front). Since front
distribution significantly relates to selection, we verify and
illustrate the effect of expanding or contracting the dominance
area on the distribution of the fronts changing the parameter
Si in Eq. (3). Here, we randomly generate 100 solutions in
the 2-dimensional objective space of [0, 1]2, calculate dom-
inance among them after recalculating fitness with Eq. (3),
and perform a non-domination sorting to obtain the fronts.
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Fig. 3. Conventional dominance and examples of expanding and contracting the dominance area of solutions
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Fig. 4. Solutions per front as we vary the parameter S

We repeat the above steps a 1000 times and calculate the
average number of fronts and solutions per front, for each
value of Si. In this work, we use a common parameter
S = Si(i = 1, 2, · · · , m) for all objective functions, because
we assume that all objective functions are normalized. Figure
4 shows the fraction of number of solutions per front for
S = {0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75}.

From this figure, note that if we gradually expand the area
of dominance by decreasing S below 0.5, the number of fronts
increases and the ranking of solutions by non-dominance can
be fine grained. Note that for maximum expansion of the
dominance area S = 0.25 there is one single solution per
front. On the other hand, if we gradually contract the area
of dominance by increasing S above 0.5, the number of
fronts decreases and ranking of solutions by non-dominance
becomes coarser. Note that for maximum contraction of the
dominance area S = 0.75 there is only one front that contains
all solutions. Since different rankings can be produced, we can
expect that the optimum parameter S∗ that yields maximum
search performance exists for a given kind of problem.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Problems, Metrics, and Parameters

In this paper we use multiobjective 0/1 knapsack problems
[11] to study and compare the effects on search performance
of controlling dominance area of solutions within the local
dominance algorithm [6]. Here we use problems with m =
{2, 3, 4} objectives, n = 500 items and feasibility ratio φ =
0.5 downloaded from [12], for which we know the true Pareto
non-dominated set only in case of two objectives m = 2.

The hypervolume is used as a metric to evaluate sets of
non-dominated solutions obtained by MOEAs. The hyper-
volume measures the m-dimensional volume of the region
in objective space enclosed by the obtained non-dominated
solutions and a dominated reference point [13]. Here we
use (f1, f2, · · · , fm)=(0, 0, · · · , 0) as the reference point to
calculate the hypervolume. A set of non-dominated solutions
showing higher value of hypervolume can be considered as
a better set of solutions from both convergence and diversity
viewpoints. To provide additional information separately on
convergence and diversity of the obtained solutions in this
work we also use C metric [14], Generational Distance (GD)
[15], Inverse Generational Distance (IGD) [16] and Spread
(SP ) [1].

In our study we compare the performance of local domi-
nance MOEA [6] without and with control of dominance area
of solutions. As a reference, we also include the results by
a conventional NSGA-II [8] that uses global dominance. All
algorithms adopt two-point crossover with a crossover rate
pc = 1.0 for recombination, and apply bit-flipping mutation
with a mutation rate pm = 1/n. In the following experiments,
we show the average performance with 30 runs, each of which
spent 2,000 generations. Population size is set to |P | = 200
on m = 2 objectives and |P | = 600 on m = {3, 4} objectives.
The parent and offspring population sizes |Q| and |R| are set to
half the population size |P |, i.e. |Q| = |R| = {100, 300, 300}
on m = {2, 3, 4}, respectively.

B. Results on Hypervolume

Figure 5 (a)-(c) show the hypervolume achieved by the
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Fig. 5. Results on Hypervolume

proposed algorithm varying the parameter S at intervals 0.05
in the range [0.25, 0.75]. Results are included for dominance
neighborhood-size nLD = {3, 5, 10, 20, 30, 60, 100} on prob-
lems with m = {2, 3, 4} objectives. The hypervolume values
at S = 0.5 marked with a dotted vertical line indicate
the performance of the algorithm that includes locality and
alignment for dominance, but calculates ranking of solutions
using conventional-Pareto dominance. Also, the performance
of conventional NSGA-II that uses global Pareto dominance
is marked with a horizontal line.

First, looking at conventional Pareto dominance (S = 0.5)
we can see that the method including locality for dominance
can achieve by far better values of hypervolume than NSGA-
II. This is in accordance with the previous work [6].

Second, comparing with the results at S = 0.5, we can see
that local dominance with expansion of dominance area of
solutions (S < 0.5) can achieve higher values of hypervolume.
Note that this effect is more notorious for m = {3, 4}
objectives than for m = 2 objectives. We elaborate on this
in IV-C.

Third, an important observation concerns nHmax
LD , the size of

the neighborhood used to calculate dominance that maximizes
hypervolume. Note that nHmax

LD = {60, 100, 100} by local
conventional-Pareto dominance (S = 0.5), whereas nHmax

LD =
{3, 3, 30} by local dominance with expansion of dominance
area (S < 0.5) for m = {2, 3, 4} objectives, respectively.
That is, expansion of dominance area of solutions allows
significant reductions on the size of the neighborhood. This
has an important impact on the reduction of computational
cost of the algorithm. See V below for details.

Also, it is important to mention that either extreme expan-
sion or extreme contraction of dominance area of solutions
deteriorates the performance of the algorithm. We elaborate
on this in IV-D.

C. Gains on Convergence by Proposed Method

Increases on hypervolume can be due to better diversity
and to better convergence. In the following we show that the
gains on hypervolume by local dominance with expansion
of dominance area of solutions are due to an increase on

convergence towards the true Pareto front while keeping
diversity along the whole front. Figure 6 (a)-(d) show the final
population of solutions obtained in a single run by NSGA-II,
local conventional-Pareto dominance (S = 0.5) for nLD = 60
and nLD = 3, and local dominance with expanded dominance
area of solutions (S < 0.5) for nLD = 3 on m = 2 objectives.
From Figure 6 (a) note that NSGA-II converges close to
the true Pareto front but the solutions found cover only a
very narrow region of the true Pareto front. Including local
conventional-Pareto dominance (S = 0.5) the algorithm is
able to find solutions covering the whole true Pareto front, as
shown in Figure 6 (b) where the algorithm is set to the optimal
neighborhood size nHmax

LD = 60 that maximizes hypervolume.
The algorithm could be set to values of nLD > 60 in order to
achieve even better convergence, but this requires additional
computational time. Also, further reductions on neighborhood
size deteriorates convergence of the algorithm, as illustrated
in Figure 6 (c) where nLD = 3. On the other hand, local
dominance with expansion of dominance area of solutions
(S < 0.5) can achieve higher convergence with very small
neighborhood sizes, as shown in Figure 6 (d) where S = 0.4
and nHmax

LD = 3. Comparing Figure 6 (d) and (b) note
that local dominance with expansion of dominance area of
solutions set to nHmax

LD = 3 converges closer to the true
Pareto front than local conventional-Pareto dominance set to
nHmax

LD = 60.

To verify further the gains on convergence, we use the
C metric [14] to calculate the fraction of solutions obtained
by local dominance without expansion of dominance area of
solutions (S = 0.5) that are dominated by solutions obtained
by local dominance with expansion of dominance area of
solutions (S < 0.5), and vice versa. Figure 7 (a)-(c) show
results on C metric obtained with dominance neighborhood
sizes that maximize hypervolume nHmax

LD on problems with
m = {2, 3, 4} objectives, respectively. In the plots we denote
the algorithm without expansion as A and the algorithm with
expansion as B. From the figure, looking at C(B, A) values,
we can see that most solutions obtained without expansion are
dominated by solutions obtained with expansion of dominance
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Fig. 7. Results on C metric by local dominance MOEA with and without expansion of dominance area of solutions

area of solutions, i.e. 70%, 100%, and 82% on m = {2, 3, 4}
objectives, respectively. On the other hand, looking at C(A, B)
values, we can see that only a very small fraction of solutions
obtained by expansion are dominated by solutions obtained
without expansion, i.e. 18%, 0% and 1% on m = {2, 3, 4}
objectives, respectively. These results are in accordance with

the increased difference on hypervolume seen in Figure 5
especially for 3 and 4 objectives, and confirm that the gain
on hypervolume is mostly due to a better convergence by
including expansion of area of dominance of solution within
the local dominance MOEA.
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D. Results on Additional Complementary Metrics

In order to discuss further convergence and diversity, Figure
8 (a)-(c) show results on inverse generational distance IGD,
generational distance GD, and spread SP , respectively, for
m = 2 objectives. From Figure 8(a) we can see that there
is a minimum value for each dominance neighborhood size
nLD. Also, note that the minimum moves from S = 0.5
for nLD = 100 towards S = 0.3 for nLD = 3. From
Figure 8(b) note that minimum GD is located in the region
S < 0.5 for all nLD. That is, convergence towards the true
Pareto front can be improved by expansion of dominance area
of solutions. We can see this tendency in Figure 9, where
there is a substantial improvement on convergence of obtained
solutions for nLD = 3 by local dominance with expansion
(S = 0.25) compared to local dominance without expansion
(S = 0.5). On the other hand, from Figure 8(c) we can see that
a similar best minimum value of SP is achieved at S = 0.5
for most dominance neighborhood sizes. Only for nLD = 100
the minimum is around S = 0.55. Here, it is important to note
that local dominance with alignment of search direction does
a very good job spreading the population.

Figure 8 (a)-(c) also help explaining the lower values of
hypervolume for extreme values of expansion or contraction of
dominance area of solutions. For extreme values of contraction
of dominance area (S ≈ 0.75) note that the hypervolume
deteriorates mainly due to worsening of convergence towards
the true Pareto front as shown by GD on Figure 8(b) for
S > 0.5. On the other hand, for extreme values of expansion
of dominance area (S ≈ 0.25) the hypervolume deteriorates
mainly due to worsening of distribution of solution along the
true Pareto front as shown by SP on Figure 8(c) for S < 0.5.

V. COMPUTATIONAL ORDER

In this section we give an estimate of the computational or-
der required to calculate local dominance as it is implemented
here. We also present results on CPU time.

To calculate local dominance for each solution, we first
create a sub-population with its nearest neighbors, rotate the
sub-population to align its search direction, and calculate
Pareto dominance within the sub-population, see section II-
A for details. In the following, N is the population size,
m the number of objectives, and nLD the neighborhood
size. Thus, the main steps of this process require (m − 1)N
calculations to compute the distances from one solution to
all other solutions, where distance is determined by m − 1
declination angles, N log

2
N computations to order the pop-

ulation and determine the neighbors sub-population, mnLD

computations to rotate and align the neighbors sub-population,
and mn2

LD calculations to compute local dominance within
the sub-population. Thus, the computational order needed to
calculate local dominance rank of all individuals is given by
N{(m−1)N +N log

2
N +mnLD +mn2

LD}. In the proposed
method, since we recalculate fitness to include expansion or
contraction of dominance area within local dominance calcu-
lation, another mNnLD computations are required in addition
to local dominance rising the overall number of computations
to N{(m− 1)N + N log

2
N + 2mnLD + mn2

LD}. However,
remember the optimal neighborhood sizes nLD = {3, 3, 30}
for population sizes N = {200, 600, 600} on m = {2, 3, 4}
objectives, respectively. For m = {2, 3} objectives clearly
n2

LD � N , whereas for m = 4 objectives n2

LD < 2N .
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Fig. 10. Actual CPU time.

Thus, we can simplify the order of computations reducing to
O(N2log2N). This is a substantial reduction on computational
time compared to the local dominance MOEA proposed in [6],
which order is given by O(mNn2

LD).
Figure 10 shows the actual CPU time by conventional

NSGA-II and the local dominance MOEA without and with
expansion of dominance area of solutions running the algo-
rithms on a PC (CPU:AthlonXP 2800+, Memory: 1 Gbytes,
OS:WindowsXP). From this figure we can see that local dom-
inance MOEA with expansion of dominance area of solutions
(S < 0.5) substantially reduces CPU time compared to the
local dominance MOEA without expansion (S = 0.5). Also,
note that the measured CPU time is in accordance with the
computational order of the algorithms.

VI. CONCLUSIONS

In this work we have proposed and analyzed the effects
on performance of controlling dominance area of solutions in
local dominance MOEAs. We showed that convergence of the
algorithm can be significantly improved while keeping a good
distribution of solutions along the whole true Pareto front by
using local dominance with expansion of dominance area of
solutions. We also showed that by controlling the dominance
area of solutions dominance can be applied within very small
neighborhoods, which reduces significantly the computational
cost of the local dominance MOEA. Currently, at each gen-
eration we create a neighborhood around each individual in
the population to calculate its local dominance ranking. We
would like to look into ways to reduce further the number of
computations without affecting performance of the algorithm
in terms of convergence and diversity. Also, we would like
to investigate adaptation to control the dominance area of
solutions. Furthermore, we should test the local dominance
algorithm on other kind of problems and more number of
objectives [17].
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