
An Application of Interactive Fuzzy Satisficing
Approach with Particle Swarm Optimization for

Multiobjective Emergency Facility Location Problem
with A-distance

Takeshi Uno∗, Kosuke Kato, Hideki Katagiri
Graduate School of Engineering, Hiroshima University

1-4-1, Kagamiyama, Higashihiroshima-shi, 739-8527 Japan
Email: uno@msl.sys.hiroshima-u.ac.jp, kato@msl.sys.hiroshima-u.ac.jp, katagiri-h@hiroshima-u.ac.jp

Abstract— This paper extends optimal location problems for
emergency facilities to multiobjective programming problems by
considering the following two objectives: one is to minimize the
maximal distance of paths from emergency facilities to hospitals
via accidents, and the other is to maximize frequency of accidents
that emergency facilities can respond quickly. In order to find a
satisfying solution of the formulated problems, an interactive fuzzy
satisfying method with particle swarm optimization is proposed.
Computational results for applying the method to examples of
multiobjective emergency facility location problems are shown.

I. INTRODUCTION

In this paper, we consider emergency facility location problems
(EFLPs), such that ambulance service stations [9], fire sta-
tions [12], etc. Matsutomi and Ishii [9] considered EFLPs with
the situation that if an accident occurs, the nearest emergency
facility sends ambulances to it and injured people are conveyed
to the nearest hospital. In such EFLPs, there are the following
two important factors.
One is distance (or norm); for details about relation between
facility location and norm, see Martini [7]. There are two norms
widely used in studies about EFLPs. One is the Euclidean
norm [1]. About this norm, it is assumed that it can be traveled
to any orientations at any points. However, this assumption
does not usually holds in cases of facility location in urban
areas. The other is block norm [11], [15], [16]. About this
norm, it is assumed that it can be traveled to given several
allowable orientations of movement with weights at any points.
Rectilinear distance is regarded as one of block norms such
that there are two allowable orientations which cross at right
angles with the same weights. EFLP with rectilinear distance
are often studied [1], [17]. A-distance defined by Widmayer
et al. [18] is also regarded as one of block norms such that
there are several allowable orientations of movement with the
same weights. Matsutomi and Ishii [9] consider EFLP with the
A-distance. In this paper, we propose a new EFLP based on
the EFLP with the A-distance.
The other is criteria of optimality for facility location. In
general EFLP [2], [6], [12], an objective for facility location is
to minimize the maximal distance between emergency facilities

and the scenes of accidents. In addition to the above objective,
in this paper, we consider another new objective which is to
maximize frequency of accidents that emergency facilities can
respond quickly to. We formulate multiobjective EFLP with
the above two objectives. Since multiobjective programming
problems do not have complete optimal solution generally, in
order to find a satisfying solution for the decision maker, we
apply interactive fuzzy satisficing method proposed by Sakawa
et al [13]. In this method, we need to efficiently find an
optimal solution for each of the minimax problems with the
corresponding reference membership values. We propose to
apply particle swarm optimization (PSO) method proposed by
Kennedy et al [3].
The organization of the paper is as follows. In Section II,
we give the definition of A-distance and its properties. In
Section III, we formulate multiobjective EFLP with the A-
distance. For the formulated EFLP, first we propose the method
to compute the objective values for each location in Section IV.
In order to find a satisfying solution for the decision maker,
we introduce the interactive fuzzy satisficing method proposed
by Sakawa and Yano [13] in Section V. In order to solve
the minimax problems in this method, we proposed a PSO
method considering characteristics of EFLP in Section VI.
In section VII, we show results for applying the method to
examples of multiobjective EFLPs. Finally, we make mention
of conclusions and future remarks in Section VIII.

II. A-DISTANCE

In this section, we describe the definition of A-distance and
its properties. We consider the situation that there are a
orientations which can only move in the plane R2. The orien-
tations are represented as the angles between the corresponding
straight lines to orientations and the Cartesian x-axis; for
example, orientation 0 is the x-axis and orientation π/2 is the
y-axis. Let A = {α1, . . . , αa} be a set of orientations such that
0 ≤ α1 ≤ · · · ≤ αa < π. A line, a half line, or a line segment
is called to be A-oriented if its orientation is one of those in
A. Then, the A-distance between two points p1 and p2 ∈ R2
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is represented as follows:

dA(p1, p2) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d2(p1, p2), if p1 and p2 are in
an A-oriented line,

min
p3∈R2

{dA(p1,p3) + dA(p3, p2)},
otherwise,

(1)

where d2(·, ·) means the Euclidean distance. The rectilinear
distance is represented as the A-distance with A = {0, π/2}.

p1
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Fig. 1. A-distance

As shown in Figure 1, if p1 and p2 are not in any A-oriented
lines, there exists at least one point p3 ∈ R2 such that

dA(p1, p2) = d2(p1, p3) + d2(p3, p2). (2)

For a point p and a distance d, the locus of all points p′ with
dA(p,p′) = d is called A-circle with center p and radius d.

p

α1

α2

α3

α1

α2

α3

Fig. 2. A-circle in cases that A = {π/3, π/2, 3π/4}

As shown in Figure 2, A-circle has its boundary of 2a-gon
whose corner points are the intersections of the circle with
center p and radius d and the A-oriented lines through p.
For two points p1 and p2, bisector of p1 and p2 with the
A-distance is defined as follows:

BA(p1, p2) = {p | dA(p1,p) = dA(p2, p)} . (3)

Let Q = {p1, . . . ,pn} be a set of n points in R2. Then,
Voronoi polygon VA(pi), i = 1, . . . , n, with the A-distance
is defined as follows:

VA(pi) =
⋂
j �=i

{
p | dA(p, pi) ≤ dA(p, pj),p ∈ R2

}
. (4)

Sides and vertices of Voronoi polygons are called Voronoi
edges and Voronoi points, respectively. The set of all Voronoi
polygons, which can be regarded as a partition of R2, is called
Voronoi diagram with the A-distance. The computational time
to construct Voronoi diagram for Q, denoted by V DA(Q), is
estimated at most O(n log n) shown by Widmayer et al. [18].
Figure 3 shows an example of Voronoi diagram with A =
{0, π/2}.

Volonoi point

Volonoi edge

Volonoi polygon

Fig. 3. Voronoi diagram with the A-distance

III. FORMULATION OF MULTIOBJECTIVE EFLP

In this section, we formulate multiobjective EFLP with A-
distance. Let S ⊂ R2 be a closed convex polygon in which
accidents occur and the decision maker needs to locate emer-
gency facilities. We consider the situation that if an accident
occurs at a point, the nearest emergency facility to the point
sends ambulances to the point and then injured people in the
accident are conveyed from the point to the nearest hospital.
First, we show the minimax criterion about path from the
emergency facilities to the hospitals via the points of accidents.
Let h1, · · · , hm ∈ S be sites of m hospitals, let y1, · · · , yn ∈
S be sites of n emergency facilities, and Y = (y1, · · · , yn).
Then, if an accident occurs at a point p ∈ S, A-distance for
the above path is represented as follows:

u(Y,p) := min
i=1,...,n

dA(yi,p) + min
j=1,...,m

dA(p, hj). (5)

Because the decision maker does not know where accidents
occur in S beforehand, one of our objectives is regarded to
cope with any accident points in S quickly. Then, the first
objective function is represented as follows:

f1(Y ) := max
p∈S

u(Y,p) (6)

Secondly, we show a new criterion about frequency of acci-
dents. We assume that the decision maker knows points where
accidents frequently occur in S, called accident points. There
are k accident points whose sites are denoted by a1, . . . ,ak ∈
S, and each of their accident points has a weight about fre-
quency of accidents, denoted by w1, . . . , wk > 0, respectively.
Let γ > 0 be an upper limit of the response time from the
emergency facilities to the hospitals that a medical treatment
for injured people can be in time. The other of our objectives
is regarded as to maximize sum of the weights of frequency
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of accident points that the emergency facilities can cover for a
given γ > 0. Then, the second objective function is represented
as follows:

f2(Y ) :=
∑

i∈Iγ(Y )

wi, (7)

where

Iγ(Y ) := {ai|u(Y,ai) ≤ γ} (8)

Therefore, multiobjective EFLP is formulated as follows:

PM : minimize f1(Y )
maximize f2(Y )
subject to Y = (y1, . . . ,yn) ∈ Sn

⎫⎬
⎭ (9)

IV. FORMULATION OF MULTIOBJECTIVE EFLP

In order to find an optimal solution of problem PM , we need
to compute the two objective values for each solution. For the
second objective function f2, we can compute its objective
value by measuring the A-distances from the emergency facil-
ities to the hospitals via the k accidents points. In this section,
we propose the method to compute the first objective value for
each location.
Matsutomi and Ishii [9] proved the following lemma for the
single objective EFLP with f1 in the case of one emergency
facility, that is, n = 1:

Lemma 1: For the single objective EFLP with f1 that n = 1,
p ∈ S which maximizes u(Y,p) is one of the following points:

• vertices of the boundary of S,
• intersections of Voronoi edges of each V (h1), . . . , V (hm)

and the boundary of S.

We extend Lemma 1 to the following theorem for our proposing
multiobjective EFLPs that n ≥ 2:

Theorem 1: For problem PM , p ∈ S which maximizes u(Y,p)
is one of the following points:

• vertices of the boundary of S,
• intersections of Voronoi edges of each V (h1), . . . , V (hm)

and the boundary of S,
• Voronoi points of each V (h1), . . . , V (hm),
• Voronoi points of each V (x1), . . . , V (xn),
• intersections of Voronoi edges of each V (x1), . . . , V (xn)

and the boundary of S,
• intersections of Voronoi edges of each V (h1), . . . , V (hm)

and Voronoi edges of each V (x1), . . . , V (xn).

Such points in Theorem 1 can be found by drawing Voronoi
diagram for hospitals and Voronoi diagram for each location
of emergency facilities. Then, we can find objective value
of f1(Y ) by computing the maximal distance for paths from
emergency facilities to hospitals via these points.

V. INTERACTIVE FUZZY SATISFICING APPROACH

In this section, we introduce the interactive fuzzy satisficing
method proposed by Sakawa and Yano [13] in order to find a
satisficing solution of problem PM for the decision maker.
About decision making in real world, it is generally for the
decision maker to want to make an objective value be better
than a certain value, rather than to maximize/minimize its
objective value. Such an objective, called a fuzzy objective,
includes vagueness based upon judgment of the decision maker.
In this study, we represent the two objectives of problem PM

as fuzzy objectives provided by membership functions, denoted
by μ1 and μ2.
Now we introduce an example of membership functions for
each objective function. Let de denote the distance such that
the decision maker is quite satisfied if the first objective value
is less than de, and d� denote the distance such that she/he
is satisfied to a certain degree if its objective value is more
than de but less than d�. Then, we use the following linear
membership function for the former objective:

μ1(f1(Y )) :=

⎧⎪⎪⎨
⎪⎪⎩

1, if f1(Y ) < de,
f1(Y ) − de

d� − de
, if de ≤ f1(Y ) < d�,

0, if f1(Y ) ≥ d�.

(10)

Next, one of the simplest ways to provide membership function
for the latter objective is as follows:

μ2(f2(Y )) :=
f2(Y )∑k

i=1 wi

(11)

Then, problem PM is transformed as the following multiob-
jective fuzzy programming problem:

PZ : maximize μ1(f1(Y ))
maximize μ2(f2(Y ))
subject to Y ∈ Sn

⎫⎬
⎭ (12)

Since there is generally no complete optimal solution about
multiobjective programming problem including PZ , the con-
cept of the M-Pareto optimal solution is usually used for
multiobjective fuzzy programming problems.

Definition 1: Solution Y ∗ is an M-Pareto optimal solution to
problem PZ if and only if there does not exist any solutions
Y ∈ Sn such that μi(fi(Y )) ≥ μi(fi(Y ∗)) for all i = 1, 2 and
μj(fj(Y )) > μj(fj(Y ∗)) for at least one j ∈ {1, 2}.

The interactive fuzzy satisficing method [13] is to find a
satisfying M-Pareto optimal solution through interaction to the
decision maker. Let (μ̄1, μ̄2) be a pair of initial reference mem-
bership levels of membership function μ1 and μ2, respectively.
Then, the interactive fuzzy satisficing method for EFLP is
described as follows:

Interactive fuzzy satisficing method

Step 1: Provide two membership functions μ1 and μ2; for
example, equation (10) and (11).
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Step 2: Set the initial reference membership levels (μ̄1, μ̄2)
= (1, 1).

Step 3: For the given pair of reference membership levels
(μ̄1, μ̄2), solve the following corresponding minimax
problem:

minimize max
i=1,2

{μ̄i − μi(fi(Y ))

+ρ

2∑
j=1

(μ̄j − μj(fj(Y )))}

subject to Y ∈ Sn

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(13)

Here, ρ is a positive number sufficiently small.
Step 4: If the decision maker is satisfied with the current

levels of the M-Pareto optimal solution, STOP. Then
the current M-Pareto optimal solution is a satisfying
solution for the decision maker.

Step 5: Update the pair of current reference membership
levels (μ̄1, μ̄2) based on information of preference
of the decision maker, the current values of the
membership functions, etc. Return to Step 3.

In the interactive fuzzy satisfying method, we need to solve the
minimax problems in Step 3. In the next section, we propose
an efficient solving method for the minimax problem.

VI. PARTICLE SWARM OPTIMIZATION

PSO proposed by Kennedy and Eberhart [3] is based on
the social behavior that a population of individuals adapts to
its environment by returning to promising regions that were
previously discovered [4]. This adaptation to the environment
is a stochastic process that depends upon both the memory of
each individual, called particle, and the knowledge gained by
the population, called swarm.
In the numerical implementation of this simplified social
model, each particle has the following three attributes: the
position vector in the search space, the velocity vector and the
best position in its track, and the best position of the swarm.
The process can be outlined as follows.

Particle swarm optimization

Step 1: Generate the initial swarm involving N particles at
random.

Step 2: Calculate the new velocity vector for each particle,
based on its attributes.

Step 3: Calculate the new position of each particle from the
current position and its new velocity vector.

Step 4: If the termination condition is satisfied, stop. Other-
wise, go to Step 2.

To be more specific, for the position of the i-th particle at
time t, denoted by xt+1

i , the new velocity vector of the i-
th particle at time t, denoted by vt+1

i , is calculated by the
following scheme introduced by Shi and Eberhart [14].

vt+1
i := ωtvt

i + c1R
t
1(p

t
i − xt

i) + c2R
t
2(p

t
g − xt

i) (14)

In (14), Rt
1 and Rt

2 are random numbers between 0 and 1,
pt

i is the best position of the i-th particle in its track and pt
g

is the best position of the swarm. There are three problem
dependent parameters, the inertia of the particle ωt, and two
trust parameters c1, c2.
Then, the new position of the i-th particle at time t, denoted
by xt+1

i , is calculated from (15).

xt+1
i := xt

i + vt+1
i , (15)

where xt
i is the current position of the i-th particle at time

t. The i-th particle calculates the next search direction vector
vt+1

i by (14) in consideration of the current search direction
vector vt

i , the direction vector going from the current search
position xt

i to the best position in its track pt
i and the direction

vector going from the current search position xt
i to the best

position of the swarm pt
g , moves from the current position xt

i to
the next search position xt+1

i calculated by (15). The parameter
ωt controls the amount of the move to search globally in early
stage and to search locally by decreasing ωt gradually. It is
defined by (16)

ωt := ω0 − t(ω0 − ωTmax)
0.75(Tmax)

, (16)

where Tmax is the number of maximum iteration times, ω0 is
an initial value at the time iteration, and ωTmax is the last value.
The searching procedure of PSO is shown in Fig. 4. Comparing
the evaluation value of a particle after movement, denoted by
f(xt+1

i ), with that of the best position in its track, denoted by
f(pt

i), if f(xt+1
i ) is better than f(pt

i), then the best position
in its track is updated as pt

i := xt+1
i . Furthermore, if f(pt+1

i )
is better than f(pt

g), then the best position in the swarm is
updated as pt+1

g := pt+1
i .

Fig. 4. Movement model for PSO

Such a PSO technique includes two problems. One is that
particles concentrate on the best search position of the swarm
and they cannot easily escape from the local optimal solution
since the move direction vector vt+1

i calculated by (14) always
includes the direction vector to the best search position of the
swarm. Another is that a particle after move is not always
feasible for problems with constraints.
In order to settle the first problem, Matsui et al. [8] proposed
the following leaving acts for particles which are on the best
position of the swarm: (i) the particles move at random to a
point in the feasible region, (ii) the particles move at random
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Fig. 5. PSO algorithm

to a point on the boundary of the feasible region, and (iii)
the particles move at random to a point in a direction of
some coordinate axis. Moreover, Matsui et al. [8] proposed the
multiple stretching techniques, which is extended the stretching
method proposed by Parsopoulos and Varahatis [10]. In the
multiple stretching technique, the following functions for m
local optimal solutions x̄k, k = 1, . . . , m are used:

Gk(x) = f(x)+γ1‖x−x̄k‖
(

sign
(
f(x)−f(x̄min)

)
+1

)
(17)

Hk(x) = Gk(x) + γ2

sign
(
f(x) − f(x̄min)

)
+ 1

tanh
(
μ
(
Gk(x) − Gk(x̄k)

)) (18)

S(x) =
m∑

k=1

Hk(x)/m (19)

Here, x̄min is the best among m local optimal solutions. The
value of S(x) for a search position x is equal to the objective
function value f(x) of x if f(x) is better than that of x̄min,
while it takes a very large value if the distance between x and
the nearest local optimal solution is less than a certain value.
Otherwise, it takes a value depending on the distance.
In order to settle the second problem, Matsui et al. [8] proposed
to generate initial particles in the feasible set by utilizing the
homomorphism proposed by Koziel and Michalewicz [5]:

1) Find one feasible solution in PSO in consideration of the
degree of violation of constraints, and set it a reference
solution of homomorphism r.

2) Generate a guaranteed initial search position with ho-
momorphism: map N points generated randomly in a
hypercube by homomorphism using base point solution r
pursued in the above point in a feasible region of decision
variable space, and set these points initial search position
of a particle x0

i , i = 1, . . . , N .
Moreover, there are often cases that a particle after move
is not always infeasible if we use the updating equation of
search position mentioned above. To deal with such a situation,

Matsui et al. [8] divided the swarm into two subswarms. In one
subswarm, since the move of a particle to the infeasible region
is not accepted, if a particle becomes infeasible after a move,
it is repaired to be feasible. To be more specific, with respect
to infeasible particles which violate constraints after move, we
repair its search position to be feasible by the bisection method
on the direction from the search position before move, xt

i, to
that after move, xt+1

i . In the other subswarm, the move of a
particle to the infeasible region is accepted.
In this study, based upon the above PSO method, we proposed
to introduce a new fourth movement in (14). Let q ∈ S
be maximizer of u(xt

i,p), such a point can be found by
using Theorem 1. In problem PM , by approaching the nearest
emergency facility to q, objective value of f1(Y ) may be
improved. So we introduce such a movement to PSO method.
Let pt

a be position such that for xt
i, site of the nearest facility

is changed to q and sites of the other facilities are fixed. Then,
our proposing new velocity vector of the i-th particle at time
t is represented as follows:

vt+1
i := ωtvt

i + c1R
t
1(p

t
i − xt

i)
+c2R

t
2(p

t
g − xt

i) + c3R
t
3(p

t
a − xt

i),
(20)

where c3 is a trust parameter and Rt
3 is a random number

between 0 and 1.

VII. NUMERICAL EXPERIMENTS

In this section, we apply interactive fuzzy satisficing approach
with the PSO method to an example of our proposing multi-
objective EFLPs. In this example, we consider an EFLP for
two emergency facilities, that is n = 2. We represent S as
a convex hull including 20 points given in [0, 100] randomly.
About A-distance, A = {0, π/4, π/2, 3π/4}. About hospitals,
we set m = 3 and their sites are given in S randomly. About
frequency of accidents, we set γ = 15, and for each of 100
accident points, its site and weight are randomly given in S
and (0, 1], respectively.
We illustrate the interactive fuzzy satisficing approach for the
above example of multiobjective EFLP PM . About parameters
of PSO, we set that population size is 40, generation is 500,
c1 = c2 = 2, and c3 = 0.5.
At Step 1, in order to represent fuzziness about two objectives,
we use membership function (10) and (11) in Section V with
setting de = 5 and d� = 120.
At Step 3, we solve minimax problems with (μ̄1, μ̄2) and ρ =
10−3 by applying PSO method. In order to verify efficiency
of PSO method, we apply genetic algorithm for numerical
optimization for constrained problem, GENOCOP [5], to min-
imax problems. About parameters of GENOCOP, we set that
population size is 40 and generation is 500. Computational
results for each (μ̄1, μ̄2) at 20 times by PSO and GENOCOP
are shown in Table I and II, respectively.
From Table I and II, PSO can find better solutions than
GENOCOP by meanings of both mean and stability. This
means that efficiency of PSO for such minimax problems.
At Step 4, the decision maker evaluates whether the M-Pareto
optimal solution given by solving minimax problem at Step 3
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TABLE I

COMPUTATIONAL RESULTS BY PSO

Minimax problem 1 2 3
μ̄1 1.0 1.0 0.9
μ̄2 1.0 0.8 0.8

Best 0.4104 0.3109 0.2608
Mean 0.4106 0.3113 0.2611
Worst 0.4113 0.3120 0.2614

Mean CPU Time (Sec) 9.5196 10.080 9.0718

TABLE II

COMPUTATIONAL RESULTS BY GENOCOP

Minimax problem 1 2 3
μ̄1 1.0 1.0 0.9
μ̄2 1.0 0.8 0.8

Best 0.4132 0.3111 0.2611
Mean 0.4302 0.3292 0.2764
Worst 0.4483 0.3440 0.2885

Mean CPU Time (Sec) 10.101 11.982 10.044

is satisfied or not. If its solution satisfies the decision maker,
this algorithm is terminated. Otherwise, ask the decision maker
to update the current reference membership levels (μ̄1, μ̄2) by
considering the current values of the membership functions,
and resolve minimax problem to Step 3. In this example of
EFLP, we assume that decision maker thinks that the first
objective f1 is more important than f2. Then the decision
maker hopes to improve the value of μ1 even if the value of μ2

is changed for the worse. However, the decision maker does
not hope to go the value of μ2 too bad. Then, an example of
the interactive fuzzy satisficing methods is given in Table III.

TABLE III

RESULTS OF INTERACTIVE FUZZY SATISFICING APPROACH

Iteration 1 2 3
μ̄1 1.0 1.0 0.9
μ̄2 1.0 0.8 0.8

μ1(f1(Y ∗)) 0.5901 0.6892 0.6395
μ2(f2(Y ∗)) 0.5897 0.4892 0.5393

Mean CPU Time (Sec) 9.5196 10.080 9.0718

In Table III, the decision maker is not satisfied M-Pareto
optimal solution at Iteration 1 because value of μ1 is bad. Then,
in order to improve value of f1, at Iteration 2, she/he decreases
μ̄2, which is reference membership levels about f2. M-Pareto
optimal solution given at Iteration 2 is good about f1, however,
she/he is not satisfied because value of f2 is too bad. Then,
in order to improve value of f2 a little, at Iteration 3, she/he
decreases μ̄1, which is reference membership levels about f1.
Then, she/he obtains a satisfying solution about both f1 and
f2, so the algorithm is terminated.

VIII. CONCLUSIONS AND FUTURE RESEARCHES

In this paper, we proposed a new EFLP with A-distance by
extending to multiobjective programming problem. In order

to obtain a satisfying solution for the decision maker, we
have proposed interactive fuzzy satisficing method with solving
minimax problems by PSO. By applying an example of multi-
objective EFLPs, we showed efficiency of PSO and illustrated
the interactive fuzzy satisficing method.
In our proposing multiobjective EFLPs, we assume that S
is convex polygon. However, in order to apply the EFLPs
to more general cases, we need to consider various shapes
of S which are non-convex, non-connected, etc. To construct
solving methods for general shapes of S is a future research.
Moreover, in cases that EFLP is large-scale, that is, S includes
many hospitals and the decision maker locates many emergency
facilities, it needs to efficiently find an optimal solution for the
minimax problems in the interactive fuzzy satisficing methods.
To consider large-scale EFLP is also a future research.
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