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Abstract— This paper presents a method of integrating com-
putational intelligence with the operators used in evolutionary
algorithms. We investigate approximation models of the objective
function and its inverse and propose two simple algorithms
that use these coupled approximators to optimize multi-objective
functions. This method is a break from traditional approach
used by standard cross-over and mutation operators, which
only explore the objective space through “near-blind” manip-
ulation of solutions in the parameter space. Fundamentally,
our proposed intelligent operators use learned models of the
coupling between the objective space and the parameter space
to generate successively better solutions by extrapolating (or
interpolating) from known solutions directly in the objective
space. We term our implementation of the developed techniques
as the Coupled Approximators Evolutionary Algorithm (CAEA).
Promising empirical results with the DTLZ test suite prompt us to
suggest several avenues for future research including combination
with local search methods, incorporation of domain-knowledge
and more efficient search algorithms.

I. INTRODUCTION

The Evolutionary Algorithms (EA) arena has shown tremen-
dous activity in the past few years, with advancements being
made on both the theoretical and applied fronts. One particular
area of interest has been the development of multi-objective
evolutionary methods that are capable of optimizing expensive
and difficult problems quickly and reliably. Previous work in
this area has focussed mainly on using inexpensive models of
the exact evaluation function. This work explores an alternative
approach by merging computational intelligence methods with
evolutionary algorithms to derive intelligent operators which
generate candidate solutions based on models of the objective
function and its inverse. We term the pairing of these models
as coupled approximators and present two algorithms that use
these models to explore the objective space.

This paper is organized as follows: Section II reviews
some relevant work on multi-objective optimization with evo-
lutionary algorithms and fitness approximation. Section III
presents details of our proposed method, i.e., the Coupled

Approximators Evolutionary Algorithm (CAEA). In Section
IV, we present results and an analysis of simulations with
scalable benchmark problems from the DTLZ [1] test suite.
Section V conludes this paper with possible future work and
conclusions derived from this study.

II. BACKGROUND

In this section, we cover related work in the fields of multi-
objective optimization, evolutionary algorithms and handling
computationally expensive function evaluations.

A. Multi-objective Optimization with Evolutionary Algorithms

Intuitively, the problem of multi-objective optimization can
be viewed as a search through a m-dimensional space for all
minimum (or maximum) objective vectors that satisfy posed
constraints. The search is usually performed indirectly by
varying parameter vectors, also called decision vectors, in a
d-dimensional space. From this point forward, we assume,
without loss in generality, minimization problems.

We begin by defining m-dimensional fitness space of all
feasible solutions. Given an objective function f(x̂) : Rd →
Rm and constraint functions g(x̂) : Rd → Rk and h(x̂) :
Rd → Rl, the feasible objective space is defined as the set
of all vectors in the function’s range that satisfy the given
constraints, F = {f̂i ∈ Rm|f̂i = f(x̂i) ∧ (g(x̂i) > 0) ∧
(h(x̂i) = 0)}.

Since our goal is to find the best solutions in a given F , it is
helpful to consider what it means for one solution to be better
than or dominates another. Consider f̂ = (f1, f2, ..., fm), ĝ =
(g1, g2, ..., gm) ∈ F . f̂ is said to dominate ĝ, denoted as f̂ � ĝ
iff ∀i ∈ {1, 2, ..., m} : fi ≤ gi ∧ ∃j ∈ {1, 2, ..., m} : fj < gj .
For example, in fig. 1, solution A dominates solution C while
solutions B and C are non-dominating.

A Pareto optimal vector (or point), denoted as f̂∗, is a vector
which is not dominated by any other vector in the objective
space ,i.e., �f̂j ∈ F : f̂j � f̂∗. The Pareto optimal set or front,
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Fig. 1. A sample convex Pareto optimal front for a minimization problem.

defined as the set of all Pareto optimal vectors, is denoted as
F ∗ = {f̂∗

i ∈ F |�f̂j ∈ F : f̂j � f̂∗
i }. An example of a Pareto-

optimal front for a minimization problem is illustrated in fig.
1.

Multi-objective optimization is defined as a search for
the Pareto optimal front, F ∗ and the corresponding X =
{x̂ ∈ Rp|f(x̂) ∈ F ∗}. Multi-objective optimization problems
are abundant in the real-world and include tasks such as
scheduling, routing and structural design.

In recent years, effective evolutionary algorithms have
been developed to solve multi-objective problems. The
more influential of these multi-objective evolutionary algo-
rithms (MOEA) include the Non-Dominating Sorting Genetic
Algorithm-II (NSGA-II) [2], the Strength Pareto Evolutionary
Algorithm 2 (SPEA2) [3] and the Pareto Archived Evolution-
ary Strategy (PAES) [4]. Readers wanting a comprehensive
survey and history of such methods are directed to [5] and
[6].

B. Evolutionary Algorithms for Computationally Expensive
Problems

A limitation of multi-objective evolutionary algorithms is
that a relatively large number of evaluations are required to
converge to the Pareto optimal front. This may prohibit the
use of MOEAs when evaluations are expensive, for example
simulating an engine to determine thermodynamic properties.
Two solutions to resolve this issue has been proposed. The first
is to use high performance computing methods to distribute
the function evaluations across a cluster or the Grid. An
example of this in the domain of materials engineering is
the GPEM system [7]. The second method uses cheaper
approximation models of the fitness function and uses the
models to evaluate solutions instead of the true objective
function, for example [8] [9] [10] [11] [12] [13]. For more
details on some of the evolutionary computational frameworks
that employ approximation models, the reader is referred to the
survey papers in [14] and [15].

III. COUPLED APPROXIMATORS FOR MULTI-OBJECTIVE

OPTIMIZATION

The fundamental idea in this work is to model the objective
function, its inverse and apply these models towards locating
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Fig. 2. Optimization using coupled approximators is a three-step process.
First a solution is generated by extrapolation or interpolation in the objective
space from a non-dominated solution, p. Next, the inverse model is used to
obtain the estimated decision vector, x̂. This decision vector is then verified
by the approximated objective function. If the resultant estimated weighted
objective function is less than the weighted objective values of the p, the
solution is accepted for evaluation by the true objective function.

optimal solutions in the search space. We term these two
models used in conjunction as coupled approximators. At
each iteration of the optimization process, dominating or
non-dominating solutions are constructed by extrapolating (or
interpolating) from existing solutions in the objective space.
The inverse model is used to obtain the estimated decision
vector which is then verified by the approximated objective
function. This three-step process is illustrated by fig. 2.

The Coupled Approximators Evolutionary Algorithm
(CAEA) pseudocode (fig. 3) illustrates a conceptually simple
algorithm based on the Non-dominated Sorting Algorithm
(NSGA-II) [2]. The algorithm begins as a standard population
based evolutionary algorithm by initializing a population of
size N via random or latin hypercube sampling. Solutions are
then evaluated and sorted according to non-domination ranks.

Next, the algorithm creates γN new individuals. The new
operators are used first ,i.e., the forward and inverse ap-
proximation models are created and used to generate new
solutions. It is possible that these operators fail to return
valid solutions and if there is space remaining in the new
population buffer, the remaining solutions are generated using
standard crossover operators. The new solutions are evaluated
and added to the current population. The merged population is
then sorted into non-domination ranks and truncated based on
rank and crowding distance. The following subsections detail
the modeling methods and solution construction algorithms,
the GenerateSolutionsCA function (fig. 3, line 6).

A. Generating New Solutions

The GenerateSolutionsCA method (fig. 4) first extracts the
non-dominated front, P ∗ from the population and generates
the coupled approximators by modeling fitness function with
samples from the current population. As previously described,
two models are generated:
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Coupled Approximators Evolutionary Algorithm, CAEA

1) P0 =Initialize(N )
2) Evaluate(P0)
3) NonDominatedSort(P0)
4) t := 0
5) while termination conditions not met do
6) SCA := GenerateSolutionsCA(Pt, t):
7) SSO := StandardOperators(Pt, γN − |SCA|)
8) S := SCA ∪ SSO

9) Evaluate(S)
10) P ′ = Pt ∪ S
11) NonDominatedSort(P ′)
12) Pt+1 := Truncate(Pt+1, N )
13) t := t + 1
14) done

Fig. 3. The Coupled Approximators Evolutionary Algorithm.

GenerateSolutionsCA( Pt , t )

1) P ∗ := {p ∈ Pt| p is not dominated by any pi ∈ Pt}
2) f̃(x̂) := CreateForwardModel(Pt).
3) f̃−1(ŷ) := CreateInverseModel(Pt).
4) if t is even or t = 0 then
5) SCA := GenDominating(P ∗, f̃(x̂), f̃−1(ŷ), α, εk)
6) else
7) SCA := GenDiverse(P ∗, f̃(x̂), f̃−1(ŷ), γN , β)
8) return SCA

Fig. 4. Main method to generate dominating and non-dominated solutions
relative to the current non-dominated front.

1) The forward model, f̃(x̂) : Rd → R, which is
an approximation of a weighted objective function,
fw(x̂) =

∑m
i=1

wifi(x̂). For simplicity, we consider
equal weights in this study, i.e., w1 = w2 = ... = wm =
1

m
. Note that we use the weighted objective function

because the forward model is used by the following
algorithms only as a means of verifying that the inverse
model’s prediction is accurate. If the forward model
plays a more significant role, it may be useful to use
a model of the actual objective function.

2) The inverse model, f̃−1(ŷ) : Rm → Rd, which is
an approximation of the inverse objective function. In
general, the inverse f−1(ŷ) function may not exist so,
the model approximates the inverse relation from the
given samples.

Using P ∗ and the coupled approximators, dominating solu-
tions (even iterations) or diverse, possibly non-dominating,
solutions (odd iterations) are generated. The methods by which
both types of solutions are constructed are as described in the
following subsections.

B. Constructing Dominating Solutions

Recall that a given two solutions f̂ = (f1, f2, ..., fm), ĝ =
(g1, g2, ..., gm) ∈ F , f̂ dominates ĝ, f̂ � ĝ, iff ∀i ∈
{1, 2, ..., m} : fi ≤ gi ∧ ∃j ∈ {1, 2, ..., m} : fj < gj . Hence,

f
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Fig. 5. Generated solution spaces for α = 1 given some solution p.
GenDominating generates solutions within space A. GenDiverse generates
solutions in spaces A, B and C.

given a current population P , the algorithm (fig. 6) considers
each non-dominated solution p̂ ∈ P ∗ and attempts to generate
a dominating solution p̂′ by linearly extrapolating along each
objective dimension, k.

The algorithm considers each objective dimension in turn
and extends the point by some step distance, dk := α·(pk−qk)
where q̂ is the next lowest value for the objective ,i.e., q̂ s.t.
�r̂ ∈ P ∗ : qk < rk < pk. The “aggression” parameter, α,
determines how far along this objective to extend with pk−qk

as a unit. In fig. 5, the space A illustrates the neighbourhood
region explored when α = 1. A high α may cause a quick
convergence to the front at the cost of making more errors. A
smaller α is likely to yield a slower, more conservative search.

While not explicitly stated in the pseudocode, it is necessary
to note that q̂ does not exist when pk is the minimum.
If |P ∗| > 1, we can choose not to extrapolate along any
objective that pk is the minimum. Otherwise, dk can be set to
some predefined value or the difference between pk and some
minimum reference objective value, rk. If the objective space
is in the positive real space R+, rk can be defaulted to 0.

The inverse model is then used to estimate the decision
variables, x̂, that would yield the objective vector p̂′. The
decision variables are then validated with the forward model.
If the estimated weighted objectives, ỹ is smaller than the
weighted objective value of p̂, the algorithm moves on to the
next objective. Otherwise, the step distance is halved and the
extension process repeated. The algorithm terminates is dk

falls below some predefined value, ε, for this objective. In this
study, we found it convenient to set ε to be a percentage of
the initial dk value.

C. Constructing Diverse Solutions

This solution construction method (fig. 7) attempts to gen-
erate possibly non-dominating solutions to maintain a diverse
pareto optimal front. The algorithm attempts to generate γN

|P∗|
solutions from each non-dominated solution , p̂ ∈ P ∗. A
new solution p′ is constructed by randomly perturbating the
solution in the objective space along each objective, k, within
the range of the next smaller objective value, lk, and the

327

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)



GenDominating(P ∗, f̃(x̂), f̃−1(ŷ), α, ε)

1) for each solution p̂ ∈ P ∗ do
2) p̂′ := p̂
3) for each objective k := 1, 2, ..., m do
4) Let q̂ s.t. �r̂ ∈ P ∗ : qk < rk < pk

5) dk := α · (pk − qk)
6) do
7) p′k := p′k − dk

8) x̂ := f̃−1(p̂′)
9) ỹ := f̃(x̂)

10) if ỹ < fw(p)
11) end while loop
12) else
13) dk := dk ÷ 2
14) p′k := pk

15) while dk > ε
16) done
17) SCA := SCA ∪ x̂
18) done
19) return SCA

Fig. 6. Algorithm to construct dominating solutions given a set of solutions,
coupled approximation models, an “aggression” parameter, α and a termina-
tion condition, ε.

next larger objective value, uk. Note if pk is the minimum
value, pk is perturbated within some predefined range. As
when constructing dominating solution, the inverse model is
then used to estimate the corresponding decision variables,
x̂. Solutions are accepted for evaluation only if they are in
the dominating or non-dominating space and are validated
by the forward model. The spaces A, B and C in fig. 5
illustrate the neighbourhood region in the objective space that
the GenDiverse algorithm explores.

IV. EMPIRICAL RESULTS

In this section, we present results on simulations of our
modeling operators on several real-valued continuous test
problems and compare the solutions found to those obtained
via standard cross-over and mutation operators only.

A. Implementation and Experimental Setup

CAEA was implemented in C++ and utilized the Fast
Artificial Neural Network Library (FANN) [16]. To model
the objective function, f(x̂) and its inverse, f−1(ŷ), we used
simple radial basis function (RBF) networks with 5×p internal
nodes for the forward model and 5 × (m + p) internal nodes
for the inverse model.

We used the PISA [17] system as an experimental envi-
ronment running on a 16 CPU Intel XEON 2.6Ghz shared
memory system with 64 gigabytes of memory. CAEA was
tested on the DTLZ2, DTLZ3, DTLZ6, DTLZ7 test problems
[1] with 2, 4 and 8 objectives. The population sizes were set
to 200, 300 and 400 for 2, 4 and 8 objectives respectively. The
number of variables was set to the recommended m+9 where
m is the number of objectives. Each test was repeated 25 times

GenDiverse(P ∗, f̃(x̂), f̃−1(ŷ), γN , β)

1) for each solution p̂ ∈ P ∗ do
2) for i := 1 to γN/|P ∗| do
3) b := 0
4) do
5) p̂′ := p̂
6) for each objective k := 1, 2, ..., m do
7) Let l̂ s.t. �r̂ ∈ P ∗ : lk < rk < pk

8) Let û s.t. �v̂ ∈ P ∗ : uk > vk > pk

9) p′k =random(lk, uk)
10) done
11) x̂ := f̃−1(p̂′)
12) ỹ := f̃(x̂)
13) b := b + 1
14) while (ỹ > fw(p)) ∧ (b < β)
15) SCA = SCA ∪ p̂′

16) done
17) done
18) return SCA

Fig. 7. Algorithm to construct non-dominated solutions given a set of
solutions, coupled approximation models, the number of solutions to generate,
γN and a termination condition, β.

TABLE I

PARAMETERS FOR CAEA AND NSGA-II

Parameter CAEA NSGA-II
Crossover Probability, pc - 0.9

Crossover Spread Factor, nc 15 15
Mutation Probability, pm 0.01 0.01

Mutation Spread Factor, nm 20 20
Aggression, α 10 -

GenDominating Stopping criteria, ε 0.1 × initialdk -
GenDiverse Stopping criteria, β 20 -

Solution multiplier, γ 1 -

with matched populations between algorithms. We compared
CAEA against an algorithm using standard cross-over and mu-
tation operators, NSGA-II, using the additive epsilon indicator,
ε+ and computed the Kruskal-Wallis statistical test [18]. The
parameters for each algorithm is given in table I.

B. Results and Analysis

Figures 8 to 15 illustrate box plots of the additive epsilon
indicator on the DTLZ test problems and tables II and III give
the results of the Kruskal-Wallis statistical tests. We analyze
snapshots of the runs at generations 25 and 50. At generation
25, the coupled approximators and construction algorithms
generate significantly better solutions than those by standard
evolutionary operators on DTLZ2, DTLZ3 and DTLZ7 with
2, 4 and 8 objectives.

The exception is DTLZ6, which is a deceptive problem and
may have proved difficult for the RBFs to model accurately
in higher dimensions. The models would then have made
errorneous predictions and hence, generated poorer solutions.
Evidence for this is suggested by fig. 16 and tbl. IV which
illustrate the mean absolute errors made during a representative
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Fig. 8. ε+ indicator values for CAEA and NSGA-II for DTLZ2 at Generation 25. Visually, CAEA outperforms NSGA-II for all three objective levels. This
conclusion is confirmed by the Kruskal-Wallis statistical test.
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Fig. 9. ε+ indicator values for CAEA and NSGA-II for DTLZ3 at Generation 25. As with DTLZ2, CAEA outperforms NSGA-II at all three objective
values.
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Fig. 10. ε+ indicator values for CAEA and NSGA-II for DTLZ6 at Generation 25. CAEA is only able to outperform NSGA-II’s standard operators on
DTLZ6 with 2 objectives. No statistically significant results can be derived from the runs on higher objectives. However, a visual comparison indicates that
CAEA performs poorer than NSGA-II on the higher objectives.
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Fig. 11. ε+ indicator values for CAEA and NSGA-II for DTLZ7 at Generation 25. CAEA is only able to outperform NSGA-II on DTLZ7 with 4 objectives.
No statistically significant results can be derived from the runs on 2 and 8 objectives. However, a visual comparison suggests that CAEA performs better than
NSGA-II even on higher objectives.
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Fig. 12. ε+ indicator values for CAEA and NSGA-II for DTLZ2 at Generation 50. CAEA performs better than NSGA-II on the problems with larger
objectives. On DTLZ2 with 2 objectives, no statistically significant result can be concluded. However, a visual comparison suggests that NSGA-II has
outperformed CAEA by the 50th generation.
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Fig. 13. ε+ indicator values for CAEA and NSGA-II for DTLZ3 at Generation 50. No statistically significant result can be concluded for DTLZ3 with 2
and 8 objectives. With 4 objectives, CAEA outperforms NSGA-II.
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Fig. 14. ε+ indicator values for CAEA and NSGA-II for DTLZ6 at Generation 50. CAEA outperforms NSGA-II on DTLZ6 with 2 objectives but performs
poorly in comparison on the higher level objectives.
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Fig. 15. ε+ indicator values for CAEA and NSGA-II for DTLZ7 at Generation 50. CAEA finds significantly better solutions on DTLZ7 with 8 objectives.
No statistically significant results can be obtained from the runs on 2 and 4 objectives. However, visual comparisons indicate that CAEA performs poorer
compared to NSGA-II on the 2 objective problem and better on the 4 objective problem.
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Fig. 16. While approximately the same number of solutions are generated on both problems, the coupled approximators makes significantly more errors on
the DTLZ6 problem (dashed line) as compared to DTLZ2 (solid line).

TABLE II

KRUSKAL-WALLIS TEST FOR DTLZ PROBLEMS, GENERATION 25

DTLZ2

m = 2 m = 4 m = 8

CAEA is better 2.3e−16
2.1e−15

2.2e−16

NSGA-II is better 1.0 1.0 1.0

DTLZ3

m = 2 m = 4 m = 8

CAEA is better 0.0030 8.9e−05
0.0018

NSGA-II is better 0.99 0.99 0.99

DTLZ6

m = 2 m = 4 m = 8

CAEA is better 1.2e−10
H0 H0

NSGA-II is better 1.0 H0 H0

DTLZ7

m = 2 m = 4 m = 8

CAEA is better H0 0.00071 H0

NSGA-II is better H0 0.99 H0

sample run on DTLZ6 as compared to DTLZ2.

At generation 50, CAEA outperforms NSGA-II on DTLZ2
(4 and 8 objectives), DTLZ3 (4 objectives), DTLZ6 (2 objec-
tives) and DTLZ7 (8 objectives). For the rest of the problem
instances, no statistical conclusion can be drawn except on
the DTLZ6 problem (4 and 8 objectives) where NSGA-II
outperforms CAEA.

The results indicate that for 3 of the 12 problems, i.e.,
DTLZ2 (2 Objectives), DTLZ3 (8 objectives) and DTLZ7 (2
objectives), CAEA had lost its early lead, allowing standard
operators to “catch-up”. Evidently, CAEA generated better
solutions early in the optimization process and performance
degraded later in the run. A plausible explanation for this
phenomena is that as the population moved towards the Pareto
optimal front, the samples became biased and the models were
less able to generalize. The use of an archive to store previous
solutions from which to base our models and/or local learning

TABLE III

KRUSKAL-WALLIS TEST FOR DTLZ PROBLEMS, GENERATION 50

DTLZ2

m = 2 m = 4 m = 8

CAEA is better H0 1.34e−15
2.3e−16

NSGA-II is better H0 1.0 1.0

DTLZ3

m = 2 m = 4 m = 8

CAEA is better H0 0.00040 H0

NSGA-II is better H0 0.99 H0

DTLZ6

m = 2 m = 4 m = 8

CAEA is better 0.0015 0.99 0.99

NSGA-II is better 0.99 1.06e−06
0.00051

DTLZ7

m = 2 m = 4 m = 8

CAEA is better H0 H0 1.61e − 08

NSGA-II is better H0 H0 1.0

TABLE IV

MEAN ERRORS ON DTLZ2 AND DTLZ6

Problem Mean Error Standard Deviation
DTLZ2, 4 Objs. 0.3036 0.0624

DTLZ6, 4 Objs. 0.7283 0.1683

Mean No. of Solutions
Problem Per Iteration Standard Deviation

DTLZ2, 4 Objs. 244.78 33.5356

DTLZ6, 4 Objs. 264.48 12.4904

may circumvent this problem.

C. Computational Time

The benefit obtained from using the coupled approximators
is balanced by the extra computational time needed to create
the models. Table V constrasts the computation time required
by both algorithms on the DTLZ2 problem with 2, 4, and 8
averaged over 5 runs. The difference in computational time
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TABLE V

AVERAGE COMPUTATION TIME ON DTLZ2 IN SECONDS

Algorithm 2 Objectives 4 Objectives 8 Objectives
CAEA 722.4 2018.2 7133.5

NSGA-II 1.4 2.8 7.2

is significant (approximately 3 orders larger), hence making
coupled-approximators best suited to cases where the function
evalutions are relatively expensive.

V. FUTURE WORK AND CONCLUSIONS

The experimental results obtained suggest that the use of
models as operators, in particular the coupled approximators
method, are promising alternatives or supplements to standard
operators. On three of the four test problems (DTLZ2, DTLZ3
and DTLZ7), CAEA generated a better set of solutions early
in the optimization process. However, these operators are not
without bias and possible improvements include the following:

A. Local Models and Archives

Prior research [19] [20] [13] suggests that the coupled
approximators method may be improved by clustering the
objective space and generating local models instead of a global
model. The use of an archive to store previously evaluated
individuals may also assist in the modeling process.

B. Incorporation of Domain Knowledge

The No Free Lunch (NFL) theorem [21] justifies the use
of prior knowledge in the search and optimization of a
particular problem. CAEA can be modified in two ways to
utilize available prior information. First, a problem specific
approximation or modeling technique can be used in place of
the RBFNs used in this work. The choice of any one particular
technique can be based on prior knowledge, required accuracy
and computational time. Secondly, the solution construction
algorithms presented in this paper are simple and were devel-
oped to illustrate the viability of using coupled approximators.
It remains future research to develop more efficient general
and/or problem specific construction algorithms.
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