
A Spatial Classification Model for Multicriteria Analysis

Ana Del Amo Member, IEEE, Luis Garmendia, Daniel Gómez and Javier Montero

Abstract— This paper stresses that standard multicriteria
aggregation procedures either do not assume any structure in
data or this structure is in fact assumed linear. Nevertheless,
many decision making problems are based upon a family of
data with a well defined spatial structure, which is simply
not taken into account. Hence, such aggregation procedures
may be misleading. Therefore, we propose an alternative model
where the aggregation of criteria assumes a certain structure,
according to remote sensing data.

I. INTRODUCTION

In the emerging area of sensor-based systems, an existing
significant challenge is the development of scalable methods
capable of extracting useful information from the data that
the sensors collect. The extraction of useful information
from different sources can be modeled as a Multicriteria
decision making problem. Aggregation operators represent a
standard mathematical tool in Multicriteria decision making.
By means of an appropriate aggregation operator, informa-
tion collected from different sources is amalgamated into a
simpler descriptive index (see, e.g., [3]). As already pointed
out in [15], a number of assumptions in aggregation oper-
ators are artificially introduced, apparently justified from a
usefulness argument. For example, many researchers define
aggregation in terms of a unique binary operation rule, which
is sequentially applied under the associativity argument. This
approach refers to a family of data that can be represented in
the real line (according to time, for example). But in many
decision making problems the data collected comes from a
surface, real three-dimensional data or in some cases higher
dimensions. In the case of a sensor based system the data
could have been collected from a LADAR, SAR and satellite,
all from the same area for example. This is the case when
we analyze remotely sensed images, where pixels define a
specific structure due to contiguity (see, e.g., [12], [19]).

When analyzing a pixel from a remotely sensed image,
for example, we describe the pixel as a mixed of different
degrees of membership to every main concept (forest or wet-
land, for example). Surrounding pixels will also be described
by their degrees of membership to each one of the same main
concepts. Therefore, it makes sense to conceive that the true
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degree of membership for each one of the pixels in the image
as some kind of average obtained from each pixel and its
surrounding neighbors. This kind of average will produce a
natural smoothing, which in some context (depending on the
required precision) will provide a more accurate description
of the pixel than the one obtained from the single observed
pixel, at least for decision making purposes. For example,
a forest containing a small country house should still be
defined as a forest. The country house will be perceived as
an outlier pixel or as a set of outlier pixels. In this case, we
may not need the information about the existence of these
outlier pixels or we might decide not to take it into account
in our decision process. Notice that we are suggesting a
data reconstruction technique that may not be associated
to any standard smoothing technique, where generally the
observed value of a pixel is taken into account. We proposed
to substitute the observed value by the aggregated value
obtained from the set of surrounding pixels, in order to
produce a simpler description of the image, easier to be
understood and to be managed by the decision maker (see
[14]).

The paper is organized as follows: the next section presents
a short criticism of standard assumptions in aggregation
operators. We show some of the consequences of these
assumptions, specifically those related to the underlying
structure of data being assumed. In section III, we establish
the connection between some multicriteria models and the
aggregative classification presented in [7]. We also proposed
an alternative model that takes into account the spatial
structure in which the data in a standard remotely sensed
image is arranged. Finally, the relevance of this approach is
discussed in section IV, where we take into account standard
approaches in remotely sensed images.

II. STANDARD APPROACHES TO AGGREGATION
PROCEDURES

The aggregation of information is a key issue in a number
of problems. The decision maker needs to reduce the com-
plexity of the problems in which the information is obtained
from multiple sources.

The formal approaches to this problem found in the
literature are based on binary connectives, mainly t-norms,
t-conorms and uninorms (see, e.g., [3], [32]). These families
of binary connectives are conceived (see also [11], [20], [30])
as sets of mappings

¯ : [0, 1]× [0, 1] → [0, 1]

verifying standard assumptions that include
1. Commutativity:

¯(a, b) = ¯(b, a), ∀a, b ∈ [0, 1]
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2. Monotonicity:

a1 ≤ a2, b1 ≤ b2 ⇒ ¯(a1, b1) ≤ ¯(a2, b2)

3. Associativity:

¯(¯(a, b), c)) = ¯(a,¯(b, c)), ∀a, b, c ∈ [0, 1]

In addition, two extreme boundary conditions are also
assumed:
4α. ¯(1, 1) = 1
4β. ¯(0, 0) = 0

Some other extra assumptions may be imposed in order to
assure certain properties, perhaps desirable from a practical
point of view:

5. Continuity: given a sequence {(an, bn)}∞n=1 ⊂ [0, 1]
such that limn→∞(an, bn) = (a, b), then

lim
n→∞

¯(an, bn) = ¯(a, b)

6. Idempotency:

¯(a, a) = a, ∀a ∈ [0, 1]

Moreover, particular conditions are associated to certain
classical mathematical properties. For example, conjunction
and disjunction are respectively fixed by the following ex-
clusive boundary conditions:
7t. For t-norms:

¯(a, 1) = ¯(1, a) = 1, ∀a ∈ [0, 1]

7c. For t-conorms:

¯(a, 0) = ¯(0, a) = 0, ∀a ∈ [0, 1]

But as pointed out in [15], the majority of the above
conditions seem to be accepted without discussion in most
of the cases. For example:
• Commutativity refers to the irrelevancy of data ordering

in the aggregation process, in such a way that the results
of the aggregation will be the same independently of the
permutation (see [21]). It is indeed a standard mathe-
matical property, but it implies a severe restriction in
some cases against the real description of the problem.
Commutativity can be properly assumed only when
our experiment has been designed in order to fulfill
commutativity.

• Monotonicity, in principle, looks like an obvious prop-
erty (if the degrees of truth increase in each part,
the global degree of truth should increase, or at least,
never decrease). But this property deserves much more
attention, it can not be freely assumed without a robust
supportive background. In fact, it is well known in
Reliability Theory (see [1]) that a similar condition
does not necessarily hold when dealing with physical
systems subject to failure. Monotonicity indeed is a
standard assumption in Reliability Theory, even in a
non binary context (see, e.g., [2], [28]), but it should
not be accepted without remarking that some interesting

systems are being discarded (see [15] for an in dept
discussion).

• In the case of associativity, we must agree with [20]
that the very first definition of triangular norm, as
proposed by Menger [22], did not required associativity.
The associativity condition, was included later [30].
The problem is that, in order to be useful in practice,
we need binary connectives, but we also need to be
able to aggregate any arbitrary number of arguments.
Associativity takes care of this issue, providing the
tool to be able to extend each binary operator in a
unique way, just by induction [20], independently of the
direction of the calculus (left to right or right to left).
Therefore, associativity can be envisioned as a necessary
restriction, only when we impose the restriction over
the aggregation process to be based on a unique binary
operation. Such an assumption is not obvious in the
crisp case, and it is very difficult to accept in a more
general context.
Of course, aggregation should take into account which
pieces of information have already been aggregated.
Montero, for example, in [23] and [26] includes the
size of the aggregated information in order to avoid
Fung and Fu restrictive result [13]: if we assume that the
aggregation process must be based upon a unique binary
operator, standard restrictions will drastically reduce the
set of available binary operators.
The aggregation processes should not only be based
on binary operations but could evolve in time or could
remain constant along the complete aggregation process.
Defining an operational aggregation rule can be alterna-
tively assured allowing a successive reckoning of binary
operators, by means of recursiveness, as proposed in [4]
and [7].

• For extreme boundary conditions we can apply analo-
gous arguments to those above, relative to monotonicity:
it may even happen that the concept of best and worst
have to be revised in order to meet extreme boundary
conditions.

• Continuity is sometimes considered as a very strong
mathematical condition, and in fact there are a number
of key results that can be obtained assuming some of
the weaker forms of continuity (see, e.g., [20]). From a
practical point of view, we should stress the weakness of
the standard continuity. If the evaluation space is, in fact,
the whole unit interval, a robust estimation associated
procedure requires a stronger restriction. We do desire
our binary connective to be smooth, but it can be
derivable and still show very high slopes, in such a way
that a small input measurement error can still produce
a big change in the output. This situation is not avoided
just assuming that our function is infinitely derivable.
In practice, we should be imposing certain smoothness
restriction (the absolute value of the first derivative must
not be too high), and such a smoothness restriction most
likely will depend on our precision measurement level.
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Some smoothness restriction becomes important in Soft
Computing systems.

• Idempotency is certainly violated in some contexts with
some kind of attraction behavior: a high degree, if
repeated, may suggest in many contexts a higher aggre-
gated degree, and a low degree, if repeated, may suggest
a very low aggregated degree. Distributive logics verify
the absortion law, which imply idempotency. Note, for
example, that in case of the conjunction and disjunction
continuous connectives, only the operators of Zadeh’s
logic (maximum and minimum) hold idempotency, and
so is the only logic using continuous operators that can
be distributive. Logics using archimedean t-norms are
not idempotent, and they do not hold the absortion law,
and they do not hold the distributive property.

• Exclusive boundary conditions are introduced in order
to give the aggregation a particular meaning. But again
we should not be accepting that there are only two possi-
ble roles for binary aggregation, as in the crisp context.
Alternative boundary conditions may lead to different
aggregation operators, as binary weighted means or
Yager’s binary OWA operators [31], [32].

Moreover, we should never expect that a complex situation
can be summarized by a unique index. Not even in the case
that the multiple sources of information assume a common
measurement unit (which may not be assured), and of course,
we can not force the mix of data items that are absolutely
different in nature.

Nevertheless, in order to try to solve some of the issues that
we have presented above, we need to utilize recursiveness.
The key idea of the concept of recursiveness is that an
aggregation rule, in order to be operational, should be based
upon an iterative application of binary operators, but not
necessarily the same binary operator. Therefore, the data is
assumed to be aggregated one by one, implying perhaps a
previous re-arrangement or reordering of the data (see [4]
for more details).

Definition 2.1: Let us denote a permutation

πn(a1, a2, . . . , an) = (aπn(1), aπn(2), . . . , aπn(n))

An ordering rule π is a consistent family of permutations
{πn}n>1 such that for any possible finite collections of
numbers, each extra item an+1 is allocated keeping previous
relative positions of items, i.e.,

πn+1(a1, a2, . . . , an, an+1) =
(aπn(1), . . . , aπn(j−1), aπn+1(j), aπn(j) . . . , aπn(n))

for some j ∈ {1, . . . , n + 1}.
In other words, once the relative position of two elements

is fixed by means of a permutation πn, no other permutation
πm, m > n, will modify the relative position.

The following definition was proposed in [4].
Definition 2.2: A left-recursive connective rule is a fam-

ily of connective operators

{φn : [0, 1]n → [0, 1]}n>1

such that there exists a sequence of binary operators

{Ln : [0, 1]2 → [0, 1]}n>1

verifying

φ2(a1, a2) = L2(aπ(1), aπ(2))

and

φn(a1, . . . , an) =
Ln(φn−1(aπ(1), . . . , aπ(n−1)), aπ(n))

for all n > 2 and some ordering rule π.
Notice that we are not imposing a unique binary operator

for the whole iterative process. This was, in fact, the main
criticism argued in [23] against the restrictive result obtained
by Fung-Fu [13].

Right recursiveness was analogously defined (see [4]), and
then the authors talk about a recursive rule when both left
and right representations hold for the same ordering rule. We
refer to standard recursive rules when they are based upon
the identity ordering rule. Then, it follows, that a connective
rule {φn}n>1 is recursive if and only if a set of general
associativity equations hold for each n, once the ordering
rule π has been already applied (see [7]):

φn(a1, . . . , an) =
Rn(aπ(1), φn−1(aπ(2), . . . , aπ(n))) =
Ln(φn−1(aπ(1), . . . , aπ(n−1)), aπ(n))

must hold for all n. A representation result was obtained in
[7] by assuming certain regularity conditions.

Both associative and recursive approaches process data
sequentially. This underlying assumption can be justified
from an operational point of view, in case the data do not
show any particular structure. Otherwise, such an underlying
structure is assuming that the data is obtained according to an
specific ordering (perhaps according to time, in some sense).
Of course, we can analyze how the behavior of a certain pixel
evolves over time, but a basic study that will focus on the
comparison between each pixel and its surrounding pixels.
There is no way this analysis could be properly represented
according to a linear structure, at least, not within a remote
sensing context, where the neighbor concept is not restricted
to the pixels located in the left and right directions.

III. CLASSIFICATION AND MULTICRITERIA PROCEDURES

From our point of view, when an image obtained by remote
sensing methods is analyzed, the objective of this analysis is
the obtention of meaningful classes that should capture or
approximate some specific concept. We are not looking at
accurate distance measures between the features of study.

In most cases, the classes are determined based on prox-
imity measures of individual features, but a meaningful class
can not be defined based on absolute measures of individual
features but as a mixture of fuzzy intervals of these features.
In some cases, you might find that in a particular pixel one of
the features clearly indicates a high degree of membership
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to a class but the values of the surrounding pixels in that
particular feature are all within reasonable boundaries of
another class, then you have to conclude that the particular
pixel, definitely belongs to the later class. This, could be the
case in the example that we mentioned in the previous sec-
tions, about the house in the forest. Therefore, measurement
proximity should be understood as a preprocessing stage,
never as the final output. In this sense, classes may play
the role of classification criteria (for example, we pursue to
evaluate to what extent a certain region is a forest, which
indeed is a complex concept, to be explained by a family of
measured attributes).

In our search, for meaningful classes to define or explain
a remote sensing image, segmentation plays a key role.
Image segmentation is the part of image processing which
objective is to divide the image into its constituent regions
or objects. The goal is to get a manageable description of
the image in terms of a partition (not necessarily crisp) into
homogeneous parts that could represent the set of meaningful
classes. When dealing with information from several sensors,
we might have one or several three dimensional, one or
several bidimensional or a mixed of bidimensional and three
dimensional representations of the area being analyzed. Some
segmentation procedures (see, e.g., [17], [18]) imply the
aggregation of information about possible frontiers according
to several directions, since in these approaches the image is
defined by means of pixels arranged in a connected graph. In
fact, a remote sensing image can be mathematically defined
as a set P

P = {pij/ 1 ≤ i ≤ r, 1 ≤ j ≤ s}
of r × s information units -pixels-, where

Pij = (p1
ij , p

2
ij , · · · pk

ij)

is the pixel associated with the coordinate (i,j). In this way,
the image is being modeled as a fuzzy planar graph (the
graph is planar in the sense that two pixels pij and pi′j′ are
not connected if ‖i− i′‖+ ‖j − j′‖ > 1). A fuzzy graph

G̃ = (P, Ã)

can be then defined by the image pixels, and the set of fuzzy
arcs Ã will be characterized by a matrix

µÃ = (µpij ,pi′j′ )pij ,pi′j′∈P̄

where P̄ is the set of connected pixels, i.e.,

P̄ = {(pij , pi′j′) ∈ P 2 / ‖i− i′‖+ ‖j − j′‖ = 1
1 ≤ i ≤ r, 1 ≤ j ≤ s}

The above approach would be used as a preprocessing
procedure over the data obtained from the multiple sensors.
Each one of the units of the physical location of study will
have a set of spatial information that has to be aggregated.
The aggregation operator in this case can not be linear,
the data would not only be to the right and to the left
but in multiple spatial directions. The aggregation procedure
should reproduce the true structure of data, so the data is

successively aggregated following a path of pairs of con-
nected units, which we anticipate should produce consistent
results. We can not aggregate non connected units, since the
aggregation will be meaningless.

Once the final segmentation based on an n-dimensional
aggregation operator has been obtained the result can be
processed by an unsupervised classification algorithm like
the one designed by Del Amo et al ([8], [10], see also [6],
[17], [18]).

Let

X = {Xi1j1 / i1 = 1, · · · , r1 j1 = 1, · · · , s1}
be the set of pixels to be processed (we have to remember that
this information represents the output of the segmentation
algorithm above), where

(x1
i1j1 , x

2
i1j1 , · · · , xk

i1j1) ∈ IRn

is the vectorial representation of a collection of features for
element Xi1j1 , xf

i1j1
being the value of feature f for element

Xij . For each one of the classes, in which the classification
will be performed, a range of valid values has to be defined.
The membership function for each class Ck with respect to
each f property is defined following [8]. Each object Xi1j1

has an associated vector

Mk(Xi1j1) = (m1k(x1
i1j1),m2k(x2

i1j1), · · · ,mnk(xn
i1j1))

for each class Ck, which shows the different degrees of
verification each property has with respect to each class.
The classification problem, at this point, can be solved as
a multicriteria decision making problem.

In the same way as classical (crisp) sets can be defined two
different but equivalent ways (by means of their extensive
definition, i.e., listing those elements belonging to the crisp
set, or by means of their comprehensive definition, i.e., listing
those properties characterizing the crisp set), both approaches
should be simultaneously be introduced in fuzzy models
(see [24], [25]). Hence, when we are facing the problem
of evaluating to which extent an object x ∈ X belongs
to a given fuzzy class and, we are trying to evaluate to
what extent such an object verifies the properties defining
such a fuzzy class. Hence, we should be answering to what
extent the assertion object x verifies those properties is true.
This has to be done by means of an existing evaluation
space (which might not define a linearly ordered set of
evaluation states). Within a crisp context, where one and
only one evaluation state will be valid, this is being done
by choosing one evaluation state between all elements in the
evaluation space. But in a fuzzy context an object can belong
to several evaluation states, with different intensities of truth
or membership degrees.

Under this approach, we identify our evaluation problem
as a fuzzy classification problem, so a fuzzy classification
system (in the sense of [9]) is needed, in order to identify
the degree to which each assertion object x verifies required
properties at level v is true. As pointed out in [9], these
degrees

{µx(c)}c∈C
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need not to sum up to one (Ruspini’s partition [29] can
be reached only through a specific learning procedure, in
order to find an appropriate family of classes, but note that
sometimes it is not possible to find a set of classes that verify
Ruspini’s condition, and it may not even be the objective, see
[5]). Moreover, it was also pointed out in [9] that a family
of classes C might be associated to a certain structure, not
necessarily a partial order: for example, if an image is being
explained by means of three basic classes forest, urban area
and water (see [16]), it can not be properly said that forest
is in between urban area and water (although we realize in
[16] that, in some sense, the distance between urban area and
water is greater than the distance between urban area and
forest). Ordering is not the characteristic issue between states
in a classification structure, but a relational graph, associated
to a future learning of the degrees of membership.

Classes should be positively defined in order to allow
evaluation learning in practice. Classifying between tall and
short is in this sense correct, but classifying between tall
and non tall does not seem a proper classification: non
tall is, by definition, the negation of tall so we do not
properly classify between these two classes: we just assign
a degree of membership to tall and then deduce the degree
of membership to non tall (direct estimation without direct
intuition is difficult for most decision makers).

Moreover, the initial state of any learning process should
be associated to an ignorance evaluation state, which should
always be present in the evaluation space C. In practice, C
should be a finite and small set of evaluation states.

Then we find out that the simplest real problem will
require at least two different kinds of operators: those relative
to fuzzy classes in C (e.g., to what extend Paul is tall and
fat?, see [24]) and those relative to crisp objects (e.g., to
what extend Paul and Mary are tall?, see [25]). And in the
same way that a particular structure should be defined in the
evaluation space C, another structure might be defined in X
(see for example [17], [18], where neighborhood between
pixels plays a key role).

Hence, we follow [27] claiming that, at least from a
practical point of view, more attention should be devoted
to type-2 fuzzy sets.

In the specific spatial classification context we are consid-
ering in this paper, we propose a classification model based
upon a mapping

µ : X → [0, 1]C

where
A1 X is a well-defined non-empty, but finite, set of objects

such that
A1.1 There exists a crisp directed graph (X, P ), showing

physical immediacy between two distinct objects
x, y ∈ X (pxy = 1 in case there is immediacy
between x, y ∈ X and pxy = 0 otherwise).

A1.2 There exists a logic on X which will allow a
consistent evaluation of questions about paths of
objects.

A2 C is a finite evaluation space, with at least three ele-
ments, such that

A2.1 There is a crisp directed graph (C, R). (rij = 1
in case there is immediacy between i, j ∈ C and
rij = 0 otherwise).

A2.2 There exists a logic in C which will allow a
consistent evaluation of questions about paths of
evaluation states.

A3 There exists an ignorance state I ∈ C such that
A3.1 For every i ∈ C there exist a path connecting I

with i.
A3.2 µx(I) = 1, ∀x ∈ X and µx(i) = 0, ∀x ∈ X, ∀i 6=

I when there is no available information (complete
ignorance).

In this way, the relative position of pixels will be taken into
account in the subsequent aggregation process. Of course, see
[5], additional restrictions may appear within the subsequent
learning process. For example, one can expect that

µx(I) ≤ (≥)µ′x(I)

should hold whenever

µx(i) ≥ (≤) µ′x(i), ∀i
In the learning process the relationship between classes will
play a key role.

The basic model proposed here seems to be the evalu-
ation structure needed in many classification problems, in
particular for some remotely sensed images. Meanwhile, each
class can be associated to one criteria, this structure can be
translated into multicriteria decision aid models, which can
be upgraded by means of appropriate coloring procedures,
as claimed in [14].

In particular, in [6], shows that a pure numerical search,
pixel by pixel, may produce useless results, while an ap-
proach closer to the analysis of concepts produces clear
improvements in the decision process. For example, the
search for a concept in [6] was associated to homogeneous
regions, and the objective was to obtain a set of basic
concepts that would allow a good explanation of the image of
study. In a first analysis, we got three general classes (natural
space, urban area and wetland), a second analysis should be
done when a more detail explanation, a higher precision is
the ultimate goal for the decision maker.

Nevertheless, the aggregation of information from a set
of units should be evaluated from the structure of these
units. In remote sensing, for example, smoothing might be
done in a first analysis just computing, for each pixel, the
aggregated value of the immediate contiguous pixels, or
could included influence values of a larger number of pixels
around (expanded neighborhood). This approach implies an
aggregation in several phases or stages. At each stage we
will add one extra outer line around the pixel, with all those
pixels being equidistant with respect to the selected pixel.
Once this process has been performed we will aggregate
the aggregated value of every outer line (depending on our
objective, the difference between each step of the incremental
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analysis can be considered, and also the distance between the
pixel of study and the aggregation of all those pixels in the
outer line around it). The aggregation rule to be used within
an outer line is expected to be commutative, since pixels at
the same level are considered equally important. In case we
are considering multiple layers of pixels the aggregation rule
will be weighted, assigning more weight to the lines closer
to the pixel under study. An analogous situation appears
when the objective is detecting borders instead of smoothing
the area of study. As proposed in [17], for example, we
can search for borders in different directions, developing an
aggregation procedure for each direction, individually. The
decision about a border pixel would be made only based
on the computation of an aggregated value of all those
directions. As a conclusion, the aggregation rule through
the incremental layers is expected to be different that the
aggregation of the aggregated values in each one of the
directions of study. Different data structures will lead to
different aggregation procedures.

IV. FINAL REMARKS

There is a general interest to design innovative techniques
to improve the decision making process via fusion of in-
formation, particularly, in homeland security applications,
including situational awareness, precision strike, etc. The
data acquisition capabilities based on the sensor utilization
has grown to extremes were the amount of data collected
needs to be automatically analyzed. The amount of data
collected for the same phenomena fits the description of
the typical set of data that should be automatically analyzed
and aggregated by means of multicriteria decision making
techniques.

In this paper we proposed to bring a particular model,
initially conceived for classification, into a multicriteria de-
cision making context. This translation can be useful when
the classes we are trying to determine play in fact the role of
criteria, which in general imply fuzzy concepts. Our purpose
then is to take advantage of previous research done by the
authors concerning segmentation and other representation
techniques. These representation techniques are based upon
coloring of fuzzy classes, which can be understood as a first
stage for multicriteria models based on fuzzy set theory.
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[18] D. Gómez, J. Montero and J. Yanez, ”A coloring fuzzy graph approach
for image classification,” Information Sciences 176:3645-3657, 2006.

[19] J. R. Jensen, Introductory Digital Image Processing. A Remote Sensing
Perspective. Prentice Hall, 1986.

[20] E.P. Klement, R. Mesiar and E. Pap, Triangular norms. Kluwer,
Dordrecht, 2000.

[21] G.J. Klir and T.A. Folger, Fuzzy sets, uncertainty and information.
Prentice Hall, London, 1988.

[22] K. Menger, Statistical methods. Proc. Nat. Acad. Sci. U.S.A. 8:535–
537, 1942.

[23] J. Montero, ”A note on Fung-Fu’s theorem,” Fuzzy Sets and Systems
17:259–269, 1985.

[24] J. Montero, ”Comprehensive fuzziness,” Fuzzy Sets and Systems
20:89–86, 1986.

[25] J. Montero, ”Extensive fuzziness,” Fuzzy Sets and Systems 21:201–
209, 1987.

[26] J. Montero, ”Aggregation of fuzzy opinions in a fuzzy group,” Fuzzy
Sets and Systems 25, 15–20, 1988.
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