
Crowding Population-based Ant Colony
Optimisation for the Multi-objective Travelling

Salesman Problem
Daniel Angus

Complex Intelligent Systems Laboratory
Centre for Information Technology Research

Faculty of Information & Communication Technologies
Swinburne University of Technology

Melbourne, Australia, 3122
dangus@ict.swin.edu.au

Abstract— Ant inspired algorithms have recently gained pop-
ularity for use in multi-objective problem domains. One specific
algorithm, Population-based ACO, which uses a population as
well as the traditional pheromone matrix, has been shown to
be effective at solving combinatorial multi-objective optimisa-
tion problems. This paper extends the Population-based ACO
algorithm with a crowding population replacement scheme to
increase the search efficacy and efficiency. Results are shown
for a suite of multi-objective Travelling Salesman Problems of
varying complexity.

I. INTRODUCTION

Ant Colony Optimisation (ACO) [7], [10], an optimisation
methodology based on the foraging behaviour of Argentine
ants, has been shown to be useful in finding optimal or near-
optimal solutions to optimisation problems. The first applica-
tions of ACO algorithms were to combinatorial optimisation
problems such as the Travelling Salesman Problem (TSP)
and Quadratic Assignment Problem (QAP), although in recent
years the paradigm has been applied to a much wider range of
problem domains with (usually) successful results. One such
problem domain is Multiple Objective Optimisation (MOO).

MOO is concerned with finding multiple ‘trade-off’ solu-
tions in order to optimise many (in many cases conflicting or
orthogonal) objectives. MOO problems are found frequently
in the real-world. A commonly cited example is designing an
automobile, where a designer may be attempting to simulta-
neously decrease cost and increase safety and comfort. In this
example it is fairly clear that the designer must be willing to
make trade-offs between all of these objectives because they
are non-complimentary. For any MOO problem there is a set of
optimal trade-off solutions which are referred to as the Pareto
set, after the economist Vilfredo Pareto.

This study is concerned with the evaluation of a
new Population-based ACO algorithm: Crowding PACO
(CPACO) [2], against a set of combinatorial MOO problems.
The CPACO algorithm maintains solution diversity through
a selective population replacement scheme, crowding, taken
from Evolutionary Computation [6], [19]. The purpose of

maintaining diversity in MOO is to encourage the algorithm
to converge across the Pareto front rather than to one spe-
cific location. The performance of the CPACO algorithm is
measured by its ability to not only locate the Pareto front
but to spread the population uniformly across it. As such two
measures have been used to compare the performance of the
algorithms tested, attainment surface comparison and the C
metric.

II. POPULATION-BASED ANT COLONY OPTIMISATION

To date there have been many ant-inspired algorithms pro-
posed for multi-objective optimisation problems. An excellent
review and analysis paper on the subject is [12]. In this
paper eight major ant-inspired algorithms along with two
state-of-the-art Genetic Algorithms (NSGA-II & SPEA2) were
implemented and compared. For the particular test cases used
(instances of a bi-criteria TSP) the ant-inspired algorithms
performed well. One algorithm in particular, Population-based
ACO (PACO), performed consistently within the top three ant-
inspired algorithms. This section describes PACO for single
and multi-objective optimisation.

A. PACO for Single Objective Optimisation

The Population-based Ant Colony Optimisation (PACO)
algorithm was first introduced in [14], [15] and later extended
for a multi-criteria optimisation problem, the single machine
total tardiness problem with changeover costs, in [13], [16].
The defining difference between PACO and the canonical
ACO algorithm is in the area of solution storage. Whereas
most traditional ACO algorithms (Ant Systems, Ant Colony
Systems, Max-Min Ant Systems) store solution information
from an (artificial) ant in a pheromone matrix only, PACO
stores solutions in a population and then uses this population
to make adjustments to the pheromone matrix. At any time
the pheromone matrix will be a direct reflection of some or
all of the stored population.

In the single-objective PACO algorithm as solutions enter
the population a positive update on the pheromone matrix is

333

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

1-4244-0702-8/07/$20.00 ©2007 IEEE

performed, and as solutions leave the population a negative
update is performed to adjust the pheromone matrix values.
This process removes the requirement for a traditional ACO
decay operation and results in a significant speed improve-
ment over traditional pheromone maintenance operations [15].
PACO still uses the traditional ACS greedy transition rule [9]
to construct new solutions. Figure 1, taken from [1], provides
a visual summary of the differences between a traditional
ACO algorithm and a Population-based ACO algorithm using
terminology defined in [1], [4], [8].

Ants generation
& activity

Pheromone values

Extra problem
information

(heuristic)

Heuristic values

Pheromone update

Pheromone
map

Pheromone

decay

(a) ACO process organisation

Ants generation

& activity

Pheromone values

Extra problem

information

(heuristic)

Heuristic values

Pheromone

update & decay

Pheromone

map

Solution

storage &

maintenance

Candidate

solutions

(b) Population-based ACO process organisation

Fig. 1. Process organisation of a traditional ACO algorithm versus a
population-based ACO algorithm (taken from [1])

B. PACO for Multiple Objective Optimisation

When applied to multi-objective problems PACO maintains
a different pheromone matrix for each objective. For each iter-
ation of the algorithm, where iteration refers to every artificial
ant creating a complete solution, a random ant is selected
from the population (Q) along with its k closest neighbours1

to form a sub-population P . At any time Q will contain the
complete set of non-dominated solutions found to date. The
ants in P are then used to update the individual pheromone
matrix for each objective. When available a separate heuristic
matrix is used for each objective; in the case of the TSP these
heuristic matrices are simply the corresponding edge weights
for each individually defined TSP as is the case for most ACO
algorithms applied to the TSP.

PACO uses an average-rank-weight method to weight the
importance of each objective. These weightings (w) are used
to bias the solution construction towards satisfying specific ob-
jectives over others. Briefly, the average-rank-weight method
measures how well each solution in P satisfies each individual
objective. Objectives which are better satisfied by the solutions
in P relative to the entire population Q are given a higher rank
and a subsequently larger weighting.

1Closest neighbour refers to a match in the decision space, not the objective
value space. This distance is usually obtained by taking a Euclidean or
Hamming distance measure.

Once the pheromone matrices have been created and the
objective weightings defined the transition probabilities are
calculated using (1), where h is the total number of objectives.
The Ant Colony Systems greedy transition rule [9] is then used
to create one or more new solutions.

pij =
h∑

d=1

wd ·
[
τd
ij

]α ·
[
ηd

ij

]β∑
l∈Nk

i

[
τd
il

]α ·
[
ηd

il

]β

 (1)

Once created, each new solution (s) is evaluated for each
objective. For s to be inserted into Q it must checked for
dominance against the entire population Q. If s is found to be
non-dominated by all members of Q, meaning that no solution
in Q is better in all objectives than s, then s is inserted into Q.
If s is inserted into Q then Q must be checked for dominance
by s. If any existing solutions in Q are dominated by s they
are removed from Q.

III. CROWDING PACO
The Crowding Population-based ACO algorithm (CPACO)

was first defined in [2] where it was applied to a small set
of TSP and multi-modal function optimisation problems. In
that paper the algorithm was shown to be able to locate and
maintain a population of diverse solutions across multiple
optimal and near-optimal locations of the search spaces tested.

Rather than use the super/sub-population scheme as in
PACO or one of the population replacement schemes defined
in [13], [14] CPACO uses a crowding replacement scheme [6],
[19] similar to restricted tournament selection [17]. With this
scheme a single population (S) of preset size is maintained,
which is initialised with randomly generated solutions. Every
generation a population of new solutions is created (Y) and
each new solution is compared against a randomly selected
subset S′ of S to find its closest match (in the case of the
TSP the closest match is determined by the solution with
the largest number of common edges) and only replaces the
existing solution if the new solution is better (in the case
of multi-objective problems better is taken to mean strongly-
dominating). This procedure is outlined in Alg. 1.

Algorithm 1 CPACO Crowding Replacement Scheme
1: for i = 1 to Ysize do
2: S′ = c randomly chosen solutions from S
3: S′

j = closest match from S′ to Yi

4: if Yi �� S′
j then

5: Replace S′
j with Yi

6: end if
7: end for
8: Discard Y

Whereas PACO uses individual pheromone and heuristic
matrices for each objective, CPACO uses a single pheromone
matrix with individual heuristic matrices. Each iteration a new
pheromone matrix is calculated as follows:

1) All solutions (s) in the population (S) are assigned
an integer rank according to the dominance ranking

334

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

procedure used by the NSGA-II algorithm [5]. Figure 2
gives an example of the resultant solution ranks assigned
using this ranking procedure.

2) All elements in the pheromone matrix are initialised to
some initial value (τinit).

3) All solutions in the population increment their corre-
sponding elements in the pheromone matrix according
to the inverse of their rank, i.e. ∆τ s

ij = 1/
(
srank

)
.

1

1

1

1

1

1
1

2

2

2

2

3

2 3

3

4

Objective 1 (Minimisation)

O
b

je
c
ti

v
e
 2

 (
M

in
im

is
a
ti

o
n

)

Fig. 2. Example of the resultant ranks assigned to a set of solutions using
the NSGA-II dominance ranking procedure

Rather than use the PACO average-rank-weight method
to determine weightings for each objective, CPACO assigns
each ant a set of unique heuristic exponent correction factors
(λ), similar to the procedure outlined in [3]. This allows
each unique ant to exploit heuristic matrices by different
amounts while still using a common pheromone matrix. The
procedure used to assign these values is outlined in Alg. 2 and
the transition probabilities are calculated using (2), where h
defines the number of objectives.

Algorithm 2 CPACO Heuristic Scaling Value Assignment
Procedure

1: for i = 1 to h do
2: Ri = random [0, 1]
3: end for
4: Sort R in ascending order
5: λ1 = R1

6: for i = 2 to h− 1 do
7: λi = Ri −Ri−1

8: end for
9: λh = 1−Rh

pij =
[τij]

α ·
h∏

d=1

[
ηd

ij

]λdβ

∑
l∈Nk

i
[τil]

α ·
h∏

d=1

[
ηd

il

]λdβ
(2)

IV. TEST SETUP

The ‘Kro’ set of Travelling Salesman Problems have been
selected to test the CPACO algorithm. This set consists of a

series of eight different 100, 150 and 200 city TSP which
are combined to create four bi-objective TSPs of varying
complexity and a single quad-objective TSP. The individual in-
stances are labelled KroA100, KroB100, KroC100, KroD100,
KroA150, KroB150, KroA200 and KroB200 and are avail-
able from [21]. Each of the multi-objective TSPs contains a
discontinuous, convex Pareto front.

Two metrics have been selected to measure and compare the
performance of the PACO and CPACO algorithms: summary
attainment surface analysis and dominance ranking. These
metrics have been chosen since together they take into consid-
eration an algorithm’s ability to not only find solutions close
to the Pareto front, but also its ability to obtain a diverse range
of solutions along the Pareto front.

A. Summary Attainment Surface

The summary attainment surface plotting method [18], an
extention of the work of [11], was developed to determine the
median performance of a stochastic multi-objective optimisa-
tion algorithm over several experimental runs. The summary
attainment surface demonstrates a given algorithm’s ability
to find solutions close to and distributed across the Pareto
front. All summary attainment surfaces produced in this study
have been created with the aid of Knowles’ software pack-
age available from http://dbkgroup.org/knowles/
plot attainments/.

B. Dominance Ranking (C metric)

Dominance Ranking is based on two algorithms’ non-
dominated sets being compared to determine if any solu-
tions from one algorithm dominate solutions from the other.
The premise is that if, at an extreme, one algorithm’s non-
dominated set completely dominates another algorithms non-
dominated set (C=1) then the first algorithm can be said to be
better. This is reflected in the Coverage metric (C metric) [22].

V. RESULTS & ANALYSIS

A. Attainment Surface & Coverage Measures

Both PACO and CPACO were run 50 times and allowed
50,000 solution evaluations on each bi-objective problem using
the parameter settings given in Tab. III. The 1% (best) and
50% (average) attainment surfaces for each of these problems
are presented as Figs. 3, 4, 5 & 9 and Figs. 6, 7, 8 & 12
respectively. These figures indicate that for all bi-objective
problems tested CPACO was able to obtain better mean and
absolute attainment surfaces than PACO. Attainment surfaces
are also included as Figs. 10, 11, 13, 14 for CPACO applied
to the quad-objective problem, kroABCD100, the results of
which are discussed in Sec. V-D.

Table I contains the calculated C metrics for the CPACO
and PACO algorithms. These figures indicate that for all
bi-objective problems tested CPACO obtained a better non-
dominated set than PACO.

335

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

B
1

0
0

kroA100

"CPACO"

"PACO"

Fig. 3. 1% (best) attainment surface for kroA100 and kroB100 using PACO
& CPACO

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 20000 40000 60000 80000 100000 120000 140000 160000 180000

k
ro

D
1

0
0

kroC100

"CPACO"

"PACO"

Fig. 4. 1% (best) attainment surface for kroC100 and kroD100 using PACO
& CPACO

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50000 100000 150000 200000 250000 300000

k
ro

B
1

5
0

kroA150

"CPACO"

"PACO"

Fig. 5. 1% (best) attainment surface for kroA150 and kroB150 using PACO
& CPACO

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

B
1

0
0

kroA100

"CPACO"

"PACO"

Fig. 6. 50% (average) attainment surface for kroA100 and kroB100 using
PACO & CPACO

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 20000 40000 60000 80000 100000 120000 140000 160000 180000

k
ro

D
1

0
0

kroC100

"CPACO"

"PACO"

Fig. 7. 50% (average) attainment surface for kroC100 and kroD100 using
PACO & CPACO

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 50000 100000 150000 200000 250000 300000

k
ro

B
1

5
0

kroA150

"CPACO"

"PACO"

Fig. 8. 50% (average) attainment surface for kroA150 and kroB150 using
PACO & CPACO

336

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 50000 100000 150000 200000 250000 300000 350000 400000

k
ro

B
2

0
0

kroA200

"CPACO"

"PACO"

Fig. 9. 1% (best) attainment surface for kroA200 and kroB200 using PACO
& CPACO

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

B
1

0
0

kroA100

"CPACO_AB"
"CPACO_ABCD"

Fig. 10. 1% (best) attainment surface for CPACO applied to kroA100,
kroB100, kroC100 & kroD100 (CPACO ABCD), and CPACO applied to only
kroA100 & kroB100 (CPACO AB)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

D
1

0
0

kroC100

"CPACO_CD"
"CPACO_ABCD"

Fig. 11. 1% (best) attainment surface for CPACO applied to kroA100,
kroB100, kroC100 & kroD100 (CPACO ABCD), and CPACO applied to only
kroC100 & kroD100 (CPACO CD)

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 50000 100000 150000 200000 250000 300000 350000 400000

k
ro

B
2

0
0

kroA200

"CPACO"

"PACO"

Fig. 12. 50% (average) attainment surface for kroA200 and kroB200 using
PACO & CPACO

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

B
1

0
0

kroA100

"CPACO_AB"
"CPACO_ABCD"

Fig. 13. 50% (average) attainment surface for CPACO applied to kroA100,
kroB100, kroC100 & kroD100 (CPACO ABCD), and CPACO applied to only
kroA100 & kroB100 (CPACO AB)

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

k
ro

D
1

0
0

kroC100

"CPACO_CD"
"CPACO_ABCD"

Fig. 14. 50% (average) attainment surface for CPACO applied to kroA100,
kroB100, kroC100 & kroD100 (CPACO ABCD), and CPACO applied to only
kroC100 & kroD100 (CPACO CD)

337

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

TABLE I
TABLE OF RESULTS FOR C METRIC (COVERAGE)

Problem PACO covers CPACO CPACO covers PACO
KroA100/KroB100 0 1
KroC100/KroD100 0 1
KroA150/KroB150 0 1
KroA200/KroB200 0 1

B. General Observations

It is speculated that the PACO algorithm’s lack of diversity
preservation, combined with a greedy selection strategy and a
strongly biased pheromone matrix (PACO only uses a minimal
subset to construct the pheromone matrix) most likely leads
to premature convergence in suboptimal areas of the search
space. While the strongly biased pheromone matrix allows
the algorithm to improve existing solutions towards the Pareto
front through small perturbations, it may be making it too
difficult for the algorithm to construct solutions which are
vastly different from those already in the population (Fig. 15).

The CPACO algorithm is able to locate and maintain a
diverse set of solutions across the Pareto front which may also
contribute to the algorithm’s ability to find better solutions
along all areas of this front (Fig. 16). There may be some
wasted effort in CPACO since it constructs solutions based
on a pheromone matrix which reflects the performance of
the entire population, regardless of a solution’s position on
the approximate Pareto front; however this, combined with
the greedy transition rule, makes for a good balance between
exploration and exploitation. It is worth noting that the ranking
of solutions using the NGSA-II ranking procedure is a vast
improvement over early attempts which did not use any
ranking and allowed solutions to update the pheromone matrix
uniformly.

C. Computational Efficiency

The CPACO algorithm is comparably, if not less, com-
putationally complex then the PACO algorithm. CPACO re-
constructs the pheromone matrix every iteration like PACO
reconstructs its pheromone matrices (one per objective) and,
although CPACO includes more information in the matrix
since it uses the entire population rather than a subset, this is
offset by the fact that CPACO constructs many more solutions
from the pheromone matrix per iteration than the PACO
algorithm. PACO also requires the identification of k closest
neighbours, an operation which has a worst case complexity of
O(N2) where N is the population size. Using the parameters
from this study for the KroA100KroB100 test problem:

• CPACO constructs 50 solutions per matrix which is
composed of 50 solutions

• PACO constructs 1 solution per set of matrices which are
composed of 6 solutions

Using these parameters PACO performs pheromone matrix
modifications, on twice the number of pheromone matrices,
six times more frequently than CPACO.

PACO does not require dominance ranking every itera-
tion like CPACO since all solutions are assigned a uniform

 20000

 35000

 50000

 65000

 80000

 95000

 110000

 125000

 140000

 20000 35000 50000 65000 80000 95000 110000 125000 140000

K
ro

B
1

0
0

 (
p

a
th

 l
e

n
g

th
)

KroA100 (path length)

Fig. 15. PACO sampling behaviour for one complete experimental run
(20,000 evaluations) of the algorithm on the KroA100KroB100 problem. Each
point indicates an evaluated solution.

 20000

 35000

 50000

 65000

 80000

 95000

 110000

 125000

 140000

 20000 35000 50000 65000 80000 95000 110000 125000 140000

K
ro

B
1

0
0

 (
p

a
th

 l
e

n
g

th
)

KroA100 (path length)

Fig. 16. CPACO sampling behaviour for one complete experimental run
(20,000 evaluations) of the algorithm on the KroA100KroB100 problem. Each
point indicates an evaluated solution.

pheromone update value. However, if the NSGA-II ranking
procedure is used the worst case complexity of this ranking
procedure is reduced from O(hN3) to O(hN2) where h is the
number of objectives. PACO does use the average-rank-weight
method to assign ranks to solutions which is of approximate
worst-case complexity O(hN2), which is comparable.

When checking whether to insert a new solution into the
population PACO performs a non-dominance check of worst-
case complexity O(hN). If the new solution is non-dominated
by the population then it is inserted and the population is
checked for non-dominance by the new solution with a worst
case complexity of O(hN2). CPACO selects a subset (in
this case 1/5 of N) of the population and uses a crowding
comparison to find the closest subset member to the new
solution and then performs a single non-dominance check, of
total complexity O((N/5)2 + h).

The observed average final population size during experi-
mentation was larger for PACO than the static population size

338

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

used for CPACO (Tab. II). Even though these figures indicate
the average final population size, it was observed that the
population size grew rapidly at the start of algorithm execution
before fluctuating about the final recorded level.

TABLE II
AVERAGE FINAL POPULATION SIZE OF PACO VERSUS STATIC POPULATION

SIZE OF CPACO FOR ALL TEST PROBLEMS

Problem PACO final pop size (avg) CPACO pop size
KroA100/KroB100 105 50
KroA150/KroB150 135 75
KroA200/KroB200 148 100

To summarize, both PACO and CPACO require the use
of a distance sorting routine (albeit for different purposes),
although CPACO does so on a subset of the population
reducing the computation considerably. PACO maintains a
larger population than CPACO, and performs approximately
six times as many pheromone updates as CPACO (across mul-
tiple pheromone matrices). CPACO uses the non-dominance
sorting routine to assign ranks to solutions, while PACO uses
the average-rank-weight method to assign objective rankings
(both of similar complexity). PACO requires non-dominance
checking of the entire population per insertion of a new
solution while CPACO only performs one non-dominance
check per insertion. PACO maintains a larger population which
is on average twice the size of CPACO. PACO thus appears to
be a more computationally expensive algorithm than CPACO.

D. Quad-objective Optimisation

CPACO was tested on the KroABCD100 quad-objective
problem to examine its performance on a larger than bi-
objective problem. The results of the trials were analysed
using attainment surfaces by isolating two objectives at a
time (kroA100/kroB100 and kroC100/kroD100), even though
the problem was attempted simultaneously on all four unique
objectives. The attainment surfaces generated from the original
bi-objective cases (kroA100/kroB100 and kroC100/kroD100)
were used as comparisons against the quad-objective case
isolated to two objectives. The ideal outcome of the analysis
would be if little to no difference is observed between the
previously obtained attainment surfaces and the quad-objective
case analysed in two objectives.

The 1% (best) and 50% (average) attainment surfaces are
included as Figs. 10, 11 and Figs. 13, 14 respectively. For
this experiment the population size and number of ants were
both increased to 200, the crowding replacement size was 40,
and the number of iterations was increased from 50,000 to
100,000. All other parameters remain the same as stated in the
Appendix, results are recorded from 50 repeats from random
starting positions.

When isolating the quad-objective results in both the
kroAB100 and kroCD100 objectives the original bi-objective
attainment surfaces are better. This is not unexpected given
that the quad-objective case is a much more difficult problem
due to the added complexity of two extra objectives. It is
interesting that the major difference occurs in the mid-point of

the approximate Pareto front which suggests that CPACO may
not be making best use of its historic (pheromone) information.
It may be that a scaling factor needs to be introduced to the
pheromone update to strongly bias the top ranking solutions
or that an approach similar to PACO where only a subset of
the population is used to create the pheromone map needs to
be introduced.

VI. CONCLUSION AND FUTURE WORK

This study has presented the CPACO algorithm for the
multi-objective TSP. For the bi-objective test problems used
CPACO was able to outperform the PACO algorithm based on
the average attainment surface and C metrics. An added advan-
tage is that while CPACO produced better results, it achieved
them with approximately lower computational complexity than
PACO.

CPACO was then applied to a quad-objective TSP to deter-
mine how well it scales as extra objectives are included. The
results of this experiment, while impressive, were not quite as
good as the bi-objective cases tried. The pheromone update
and use of historic information being likely areas for future
research to address this short-coming.

Given the promising results obtained a host of future work
is intended for the CPACO algorithm including, but not limited
to:

• Application to different classes of multi-objective prob-
lems, including ‘real-world’ instances.

• Combination of CPACO with local-search. In [20] good
results were obtained on multi-objective TSP instances
using a two phase local search. CPACO combined with a
local search may allow CPACO to seed the local search
with many good, diverse starting locations.

• Making CPACO more scalable to larger numbers of
objectives.

REFERENCES

[1] D. Angus. Niching for ant colony optimization. Techni-
cal report, Faculty of Information and Communication Technol-
ogy, Swinburne University of Technology, 2006. Available from:
http://www.it.swin.edu.au/personal/dangus.

[2] D. Angus. Niching for Population-based Ant Colony Optimization. In
2nd International IEEE Conference on e-Science and Grid Computing,
Workshop on Biologically-inspired Optimisation Methods for Parallel
and Distributed Architectures: Algorithms, Systems and Applications,
2006.

[3] B. Barán and M. Schaerer. A multiobjective ant colony system for
vehicle routing problem with time windows. In Proceedings of the 21st
IASTED International Conference, Innsbruck, Austria, February 2003.

[4] O. Cordon, F. Herrera, and T. Stützle. A review of the ant colony
optimization metaheuristic: Basis, models and new trends. Mathware &
Soft Computing, 9(2,3), 2002.

[5] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimization:
NSGA-II. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton,
J. J. Merelo, and H.-P. Schwefel, editors, Parallel Problem Solving from
Nature – PPSN VI, pages 849–858, Berlin, 2000. Springer.

[6] K. A. DeJong. An analysis of the behaviour of a class of genetic adaptive
systems. PhD thesis, University of Michigan, 1975.

[7] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis,
Politechico di Milano, Italy, 1992.

[8] M. Dorigo, E. Bonabeau, and G. Theraulaz. Ant algorithms and
stigmergy. Future Generation Computer Systems, 16:851–871, 2000.

339

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

[9] M. Dorigo and L. M. Gambardella. Ant colony system: A cooperative
learning approach to the traveling salesman problem. IEEE Transactions
on Evolutionary Computing, 1(1):53–66, 1997.

[10] M. Dorigo and T. Stützle. Ant Colony Optimization. MIT Press, London,
2004.

[11] C. M. Fonseca and P. J. Fleming. On the performance assessment
and comparison of stochastic multiobjective optimizers. In PPSN IV:
Proceedings of the 4th International Conference on Parallel Problem
Solving from Nature, pages 584–593, London, UK, 1996. Springer-
Verlag.

[12] C. Garcı̀a-Martı́nez, O. Cordón, and F. Herrera. A Taxonomy and
an Empirical Anlisis of Multiple Objective Ant Colony Optimization
Algorithms for Bi-criteria TSP. European Journal of Operational
Research, 2006. in press.

[13] M. Guntsch. Ant Algorithms in Stochastic and Multi-Criteria Environ-
ments. PhD thesis, Universität Fridericiana zu Karlsruhe, 2004.

[14] M. Guntsch and M. Middendorf. Applying population based ACO to
dynamic optimization problems. In ANTS ’02: Proceedings of the Third
International Workshop on Ant Algorithms, pages 111–122, London,
UK, 2002. Springer-Verlag.

[15] M. Guntsch and M. Middendorf. A population based approach for ACO.
In S. Cagnoni, J. Gottlieb, E. Hart, M. Middendorf, and G. R. Raidl,
editors, EvoWorkshops, pages 72–81. Springer-Verlag, 2002.

[16] M. Guntsch and M. Middendorf. Solving Multi-criteria Optimization
Problems with Population-Based ACO. In G. Goos, J. Hartmanis,
and J. van Leeuwen, editors, Proceedings of the Second International
Conference on Evolutionary Multi-Criterion Optimization (EMO 2003),
volume 2632 of LNCS, pages 464–478. Springer, April 2003.

[17] G. Harik. Finding multiple solutions in problems of bounded difficulty.
Technical Report 94002, Illinois Genetic Algorithms Laboratory (Illi-
GAL), University of Illinois, 1994.

[18] J. Knowles. A summary-attainment-surface plotting method for visual-
izing the performance of stochastic multiobjective optimizers. In ISDA
’05: Proceedings of the 5th International Conference on Intelligent
Systems Design and Applications, pages 552–557, Washington, DC,
USA, 2005. IEEE Computer Society.

[19] S. W. Mahfoud. Niching methods for genetic algorithms. PhD thesis,
University of Illinois, 1995.

[20] L. Paquete and T. Stützle. A Two-Phase Local Search for the Biobjective
Traveling Salesman Problem. In G. Goos, J. Hartmanis, and J. van
Leeuwen, editors, Evolutionary Multi-Criterion Optimization: Second
International Conference (EMO 2003), volume 2932 of LNCS, pages
479–493. Springer, 2003.

[21] G. Reinelt. Tsplib95, 1995. Available at:
http://www.iwr.uni-heidelberg.de/groups/comopt/
software/tsplib95.

[22] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A
Comparative Case Study and the Strength Pareto Approach. IEEE
Transactions on Evolutionary Computation, 3(4):257–271, 1999.

VII. ACKNOWLEDGEMENT

The author acknowledges the guidance Prof. Tim Hendtlass
has provided as well as the rest of the team at CIS.

VIII. APPENDIX

TABLE III
ALGORITHM PARAMETER SETTINGS

Algorithm α β No. of ants k τmax q0

PACO 1 3 1 5 1 0.9
CPACO 1 3 n/2 NA NA 0.9

Algorithm τinit History size (N) Crowding amount (c)
PACO 1/(n− 1) NA NA
CPACO 1/(n− 1) n/2 n/10

340

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)

