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Abstract— Since Pareto optimal solutions in multi-objective
optimization are not unique but makes a set, decision maker
(DM) needs to select one of them as a final decision. In this
event, DM tries to find a solution making a well balance among
multiple objectives. Aspiration level methods support DM to
do this in an interactive way, and are very simple, easy and
intuitive for DMs. Their effectiveness has been observed through
various fields of practical problems. One of authors proposed
the satisficing trade-off method early in ’80s, and applied it to
several kinds of practical problems.

On the other hand, in many engineering design problems,
the explicit form of objective function can not be given in terms
of design variables. Given the value of design variables, under
this circumstance, the value of objective function is obtained by
some simulation analysis or experiments. Usually, these analyses
are computationary expensive. In order to make the number
of analyses as few as possible, several methods for sequential
approximate optimization which make optimization in parallel
with model prediction has been proposed.

In this paper, we form a coalition between aspiration level
methods and sequential approximate optimization methods in
order to get a final solution for multi-objective engineering
problems in a reasonable number of analyses. In particular,
we apply μ − ν−SVM which was developed by the authors
recently on the basis of goal programming. The effectiveness of
the proposed method will be shown through some numerical
experiments.

I. INTRODUCTION

In multi-objective optimization, no solution optimizing all
objective functions simultaneously exists in general. Instead,
the notion of Pareto optimal solutions, which are “efficient”
in terms of all objective functions, are introduced. Usually
the Pareto optimal solution is not unique, but makes a set.
As a consequence, how to decide a final solution among
Pareto optimal solutions becomes our issue. In many prac-
tical problems, we need to select one Pareto solution taking
into account the balance among those multiple objective
functions, which is called “trade-off analysis”. It is no
exaggeration to say that the most important task in multi-
objective optimization is trade-off analysis.

In cases with two or three objective functions, the set
of Pareto optimal solutions in the objective function space
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(i.e., Pareto frontier) can be depicted relatively easily. Seeing
Pareto frontiers, we can grasp the trade-off relation among
objectives totally. Therefore, it would be the best way to
depict Pareto frontiers in cases with two or three objectives.
(It might be difficult to read the trade-off relation among
objectives with three dimension, though). In cases with more
than three objectives, however, it is impossible to depict
Pareto frontier. Under this circumstance, interactive methods
can help us to make local trade-off analysis showing a
“certain” Pareto optimal solution. In particular, the aspiration
level methods have been observed to be effective in many
practical problems because the aspiration level is very simple,
easy and intuitive for DMs. One of authors proposed the
satisficing trade-off method early in ’80s, and applied it to
several kinds of practical problems.

Unfortunately, however, in many engineering design prob-
lems, the explicit form of objective function can not be
given in terms of design variables. Given the value of design
variables, under this circumstance, the value of objective
function is obtained by some analysis such as structural
analysis, fluidmechanic analysis, thermodynamic analysis,
and so on. Usually, these analyses are computationary ex-
pensive. In order to make the number of analyses as few
as possible, the authors proposed a sequential approximate
optimization method using computational intelligence such
as radial basis function networks (RBFN) and support vector
machines (SVM). In this approach, optimization is performed
in parallel with predicting the form of objective function.

In the following, we form a coalition between aspira-
tion level methods and sequential approximate optimization
methods in order to get a final solution for multi-objective
engineering problems in a reasonable number of analyses.
In particular, we apply μ − ν−SVM which was developed
by the authors recently on the basis of goal programming.
Finally, the effectiveness of the proposed method will be
shown through some numerical experiments.

II. ASPIRATION LEVEL METHODS FOR INTERACTIVE

MULTI-OBJECTIVE PROGRAMMING

Since there may be many Pareto solutions in practice, the
final decision should be made among them taking the total
balance over all criteria into account. This is a problem of
value judgment of DM. The totally balancing over criteria
is usually called trade-off. Interactive multi-objective pro-
gramming searches a solution in an interactive way with DM
while making trade-off analysis on the basis of DM’s value
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judgment. Among them, the aspiration level approach is now
recognized to be effective in practice, because
(i) it does not require any consistency of DM’s judgment,

(ii) aspiration levels reflect the wish of DM very well,
(iii) aspiration levels play the role of probe better than the

weight for objective functions.
As one of aspiration level approaches, one of authors pro-
posed the satisficing trade-off method [11]. Suppose that we
have objective functions f (x) := (f1(x), . . . , fr(x)) to be
minimized over x ∈ X ⊂ Rn. In the satisficing trade-
off method, the aspiration level at the k-th iteration f

k
is

modified as follows:

f
k+1

= T ◦ P (f
k
).

Here, the operator P selects the Pareto solution nearest in
some sense to the given aspiration level f

k
. The operator

T is the trade-off operator which changes the k-th aspiration
level f

k
if DM does not compromise with the shown solution

P (f
k
). Of course, since P (f

k
) is a Pareto solution, there

exists no feasible solution which makes all criteria better than
P (f

k
), and thus DM has to trade-off among criteria if he

wants to improve some of criteria. Based on this trade-off, a
new aspiration level is decided as T ◦P (f

k
). Similar process

is continued until DM obtains an agreeable solution.
The operation which gives a Pareto solution P (f

k
) nearest

to f
k

is performed by some auxiliary scalar optimization. It
has been shown in Sawaragi-Nakayama-Tanino (1985) that
the only one scalarization technique, which provides any
Pareto solution regardless of the structure of problem, is
of the Tchebyshev norm type. However, the scalarization
function of Tchebyshev norm type yields not only a Pareto
solution but also a weak Pareto solution. Since weak Pareto
solutions have a possibility that there may be another solution
which improves a criterion while others being fixed, they are
not necessarily “efficient” as a solution in decision making.
In order to exclude weak Pareto solutions, the following
scalarization function of the augmented Tchebyshev type can
be used:

max
1�i�r

ωi

(
fi(x)− f i

)
+ α

r∑
i=1

ωifi(x), (1)

where α is usually set a sufficiently small positive number,
say 10−6.

The weight ωi is usually given as follows: Let f∗
i be an

ideal value which is usually given in such a way that f∗
i <

min {fi(x) | x ∈ X}. For this circumstance, we set

ωk
i =

1

f
k

i − f∗
i

(2)

In cases that DM is not satisfied with the solution for
P (f

k
), he/she is requested to answer his/her new aspiration

level f
k+1

. Let xk denote the Pareto solution obtained by
projection P (f

k
), and classify the objective functions into

the following three groups:
(i) the class of criteria which are to be improved more,

*f

2
f

1
f

k

f

ˆ kf

1ˆ k �

f1k �

f

Fig. 1. Satisficing Trade-off Method

(ii) the class of criteria which may be relaxed,
(iii) the class of criteria which are acceptable as they are.

Let the index set of each class be denoted by Ik
I , Ik

R, Ik
A,

respectively. Clearly, f
k+1

i < fi(xk) for all i ∈ Ik
I . Usually,

for i ∈ Ik
A, we set f

k+1

i = fi(xk). For i ∈ Ik
R, DM has

to agree to increase the value of f
k+1

i . It should be noted
that an appropriate sacrifice of fj for j ∈ Ik

R is needed for
attaining the improvement of fi for i ∈ Ik

I .
In cases with a large number of objective functions, it

is laborious for DM to answer his/her new aspiration level
for all of objective functions. To overcome this difficulty,
one of authors developed the automatic trade-off analysis
using sensitivity analysis in usual mathematical programming
[13], and in addition the exact trade-off method for linear
or quadratic programming using parametric optimization
techniques [12].

III. SEQUENTIAL APPROXIMATE OPTIMIZATION USING

COMPUTATIONAL INTELLIGENCE

In many engineering design problems, objective functions
are “black-box”, whose forms are not explicitly known
in terms of design variables, but whose values are given
by sampled real/computational experiments. Usually, these
real/computational experiments are considerably expensive.
Therefore, if these optimization problems are solved by
existing methods, it takes an unrealistic order of time to
obtain a solution. For this situation, the number of necessary
sampled experiments should be as few as possible.

Recently, the authors proposed to apply machine learning
techniques such as RBF (Radial Basis Function) networks
and Support Vector Machines (SVM) for approximating the
black-box function [9], [10]. There, how to select additional
sample points is a main issue in order to make a good
approximation with as few sample points as possible.

A. Selection of Additional Samples

If the current solution is not satisfactory, namely if our
stopping condition is not satisfied, we need some additional
samples in order to improve the approximation of the black-
box objective function. Now, how to select such additional
samples becomes an important issue. to this end, there have
been developed several methods such as design of experi-
ments, kriging method, maximal entropy, active learning and
so on (see, for example, Jin [8]).
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It is important to get well balanced samples providing
both global information and local information on black-
box objective functions. The author and his coresearchers
suggested a method which gives both global information
for predicting the objective function and local information
near the optimal point at the same time [9]. Namely, two
kinds of additional samples are taken at the same time for
relearning the form of the objective function. One of them
is selected inside a neighborhood of the current optimal
point in order to add local information near the (estimated)
optimal point. The size of this neighborhood is controlled
during the convergence process. The other one is selected far
away from the current optimal value in order to give a better
prediction of the form of the objective function. The former
additional sample gives more detailed information near the
current optimal point. The latter sample prevents converging
to local maximum (or minimum) points.

The algorithm is summarized as follows:

Step 1: Predict the form of the objective function by a
certain computational intelligence technique, e.g.,
RBFN or SVM on the basis of the given training
data.

Step 2: Estimate an optimal point for the predicted ob-
jective function by some optimization techniques,
e.g., GA.

Step 3: Terminate the iteration, if the optimal value for the

predicted objective function, f̂
∗k

, and the optimal

value among the learning samples so far, f̃
∗k

, enjoy
the following convergence condition with a given
ε > 0 ∥∥∥f̂

∗k − f̃
∗k

∥∥∥ < ε.

Otherwise go to the next step.
Step 5: Select an additional sample near the current opti-

mal value, i.e., inside S.
Step 6: Select another additional sample outside S in a

place in which the density of the training data is
low as stated above.

Step 7: Go to Step.1.

B. Application of μ− ν−SVM

SVM was originally developed for pattern classification
and later extended to regression (Vapnik et al. [3], [19],
Cristianini and Shawe-Taylor [4], Schölkopf-Smola [18]).
In pattern classification problems with two class sets, it
generalizes linear classifiers into high dimensional feature
spaces through nonlinear mappings defined implicitly by
kernels in the Hilbert space so that it may produce nonlinear
classifiers in the original data space. Linear classifiers then
are optimized to give the maximal margin separation between
the classes. Linear classifiers on the basis of goal program-
ming were developed extensively in 1980’s [7]. The authors
developed several varieties of SVM using multi-objective
programming and goal programming (MOP/GP) techniques
[14].

In the goal programming approach to linear classifiers,
we consider two kinds of deviations: One is the exterior
deviation ξi which is a deviation from the hyperplane of a
point xi improperly classified; The other one is the interior
deviation ηi which is a deviation from the hyperplane of
a point xi properly classified. Several kinds of objective
functions are possible in this approach as follows:

i) minimize the maximum exterior deviation (decrease
errors as much as possible),

ii) maximize the minimum interior deviation (i.e., maxi-
mize the margin),

iii) maximize the weighted sum of interior deviation,
iv) minimize the weighted sum of exterior deviation.

Introducing the objective iv) above leads to the soft margin
SVM with slack variables (or, exterior deviations) ξi (i =
1, . . . , �) which allow classification errors to some extent.

Taking into account the objectives (ii) and (iv), we can
have the same formulation of ν-support vector algorithm
developed by Schölkopf et al. [17].

Other variants of SVM considering both slack variables for
misclassified data points (i.e., exterior deviations) and surplus
variables for correctly classified data points (i.e., interior
deviations) are possible: Total Margin Algorithm considering
iii) and v), μ−SVM considering the objectives i) and iii),
μ−ν−SVM considering the objectives i) and ii) [14]. The
authors extended those SVMs to regression [15]. Among
them, μ−ν−SVR has been observed to provide a good sparse
approximation. In this paper, therefore, we apply μ−ν−SVR
to the sequential approximate optimization.

The primal formulation of μ−ν−SVR is given by

minimize
w,b,ε,ξ,ξ́

1
2
‖w‖22 + νε + μ(ξ + ξ́)

subject to
(
wT zi + b

)− yi � ε + ξ, i = 1, . . . , �,

yi −
(
wT zi + b

)
� ε + ξ́, i = 1, . . . , �,

ε, ξ, ξ́ � 0,

where ν and μ are trade-off parameters between the norm of
w and ε and ξ (ξ́).

Applying the Lagrange duality theory, we obtain the
following dual formulation of μ−ν−SVR:

maximize
αj ,άi

− 1
2

�∑
i,j=1

(άi − αi) (άj − αj)K (xi, xj)

+
�∑

i=1

(άi − αi) yi

subject to
�∑

i=1

(άi − αi) = 0,

�∑
i=1

άi � μ,

�∑
i=1

αi � μ,

�∑
i=1

(άi + αi) � ν,

άi � 0, αi � 0, i = 1, . . . , �.
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IV. COMBINING SATISFICING TRADE-OFF METHOD AND

SEQUENTIAL APPROXIMATE OPTIMIZATION

Now, we propose a method combining the satisficing trade-
off method for interactive multi-objective programming and
the sequential approximate optimization using μ−ν−SVR.
The procedure is summarized as follows:

Step 1. (Real Evaluation)
Evaluate actually the values of objective func-
tions f (x1),f (x2), . . . ,f(x�) for sampled data
x1, . . . , x� through computational simulation anal-
ysis or experiments.

Step 2. (Approximation)
Approximate each objective function f̂1(x), . . . ,
f̂m(x) by the learning of μ− ν−SVR on the basis
of real sample data set.

Step 3. (Find a Pareto Solution
Nearest to the Aspiration Level
and Generate Pareto Frontier)

Find a Pareto optimal solution nearest to the given
aspiration level for the approximated objective
functions f̂(x) := (f̂1(x), . . . , f̂m(x)). This is
performed by using GA for minimizing the aug-
mented Tchebyshev scalarization function (1). In
addition, generate Pareto frontier by MOGA for
accumulated individuals during the procedure for
optimizing the augmented Tchebyshev scalarization
function.

Step 4. (Choice of Additional Learning Data)
Choose the additional �0-data from the set of ob-
tained Pareto optimal solutions. Setting �← �+ �0,
go to Step 1.

how to choose the additional data

Stage 0. First, add the point with highest
achievement for the scalarized objective
function (1) obtained in Step 3.

Stage 1. Evaluate the ranks for the real
sampled data of Step 1 by the ranking
method [6].

Stage 2. Approximate the rank function asso-
ciated with the ranks calculated in the
Stage 1 by μ− ν−SVR.

Stage 3. Calculate the fitness for Pareto opti-
mal solutions obtained in Step 3 on the
basis of the obtained approximate rank
function.

Stage 4. Add the point with highest fitness to
the set of sample points.

V. NUMERICAL EXAMPLES

A. Example 1

First, we consider the following illustrative example (Ex-
1):

minimize f1 := x1 + x2

minimize f2 := 20 cos(15x1) + (x1 − 4)4 + 100 sin(x1x2)
subject to 0 � x1, x2 � 3.

The true function of each objective function f1 and f2 in
the problem (Ex-1) are shown in Fig. 2.
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Fig. 2. The true contours to the problem

In our simulation, the ideal point and the aspiration level
is respectively given by(

f∗
1 , f∗

2

)
= (0, − 120),(

f1, f2

)
= (3, 200),

and the closest Pareto solution to the above aspiration level
is as follows:

exact optimal solution
(
x̂1, x̂2

)
= (1.41321, 0)

exact optimal value
(
f̂1, f̂2

)
= (1.41321, 30.74221)

Starting with initial data 10 points randomly, we obtained
the following approximate solution by proposed method after
50 real evaluations:

approximate solution
(
x1, x2

)
= (1.45748, 0)

approximate objective value
(
f1, f2

)
= (1.45748, 35.34059)

The final result is shown in Fig. 3. It can be seen that we can
obtain a reasonable solution minimizing (1) approximately
even with rough approximation for each objective function.
At this stage, DMs can change the aspiration level according
to their wish. If DMs want to improve some of objectives,
they have to agree with some sacrifice for other objectives.
This is trade-off analysis. For making trade-off analysis,
it is more convenient if DMs can know some information
on Pareto frontier around the present solution. To this end,
approximation of Pareto frontier obtained in Step 3 can be
available. One may see the convergence process in Fig. 4.
In addition, Table I shows the results for 10 times numerical
experiments.
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Fig. 3. Result for 50 samples

Fig. 4. Convergence process

TABLE I

NUMERICAL RESULTS FOR EXAMPLE 1

best value among experimental data

x1 x2 f1 f2

best 1.4135 0.0000 1.4135 30.6627

worst 1.3695 0.0000 1.3695 45.4425

average 1.4109 0.0003 1.4111 31.7150

σ 0.0143 0.0009 0.0144 4.6869

optimal value for predicted obj. ft.

x1 x2 f1 f2

best 1.4252 0.0000 1.4252 32.1449

worst 1.5630 0.0000 1.5630 47.0042

average 1.4519 0.0000 1.4519 34.8111

σ 0.0393 0.0000 0.0393 4.3464

B. Example 2

Next, we consider a welded beam problem shown in Deb
[5] (Fig. 5).

F=6000lb

14 in

Fig. 5. A welded beam

The mathematical formulation of the problem is given by

min
h,l,t,b

f1 := 1.10471h2l + 0.04811tb(14 + l)

min
h,l,t,b

f2 :=
2.1952

t3b

s.t. g1 := τ � 13600
g2 := σ � 30000
g3 := h− b � 0
g4 := Pc � 6000
0.125 � h, b � 5.0, 0.1 � l, t � 10.0

Here,

τ =

√
(τ ′)2 + (τ ′′)2 +

lτ ′τ ′′√
0.25(l2 + (h + t)2)

τ ′ =
6000√

2hl

τ ′′ =
6000(14 + 0.5l)

√
0.25(l2 + (h + t)2)√

2hl
(

l2

12 + 0.25(h + t)2
)

σ =
504000

t2b
, Pc = 64746.022(1− 0.0282346t)tb3

Set the ideal point and aspiration level as follows:

ideal point := (f∗
1 , f∗

2 ) = (0, 0)

aspiration level := (f1, f2) = (20, 0.002)

Table II shows the result by using a conventional opti-
mization method (nonlinear constrained optimization in a

TABLE II

RESULT BY CONVENTIONAL OPTIMIZATION METHOD (EX.2)

h l t b f1 f2

average 1.0834 0.8710 10.0000 1.7685 13.7068 1.25E-03

σ 0.3274 0.1662 5.11E-08 0.1828 1.3793 1.13E-04

max 2.0132 0.9896 10 2.1263 16.3832 1.31E-03

min 0.9221 0.4026 10.0000 1.6818 13.0527 1.03E-03
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TABLE III

RESULT BY THE PROPOSED METHOD (EX.2)

h l t b f1 f2

average 0.8921 1.0398 9.9989 1.6809 13.0653 1.31E-03

σ 0.0898 0.1106 0.0012 0.0012 0.0081 7.79E-07

max 1.0787 1.1895 10 1.6824 13.0781 1.31E-03

min 0.7849 0.8273 9.9964 1.6789 13.0531 1.31E-03
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Fig. 6. Pareto frontier by our proposed method
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Fig. 7. Pareto frontier by conventional MOGA (5000 samples)

toolbox of Matlab. It needs 200-300 functional calls. On
the other hand, Table III shows the result by our proposed
method with 100 samples starting from 50 samples. The
numerical experiments were carried out 10 times. Fig. 6
shows an approximate Pareto frontier obtained in Step 3.
For comparison, Pareto frontiers generated by conventional
MOGA (e.g., SPEA2, NSGAII) with 100 individuals and 50
generations are shown in Fig. 7.

The solution by our proposed method is in a reasonable
precision with 100 samples (function calls) in comparison to
a conventional optimization method with 200-300 functional
calls.

VI. CONCLUDING REMARKS

We proposed a method combining the satisficing trade-off
method and a sequential approximate optimization method
using computational intelligence for supporting DM to get
a final solution. The proposed method provides a Pareto
solution closest to the given aspiration level as well as the
local trade-off information by an approximate Pareto frontier

in the neighborhood of the solution with a reasonable number
of simulation analyses. It is promising in practical problems
since it has been observed that the method reduces the
number of function evaluations up to less than 1/100 to 1/10
of usual methods such as MOGAs and usual aspiration level
methods through several numerical experiments.
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