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Abstract — One of the basic engineering optimization problems is 
the problem of improving a prototype. This problem is constantly 
encountered by industrial and academic organizations that produce 
and design various objects (e.g., motor vehicles, machine tools, ships, 
and aircraft). This paper presents an approach for improving a 
prototype by construction of the feasible and Pareto sets while 
performing multicriteria analysis. We introduce visualization 
methods that facilitate constructing the feasible and Pareto sets. 
Using these techniques, an expert can correctly state and solve the 
problem under consideration in a series of dialogs with the computer. 
Finally, we present a case study of applying these methods to a 
problem of improving a prototype of the ship. 

I. INTRODUCTION 

The problem of improving a prototype can be defined as 
follows: We want to improve a prototype of some object with 
respect to multiple criteria. The references [1-3,6-10,14] 
discuss similar multicriteria problems of improving a 
prototype of vehicles, machine tools and their units, parafoil-
load delivery system, controllable descending system, etc. For 
example, after road, bench, full-scale and other tests, 
improving some important characteristics of a car is necessary. 
Furthermore, it is very important to make the process of 
operational development of a prototype as short as possible in 
terms of time.  

To solve the above problem the prototype’s operational 
development must take two stages. In the first stage, on the 
basis of different tests it is necessary to identify the 
mathematical model of the object and to determine its 
parameters. To this end, we can solve an identification 
problem, where we work with particular adequacy (proximity) 
criteria1. The questions of multicriteria identification and 
adequacy of mathematical models are discussed in detail in 
[1,2]. In the second stage, an expert formulates and solves the 
multicriteria optimization problem using performance criteria 
and the mathematical model whose adequacy was established 
in the first stage. Based on the results of optimization, 
improvements to the prototype are performed, and then the 
tests of the object are repeated. This cycle is iterated until an 
expert decides to terminate the operational development. 

                                                 
1 By adequacy (proximity) criteria we usually mean the discrepancies 
between the experimental and computed data, the latter being 
determined on the basis of a mathematical model [1,2]. 

In this paper we describe approaches for improving the 
basic performance criteria of the prototype by changing the 
design variable, functional, and criteria constraints while 
constructing the feasible and Pareto optimal solution sets. 
These approaches allow one to determine the potential of the 
prototype for its improvement. 

In brief, the problem of improving a prototype considered 
in this paper possesses the following distinctive features: 
• An expert often does not have sufficient information 

about the limits of variation of many design variables.  
• The problem is essentially multicriteria. These criteria are 

usually contradictory. 
• For these reasons, experts experience significant 

difficulties in correctly stating the problems of improving 
a prototype (definition of the feasible solution set) and, as 
a result, they end up solving ill-posed problems.  

• The formulation and solution of the problem comprise a 
single process. The customary approach is that the expert 
first states the problem and then a computer is employed 
to solve it. This approach is untenable, since one can 
rarely formulate a problem completely and correctly 
before solving it. Thus, problems of this sort should be 
formulated and solved interactively.  

• Construction of the feasible solution set is the most 
important step in formulating and solving the prototype 
improvement problems. 
The above features suggest that one cannot solve the 

prototype improvement problems in a completely automatic 
fashion; we advocate solution of these problems via dialogs of 
an expert with computer. 

We propose to solve the problem of improving the 
prototype by determining the feasible solution set via the 
Parameter Space Investigation (PSI) method that is widely 
used in various fields of industry, science, and technology [1, 
2, 4, 7, 14]. Furthermore, we introduce tools for visualization 
that will guide experts in analyzing this problem. In some 
sense, the visualization procedures that we propose are 
diagnostic tools for an expert. 

 Finally, to illustrate the usefulness of techniques 
presented in this paper, we provide a case study that solves the 
problem of improving the preliminary ship design prototype 
by using the PSI method and various tools for visualization.  
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II. FORMULATION OF THE OPTIMIZATION PROBLEM 

We assume that a prototype depends on r design variables 
α1,...,αr representing a point α = (α1,...,αr) in the r-
dimensional space. In the general case, one has to take into 
account design variable, functional, and criteria constraints.  

The design variable constraints have the form 
,∗∗∗ ≤≤ jjj ααα rj ,...1= . Constraints *

jα  and **
jα  define a 

parallelepiped Π in the r-dimensional design variable space. 
From the expert’s perspective, the values of design variable 
constraints can be changed, if that leads to the improving the 
basic criteria. 

The functional constraints can be written as follows: 
*** )( lll CfC ≤≤ α , l = 1,…, t, where ( )lf α  is a functional 

relation, Cl
∗  and Cl

∗∗  are some constants. Functional relations 
together with constraints are some requirements of the object 
that sometimes an expert can successively revise in order to 
improve the basic performance criteria. These can be norms, 
standards, and other requirements such as mass, overall 
dimensions, allowable stress in structural elements, and so on.  

The operation of a prototype is described by the particular 
performance criteria ),(ανΦ ν =1,...,k. All other things being 
equal, it is desired that these criteria are optimized. For 
simplicity, we assume that functions )(ανΦ  are to be 
minimized. To avoid situations in which the expert regards the 
values of some criteria as unacceptable, we introduce criteria 
constraints in the form **)( νν α Φ≤Φ , ν = 1,...,k, where Φν

∗∗  is 
the worst value of criterion )(ανΦ  acceptable to an expert. 
These constraints are repeatedly revised during solution of the 
problem. The choice of Φν

∗∗  is discussed in the following 
section.  

The design variable, functional, and criteria constraints 
define the feasible solution set D Π⊂ .  

Let us formulate one of the basic problems of multicriteria 
optimization. It is necessary to define the feasible solution set 
D and find a set P ⊂ D such that 

Φ (P) =
D∈α

min ),(αΦ           (1)                 

where ( ) ( ) ( )( )Φ Φ Φα α α= 1 , ,K k  is the criterion vector and P 
is the Pareto optimal set. We mean that )()( βα Φ<Φ  if for 
all ν  = 1,…, k, )()( βαν Φ≤Φ  and for at least one 

{ }k,...,10 ∈ν , ( ) ( )βα νν 00
Φ<Φ . 

When solving this problem, one has to determine the 
vector of design variables Oα ∈P, which is the most preferred 
among the vectors belonging to set P.  

III. CONSTRUCTION OF FEASIBLE AND PARETO 
OPTIMAL SETS WITH THE PARAMETER SPACE 

INVESTIGATION (PSI) METHOD 

The PSI method is based on the search of the parallelepiped Π 
with points of uniformly distributed sequences (e.g., LPτ 

sequences), see [1, 2, 7, 14] for details. The method consists of 
three stages: 
 

Stage 1. Compilation of Test Tables via Computer. First, one 
chooses N trial points α1,...,αN  that satisfy the functional 
constraints. Then all the particular criteria )( iανΦ  are 

calculated at each of the points iα ; for each of the criteria a 
test table is compiled so that the values of ( ) ( )Nαα νν Φ,Φ K1  
are arranged in increasing order; i.e., 

   ( ) ( ) ( )Φ Φ Φν ν να α α νi i iN k1 2≤ ≤ ≤ =K K, , , ,1    (2) 

where i1, i2 ,...,iN are the numbers of trials (a separate set for 
each ν ). Taken together, the k tables form a complete test 
table.  
 

Stage 2. Preliminary Selection of Criterion Constraints. This 
stage includes interaction with an expert. By analyzing 
inequalities (2), an expert specifies the criteria constraints 
Φν

∗∗ . Actually, an expert has to consider one criterion at a time 
and specify the respective constraints. He analyzes one test 
table and imposes the criterion constraint. Then he proceeds to 
the next table, and so on. Note that the revision of the criteria 
constraints within the limits of the test tables does not lead to 
any difficulties for an expert.  

Since we want to minimize all criteria, Φν
∗∗  should be the 

maximum values of the criteria Φν (α) which guarantee an 
acceptable level of the object’s operation. If the selected 
values of Φν

∗∗  are not a maximum, then many interesting 
solutions may be lost, since some of the criteria are 
contradictory. Moreover in some cases the feasible solution set 
may be empty.  

In practice the expert imposes the criteria constraints in 
order to improve a prototype by all criteria simultaneously. If 
it is impossible, he improves a prototype by the most 
important criteria. In process of dialogs with computer the 
expert repeatedly revises criteria constraints and carries out 
the multicriteria analysis. The PSI method gives the expert 
valuable information on the advisability of revising various 
criteria constraints with the aim of improving the basic 
criteria. The expert sees what price he pays for making 
concessions in various criteria, i.e., what he loses and what he 
gains. 

 

Stage 3. Solvability of Problem (1) via Computer. Let us fix a 
criterion, say ( )Φν α

1
, and consider the corresponding test 

table (2). Let S1 be the number of the values in the table 
satisfying the selected criterion constraint:   

**
1

1

1

1

1
)(...)( ννν αα Φ≤Φ≤≤Φ Sii     (3)              

Then criterion Φν2
 is selected by analogy with Φν1

 and 

the values of ( ) ( )Φ Φν να α
2

1
2

1i iS, ,K  in the test table are 

considered. Let the table contain 12 SS ≤  values such that 
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( )Φ Φν να
2 2

i j ≤ ∗∗ ,  where 1≤ j ≤ S2. Similar procedures are 

carried out for each criterion. Then if at least one point can be 
found for which all criteria constraints are valid 
simultaneously, then the set D is nonempty and problem (1) is 
solvable. Otherwise, the expert should return to Stage 2 and 
make certain concessions in the specification of **

νΦ . 
However, if the concessions are highly undesirable, then one 
may return to Stage 1 and increase the number of points in 
order to repeat Stage 2 and Stage 3 using extended test tables 
[1].  

The procedure is to be iterated until D is nonempty. Then 
the Pareto optimal set is constructed in accordance with the 
definition presented above. This is done by removing those 
feasible points that can be improved with respect to all criteria 
simultaneously.  

Thus by using the PSI method, the criteria constraints are 
determined in the dialog of an expert with a computer. Then 
we should determine the Pareto set P , and after the analysis 
of P , find the most preferred solution )( oαΦ , surpassing the 
prototype in all criteria, or at least the most important ones. As 
a rule, in engineering optimization problems, experts do not 
encounter serious difficulties in analyzing the Pareto optimal 
set and in choosing the most preferred solution. They have a 
sufficiently well-defined system of preferences. Moreover, the 
aforementioned set usually contains only a small number of 
solutions because of the strong constraints. 

To investigate design variable space, we use uniformly 
distributed sequences. At present, the so-called LPτ sequences 
are among the best ones in terms of uniformity characteristics. 
We note that other generators, including the random number 
generators, are used as well in the PSI method [5].  

The PSI method is implemented in the MOVI 
(Multicriteria Optimization and Vector Identification) 
software system [8].  
Pseudo-criteria. In many situations an expert cannot 
determine functional constraints correctly. For example, in 
practical problems “good” solutions may lie beyond the limits 
imposed by the constraints. If an expert is informed of this, in 
some cases he will be ready to modify the constraints so that 
the “good” solutions will belong to the feasible solution set. 
The question is how to obtain such information. Instead of the 
function fl(α), whose constraints Cl

∗  and Cl
∗∗ , tl ,...,1=  are 

soft, we introduce an additional criterion )()( αα llk f=Φ + , 
which we will call a pseudo-criterion. However, to find the 
value of Φ k l+

∗∗  one has to compile a test table containing 
)(αlk +Φ . By using the aforementioned algorithm with the 

new test table, one can define Φ k l+
∗∗  in a way that prevents the 

loss of interesting solutions. 
In general, when solving a problem with soft functional 

constraints, one has to find the set D, taking all performance 
criteria into account, the functions fl(α) being considered as 

pseudo-criteria. In other words, one has to solve the problem 
with the constraints **)( νν α Φ≤Φ , nkk ,...,1,,...,1 +=ν . 

Notice, that the pseudo-criteria are not considered while 
constructing the Pareto optimal set. 

IV. TOOLS FOR VISUALIZATION 

The software package MOVI mentioned above provides 
various tools for visualization that facilitate multicriteria 
analysis process [6-8, 13]: 
• Graphs: “Criterion vs. Criterion”.  After N tests, N1 

design variable vectors have entered the test table. We 
consider projections of the multidimensional points 

( )iανΦ , k,...,1=ν , ,...,1=i N1 onto the plane ji ΦΦ . 
These projections provide an expert with information 
about dependencies between criteria. 

• Graphs: “Criterion vs. Design Variable”. We consider 
projections of the multidimensional points ( )iανΦ , 

k,...,1=ν , ,...,1=i N1 onto the plane jανΦ . These 
projections provide an expert with information about 
dependencies of criteria on design variables. 

• Histograms of Feasible Solutions. The intervals 
];[ ***

jj αα , rj ,...,1=  are divided into ten identical 
subintervals. Above each subinterval, the number of 
feasible designs entering this subinterval is indicated. The 
histograms show the role of the functional and criteria 
constraints in the design variable space and allow an 
expert to correct the initial design variable constraints 
accordingly.  

• Tables of Functional Failures. These tables allow one to 
revise the rigid functional constraints in order to correct 
the feasible solution set, see [1, 8]. 
Analyzing the histograms and graphs reveals how the 

feasible and Pareto sets are distributed. In particular, the 
graphs and histograms allow an expert (1) to estimate the 
dependencies of the criteria on the design variables and the 
dependencies between the criteria, (2) to determine significant 
design variables, (3) to compare the values of criteria for a 
baseline design (prototype) with the results obtained by the 
PSI method. This information may prove to be helpful when 
correcting the ranges of the design variable, functional and 
criteria constraints in order to improve the results of the 
previous or initial optimization problems [1,2]. The examples 
of graphs and histograms are provided in the following 
sections.  

V. CONSTRUCTION OF THE COMBINED FEASIBLE 
AND PARETO SETS 

In many cases, analyzing the test tables leads us to conclude 
that correction of the boundaries of the initial parallelepiped 
(defining constraints on design variables) and construction of 
a new parallelepiped are advisable. Suppose that appropriate 
investigations have been performed in the new parallelepiped 

343

Proceedings of the 2007 IEEE Symposium on Computational
Intelligence in Multicriteria Decision Making (MCDM 2007)



 4

and that the corresponding feasible set has been constructed. 
Now it is necessary to combine the feasible sets constructed in 
both these parallelepipeds and define the Pareto optimal 
solutions in the combined feasible set. The procedure of the 
repeated correction of parallelepipeds and construction of the 
combined feasible and Pareto optimal sets is essential for our 
problem. Constructing the combined Pareto optimal set allows 
one to estimate the contribution of each problem in this set and 
expediency of correcting the initial problem.  

We also mention that construction of the combined Pareto 
optimal set is necessary for solving the optimization problems 
in a distributed mode [1, 8]. 

VI. EXAMPLE: THE PROBLEM OF IMPROVING A 
PRELIMINARY SHIP DESIGN PROTOTYPE 

The mathematical model summarized below is based on 
the references [3, 11, 12]. Since we have a readily available 
mathematical model, we need only to conduct the second 
stage of the operational development as described in the 
Introduction. 
 

A.  Initial (or the  first) statement of the optimization problem. 
The design variable vector of the prototype αp=(α1

p,…,α14
p)  is 

given. We follow the general strategy to determine the initial 
design variable space, that is to construct the initial 
parallelepiped Π1 such that the prototype is located in its 
center.  The vector of functional relations f = (f1,…, f10) is 
specified according to our model. The criteria are Φ1 
(Seakeeping Rank [12]) and Φ2 (Residuary Resistance 
Coefficient [11]). We want to maximize the criterion Φ1 and 
to minimize the criterion Φ2.  The vector of criteria of 
prototype is known and is Φp=(8.608;1.968).  

Since the functional constraints f5, …, f10 are nonrigid, 
i.e. they can change within some limits, it is difficult enough 
to formulate these constraints a priori. According to the PSI 
method, the nonrigid functional relations should be interpreted 
as the pseudo-criteria, i.e. Φ3=f5, Φ4=f6, Φ5=f7, Φ6=f8, 
Φ7=f9, and Φ8=f10. In this case, the constraints are defined 
during the solution of the problem (on the basis of analysis of 
the test table).  

Therefore, we have the criteria vector Φ=(Φ1,Φ2, Φ3, Φ4, 
Φ5,Φ6 Φ7, Φ8). We should construct the Pareto set taking into 
account only the performance criteria Φ1 and Φ2 because Φ3, 
Φ4, Φ5, Φ6, Φ7, Φ8 are pseudo-criteria.  

Since we are solving the problem of improving the 
prototype, the criteria constraints equal to the values of the 
prototype criteria (Φp

1=Φ**
1 and Φp

2=Φ2
**) were accepted. 

In summary, we want to investigate the problem with 14-
dimensional design variables space and an 8-dimensional 
criteria space, keeping in mind complex constraints, which we 
need to correct in order to construct feasible solutions. 
 

B. Solution of the initial statement of the optimization 
problem. We performed N=131,072 tests in Π1 and only 
N1=1,487 vectors entered the test table. For investigation of 

the design variable space, the LPτ sequences were used in the 
MOVI software. The 129,585 solutions did not satisfy the 
functional constraints. Only the ND=240 vectors (including 
the prototype) entered to the feasible set, and NP=3 vectors are 
the Pareto optimal solutions. The remaining 1,247 vectors did 
not satisfy the criteria constraints. The Pareto optimal 
solutions in the criteria space are denoted as # 26087, # 81087, 
and # 75527. They significantly surpass the prototype by two 
criteria simultaneously. As a result of the multicriteria analysis 
of the Pareto optimal solutions, an expert has preferred a 
vector # 75527. 

Graphs: “Criterion vs. Criterion”.  The graph of the first 
criterion versus the second criterion is shown in Figure 1. We 
see a complex relationship between the criteria. Three Pareto 
optimal solutions surpassed the prototype (denoted with 
numbers in the figure). An example of the dependency 
between a criterion and pseudo-criterion is shown in Figure 2. 
We see a linear relation on that figure. 

Graph: “Criterion vs. Design Variable”. Figure 3 shows a 
complex relationship between the criterion Φ2 and the design 
variable α10.  

Histograms of Feasible Solutions. The distributions of 
feasible solutions for the range of the 2nd and 10th design 
variables in the initial parallelepiped ∏1 are shown in Figure 
4a. We can see that there are large “gaps” that do not contain 
any feasible solutions. Similar distributions with “gaps” are 
observed for the 5th, 6th, and 9th design variables. 

 

C. The second statement and solution of the optimization 
problem. Parallelepiped ∏2. The analysis of feasible solutions 
(including test tables, histograms, graphs of criterion vs. 
design variable, and graphs of criterion vs. criterion) has 
shown an expediency of the correction of the problem’s initial 
statement. This can allow us to find Pareto optimal solutions 
that are better than ones obtained in the first statement of the 
problem. 
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Figure 1.  The dependency between criteria 1Φ  and 2Φ . Initial statement 
of the problem: ND=238; NP=3.  
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Therefore, the design variable constraints in 
parallelepiped ∏1 were corrected and a new parallelepiped ∏2 
was constructed. Again, the N=131,072 tests were conducted. 
The criteria constraints and functional constraints remained 
the same, as in the initial statement of the problem. The 
N1=18,270 vectors entered the test table. This time 
ND=17,302 vectors (including the prototype) entered the 
feasible set, and NP=14 are the Pareto optimal solutions, see 
Figure 6. Recall that in the initial statement there were only 
ND=240 and NP=3 feasible and Pareto optimal solutions, 
respectively. Histograms in ∏2 have much better distributions 
of feasible solutions (see Figure 4b).   

After the combining the initial and new feasible sets, we 
have constructed a combined Pareto set. No solution 
belonging to the initial statement has entered into the 
combined Pareto set. In other words, all the results of 
optimization in the initial statement (parallelepiped 1Π ) have 
been improved. The analysis of the Pareto solutions allowed 
us to give the preference to the vector # 74223. This vector 
surpassed all solutions in the initial statement by two criteria 
simultaneously, see Figure 6.  

 

 
D. Final (or the third) statement and solution of the 
optimization problem. Parallelepiped ∏3. On the basis of 
analysis of the feasible solutions obtained in Π2, 
parallelepiped Π3 was constructed. More rigid criteria 
constraints Φ1

**=14.342 and Φ2
**=1.711 were formulated 

(previously they were Φ1
**=8.608 and Φ2

**=1.968). After the 
N=131,072 tests, the N1=34,986 vectors entered the test table. 
We have obtained feasible solutions ND=847 and Pareto 
solutions NP=7, see Figure 5. The smaller number of the 
feasible solutions compared to the previous problem can be 
explained by essentially stronger criteria constraints. The 
Pareto optimal solutions (# 113487, # 4145, # 68410, # 39801, 

a)

b)

2nd design variable in ∏1

10th design variable in ∏1

2nd design variable in ∏2

10th design variable in ∏2

a)

b)

2nd design variable in ∏1

10th design variable in ∏1

2nd design variable in ∏2

10th design variable in ∏2

 
Figure 4. Histograms of the distribution of feasible and Pareto optimal 
solutions for the 2nd and 10th design variables: a) corresponds to initial 
parallelepiped ∏1 and b) corresponds to parallelepiped Π2. The percentage of 
designs entering the corresponding interval is indicated on the right of each 
histogram. The prototype is marked with a green diamond. The Pareto optimal 
vectors are marked with red triangles. The “gaps” of the initial range for the 
2nd and 10th design variables are circled.  
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# 53988, # 72461, # 75110) are shown in Figure 5 and Figure 
6. We observed the following: 

• Solution #75110 surpasses 7 solutions from the second 
statement by two criteria simultaneously, see Figure 6.  

• Solution # 113487 surpasses 5 solutions from the second 
statement by two criteria simultaneously, see Figure 6.  

• Using the feasible solutions from the second and final 
statement, the combined Pareto set was constructed. The 
combined Pareto set includes all 7 Pareto optimal 
solutions from the final statement and only 2 solutions # 
106467, # 49109 belonging to the second statement, see 
Figure 6. Further attempts to improve the obtained 
solutions have not given any new interesting results.  

• The stability of the most interesting Pareto optimal 
solutions was investigated with respect to small variations 
of the parameters in the vicinity of these solutions. To this 
end, we constructed parallelepipeds centred at the Pareto 
optimal solutions and performed 1,024 tests in each 
parallelepiped. The corresponding variations in the 
criteria were small and insignificant, which indicated the 
stability of the solutions.  
The overall dynamics of improving a prototype on the 

basis of two corrections of the problem statement are shown in 
Figure 6. 

 
E. Main results. The problem of improving a preliminary ship 
design prototype has been solved. The prototype has been 
essentially improved. Improvement of the prototype has 
occurred, as a result of the definition of the feasible solution’s 
area including: revising range of change of the design 
variables; weakening some constraints on pseudo-criteria (in 
comparison with the prototype); construction and analysis of 
histograms, graphs of criteria vs. criteria, criteria vs. design 
variables,  and the combined Pareto optimal set.  

To achieve the goal, we have corrected the problem 
statement twice.  Each time the analysis of the obtained results 
allowed formulating the improved statement. In our case, three 
statements allowed us to construct the final combined Pareto 
set and to define the most preferable solution # 113487 from 
the final statement. 

CONCLUSIONS 

The process of constructing and analyzing the feasible 
solution set is of fundamental importance in multicriteria real-
life problems, especially in the problem of improving a 
prototype. The main contribution of the present work is that 
we provide various visualization and analysis techniques that 
facilitate construction of the feasible solution set and thus help 
to solve the problem of improving a prototype. Finally, we 
presented a case study in which we aimed improving a 
preliminary ship design prototype. The prototype of the ship 
has been significantly improved by defining the feasible 
solution set.  
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Figure 6. Pareto optimal solutions in the three statements and the combined 
Pareto set.
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