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Abstract— Understanding the behaviour of different optimisa-
tion algorithms is important in order to apply the best algorithm
to a particular problem. The WFG toolkit was designed to aid
this task for multi-objective evolutionary algorithms (MOEAs),
offering an easily modifiable framework that allows practitioners
the ability to test different features by “plugging” in different
forms of transformations. In doing so, the WFG toolkit provides
a set of problems that exhibit a variety of different characteristics.

This paper presents a comparison between two state of
the art MOEAs (NSGA-II and SPEA2) that exemplifies the
unique capabilities of the WFG toolkit. By altering the control
parameters or even the transformations that compose the WFG
problems, we are able to explore the different types of problems
where SPEA2 and NSGA-II each excel. Our results show that
the performance of the two algorithms differ not only on the
dimensionality of the problem, but also by properties such as
the shape and size of the underlying Pareto surface. As such,
the tunability of the WFG toolkit is key in allowing the easy
exploration of these different features.

I. INTRODUCTION

There have been several attempts to define test suites and
toolkits for testing multi-objective evolutionary algorithms
(MOEAs) [1], [2], [3], [4], [5]. However, existing multi-
objective test problems do not test a wide range of char-
acteristics and problem features, and are often designed in
a hard-wired manner. As such, they do not easily allow an
MOEA researcher to easily manipulate problem features, such
as shape, dimensionality and complexity. Creation of new test
problems to suit the desires of researchers is thus fraught with
difficulty as it is not simple to alter existing problems or build
new problems within these test suites.

Addressing this problem is the Walking Fish Group (WFG)
Toolkit [6], [7] which places an emphasis on allowing test
problem designers to construct scalable test problems with
any number of objectives, where features such as modality
and separability can be customised as required. Uniquely, test
problems in the WFG Toolkit are defined in terms of a simple
underlying problem that defines the fitness space and a series
of composable, configurable transformations that allow the test
problem designer to add arbitrarily levels of complexity to
the test problem. Problems created by the WFG Toolkit are
well defined, are scalable with respect to both the number

of objectives and the number of parameters, and have known
Pareto optimal sets.

The ultimate goal of this paper is not to provide a com-
parison between MOEAs that informs researchers of which
MOEA to use. Rather, we intend to show how a researcher
can use the unique capabilities of the WFG toolkit to test
the interaction between specific problem features and MOEAs.
The WFG toolkit is suited for this goal as it allows problem
designers to easily modify problem features and observe their
effect on the MOEA performance. Towards this goal, we have
integrated the WFG toolkit into the PISA [8] framework to
ease the task of problem generation and analysis.

The next section of the paper introduces the multi-objective
terminology used throughout. Section III briefly examines
multi-objective test suites and specifies the WFG Toolkit, a
configurable toolkit that allows for the construction of scalable,
well-behaved test problems. Section IV then describes how the
WFG Toolkit can be used to test MOEAs and analyse their
results using the PISA framework. We demonstrate how to
explore the properties of a test problem through the use of the
toolkit.

II. TERMINOLOGY

Consider a multi-objective optimisation problem given in
terms of a search space of allowed values of n param-
eters x1, . . . , xn, and a vector of M objective functions
{f1, . . . , fM} mapping parameter vectors into fitness space.
The mapping from the search space to fitness space defines
the fitness landscape.

In multi-objective optimisation, we aim to find the set
of optimal trade-off solutions known as the Pareto optimal
set. The Pareto optimal set is the set of all Pareto optimal
parameter vectors, and the corresponding set of objective
vectors is the Pareto optimal front. The Pareto optimal set
is a subset of the search space, whereas the Pareto optimal
front is a subset of the fitness space.

The following types of relationships are useful because they
allow us to separate the convergence and spread aspects of sets
of solutions for a problem. A distance parameter is one that
when modified only ever results in a dominated, dominating, or
equivalent parameter vector. A position parameter is one that
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when modified only ever results in an incomparable parameter
vector. All other parameters are mixed parameters.

When the projection of the Pareto optimal set onto the
domain of a single parameter, the parameter optima, is a
single value at the edge of the domain, then we call the
parameter an extremal parameter. If instead the parameter
optima clusters around the middle of the domain, then it
is a medial parameter. Extremal parameters can be unduly
favoured by truncation based mutation correction strategies,
whereas medial parameters can be favoured by EAs that
employ intermediate recombination [9].

III. WFG TOOLKIT BACKGROUND

The WFG Toolkit [6], [7] defines a problem in terms of an
underlying vector of parameters x. The vector x is always
associated with a simple underlying problem that defines
the fitness space. The vector x is derived, via a series of
transition vectors, from a vector of working parameters z. Each
transition vector adds complexity to the underlying problem,
such as multi-modality and non-separability. The EA directly
manipulates z, through which x is indirectly manipulated.

Unlike previous test suites, such as DTLZ [10] in which
complexity is “hard-wired”, the WFG Toolkit allows a test
problem designer to control, via a series of composable
transformations, which features will be present in the test
problem. To create a problem, the test problem designer
selects several shape functions to determine the geometry of
the fitness space, and employs a number of transformation
functions that facilitate the creation of transition vectors.
Transformation functions must be designed carefully such that
the underlying fitness space (and Pareto optimal front) remains
intact with a relatively easy to determine Pareto optimal set.
The WFG Toolkit provides a variety of predefined shape and
transformation functions to help ensure this is the case.

For convenience, working parameters are labelled as ei-
ther distance or position-related parameters (even if they are
actually mixed parameters), depending on the type of the
underlying parameter being mapped to.

A. Shape Functions

Shape functions determine the nature of the Pareto optimal
front, and map parameters with domain [0, 1] onto the range
[0, 1]. Each of h1:M must be associated with a shape function.
For example, letting h1 = linear1, hm=2:M−1 = convexm,
and hM = mixedM indicates that h1 uses the linear shape
function, hM uses the mixed shape function, and all of h2:M−1

use convex shape functions.
Table I presents five different types of shape functions.

B. Transformation Functions

Transformation functions map input parameters with do-
main [0, 1] onto the range [0, 1]. All transformation functions
take a vector of parameters (called the primary parameters)
and map them to a single value. Transformation functions may
also employ constants and secondary parameters that further

influence the mapping. Primary parameters allow us to qualify
working parameters as being position- and distance-related.

There are three types of transformation functions: bias, shift,
and reduction functions. Bias and shift functions only ever
employ one primary parameter, whereas reduction functions
can employ many.

Bias transformations have a natural impact on the search
process by biasing the fitness landscape. Shift transformations
move the location of optima. In the absence of any shift,
all distance-related parameters would be extremal parameters,
with optimal value at zero. Shift transformations can be used
to set the location of parameter optima (subject to skewing
by bias transformations), which is useful if medial and ex-
tremal parameters are to be avoided. We recommend that all
distance-related parameters be subjected to at least one shift
transformation.

Some transformation functions are specified in Table II.

C. The WFG Test Problems
Huband et al. [6], [7] propose the WFG multi-objective test

problems (WFG1–WFG9) that focuses on some of the more
pertinent problem characteristics.

Table III specifies the properties of WFG1–WFG9. The
full construction of these problems can be found in Huband
et al. [6], [7]. We will be using these test problems to get
performance baselines for MOEAs included in PISA. After
doing so, we will derive new test problems from the results
of these experiments in order to test hypotheses about MOEA
performance on these problems.

IV. EXPERIMENTS

The aim of a test problem is to determine how different al-
gorithms perform on problems with a variety of characteristics.
In particular, it is useful to examine the classes of problems
where optimisation algorithms perform badly. These problems
can then be used to improve these algorithms or avoid their
use when dealing with similar problems.

Fortunately, the WFG toolkit makes this task easy. As the
WFG toolkit is scalable in the number of parameters and
objectives, and provides a separation between distance and
position parameters, we can tune the problem in order to
make it more difficult in a variety of ways. Some examples
include increasing the number of distance parameters (making
the problem more difficult), increasing the number of position
parameters (making it more difficult to find a good variety of
solutions along the Pareto front) and increasing the number
of objectives. Additionally, after determining how different
MOEAs perform on these problems, the problems can altered
to attempt to determine which properties cause the observed
behaviour.

We took the implementation of the WFG toolkit used in
Huband et al. [6], [7] and extended it for use as a variator
within the PISA framework. The PISA framework allows for
easy performance assessment of experimental results and use
of a variety of included MOEAs (known in PISA as selectors).
Using this setup, we will experiment on the WFG1–WFG9 test
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TABLE I
SHAPE FUNCTIONS. IN ALL CASES, x1, . . . , xM−1 ∈ [0, 1]. A, α, AND β ARE CONSTANTS.

Linear
linear1(x1, . . . , xM−1) =

QM−1
i=1 xi

linearm=2:M−1(x1, . . . , xM−1) =
“QM−m

i=1 xi

”
(1− xM−m+1)

linearM (x1, . . . , xM−1) = 1− x1
When hm=1:M = linearm, the Pareto optimal front is a linear hyperplane, where

PM
m=1 hm = 1.

Convex
convex1(x1, . . . , xM−1) =

QM−1
i=1 (1− cos(xiπ/2))

convexm=2:M−1(x1, . . . , xM−1) =
“QM−m

i=1 (1− cos(xiπ/2))
”

(1− sin(xM−m+1π/2))

convexM (x1, . . . , xM−1) = 1− sin(x1π/2)
When hm=1:M = convexm, the Pareto optimal front is purely convex.
Concave

concave1(x1, . . . , xM−1) =
QM−1

i=1 sin(xiπ/2)

concavem=2:M−1(x1, . . . , xM−1) =
“QM−m

i=1 sin(xiπ/2)
”

cos(xM−m+1π/2)

concaveM (x1, . . . , xM−1) = cos(x1π/2)
When hm=1:M = concavem, the Pareto optimal front is purely concave, and a region of the hyper-sphere of radius one centred at the origin,
where

PM
m=1 h2

m = 1.
Mixed convex/concave (α > 0, A ∈ {1, 2, . . .})

mixedM (x1, . . . , xM−1) =
“
1− x1 − cos(2Aπx1+π/2)

2Aπ

”α

Causes the Pareto optimal front to contain both convex and concave segments, the number of which is controlled by A. The overall shape is
controlled by α: when α > 1 or when α < 1, the overall shape is convex or concave respectively. When α = 1, the overall shape is linear.
Disconnected (α, β > 0, A ∈ {1, 2, . . .})

discM (x1, . . . , xM−1) = 1− (x1)
α cos2(A(x1)

βπ)
Causes the Pareto optimal front to have disconnected regions, the number of which is controlled by A. The overall shape is controlled by α (when
α > 1 or when α < 1, the overall shape is concave or convex respectively, and when α = 1, the overall shape is linear), and β influences the
location of the disconnected regions (larger values push the location of disconnected regions towards larger values of x1, and vice versa).

TABLE II
TRANSFORMATION FUNCTIONS. THE PRIMARY PARAMETERS y AND y1, . . . , y|y| ALWAYS HAVE DOMAIN [0, 1]. A, B, C , α, AND β ARE CONSTANTS.

FOR b param, y′ IS A VECTOR OF SECONDARY PARAMETERS (OF DOMAIN [0, 1]), AND u IS A REDUCTION FUNCTION.

Bias: Polynomial (α > 0, α #= 1)
b poly(y, α) = yα

When α > 1 or when α < 1, y is biased towards zero or towards one respectively.
Bias: Flat Region (A, B, C ∈ [0, 1], B < C, B = 0 ⇒ A = 0 ∧ C #= 1, C = 1 ⇒ A = 1 ∧ B #= 0)

b flat(y, A, B, C) = A + min(0, &y − B') A(B−y)
B −min(0, &C − y') (1−A)(y−C)

1−C
Values of y between B and C (the area of the flat region) are all mapped to the value A.
Bias: Parameter Dependent (A ∈ (0, 1), 0 < B < C)
b param(y, y′, A, B, C) = yB+(C−B)v(u(y′))

v(u(y′)) = A− (1− 2u(y′))
˛̨
&0.5− u(y′)'+ A

˛̨

A, B, C, and the secondary parameter vector y′ together determine the degree to which y is biased by being raised to an associated power: values
of u(y′) ∈ [0, 0.5] are mapped linearly onto [B, B+(C−B)A], and values of u(y′) ∈ [0.5, 1] are mapped linearly onto [B+(C−B)A, C].
Shift: Linear (A ∈ (0, 1))

s linear(y, A) = |y−A|
|#A−y$+A|

A is the value for which y is mapped to zero.
Shift: Deceptive (A ∈ (0, 1), 0 < B ( 1, 0 < C ( 1, A− B > 0, A + B < 1)

s decept(y, A, B, C) = 1 + (|y − A|− B)×„
#y−A+B$(1−C+ A−B

B
)

A−B +
#A+B−y$(1−C+ 1−A−B

B
)

1−A−B + 1
B

«

A is the value at which y is mapped to zero, and the global minimum of the transformation. B is the “aperture” size of the well/basin leading to
the global minimum at A, and C is the value of the deceptive minima (there are always two deceptive minima).
Shift: Multi-modal (A ∈ {1, 2, . . .}, B ≥ 0, (4A + 2)π ≥ 4B, C ∈ (0, 1))

s multi(y, A, B, C) =
1+cos

»
(4A+2)π

„
0.5− |y−C|

2(#C−y$+C)

«–
+4B

„
|y−C|

2(#C−y$+C)

«2

B+2
A controls the number of minima, B controls the magnitude of the “hill sizes” of the multi-modality, and C is the value for which y is mapped to
zero. When B = 0, 2A + 1 values of y (one at C) are mapped to zero, and when B #= 0, there are 2A local minima, and one global minimum
at C. Larger values of A and smaller values of B create more difficult problems.
Reduction: Weighted Sum (|w| = |y|, w1, . . . , w|y| > 0)

r sum(y, w) =
“P|y|

i=1 wiyi

”
/

P|y|
i=1 wi

By varying the constants of the weight vector w, EAs can be forced to treat parameters differently.
Reduction: Non-separable (A ∈ {1, . . . , |y|}, |y| mod A = 0)

r nonsep(y, A) =

P|y|
j=1

“
yj+

PA−2
k=0

˛̨
˛yj−y1+(j+k) mod |y|

˛̨
˛
”

|y|
A

%A/2&(1+2A−2%A/2&)
A controls the degree of non-separability (noting that r nonsep(y, 1) = r sum(y, {1, . . . , 1})).

problems. These problems exhibit a variety of characteristics
that should stress optimisation algorithms. NSGA-II [11] and
SPEA2 [12], two standard MOEAs implemented in PISA,
were run on the WFG test problems.

PISA was used for the performance assessment of selec-

tors on all problems. We used the epsilon and hypervolume
metrics to evaluate the final Pareto fronts generated by the
MOEA selectors. These metrics use different properties of
the final Pareto front found by a selector and provides a
single value measure for the set. The hypervolume measure
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TABLE III
PROPERTIES OF THE WFG PROBLEMS. ALL WFG PROBLEMS ARE SCALABLE, HAVE NO EXTREMAL NOR MEDIAL PARAMETERS, HAVE DISSIMILAR

PARAMETER DOMAINS AND PARETO OPTIMAL TRADEOFF MAGNITUDES, HAVE KNOWN PARETO OPTIMAL SETS, AND CAN BE MADE TO HAVE A DISTINCT

MANY-TO-ONE MAPPING FROM THE PARETO OPTIMAL SET TO THE PARETO OPTIMAL FRONT BY SCALING THE NUMBER OF POSITION PARAMETERS.

Problem Obj. Separability Modality Bias Geometry
WFG1 f1:M separable uni polynomial,flat convex, mixed
WFG2 f1:M−1 non-separable uni − convex, disconnected

fM non-separable multi
WFG3 f1:M non-separable uni − linear, degenerate
WFG4 f1:M separable multi − concave
WFG5 f1:M separable deceptive − concave
WFG6 f1:M non-separable uni − concave
WFG7 f1:M separable uni parameter dependent concave
WFG8 f1:M non-separable uni parameter dependent concave
WFG9 f1:M non-separable multi,deceptive parameter dependent concave

(or S-metric), due to Zitzler and Thiele [13], calculates the
volume ‘contained’ by the solutions in n-dimensional space.
The epsilon metric, due to Zitzler et al. [14], calculates the
shift necessary for one solution set to be worse in all objectives
than another solution set (i.e. dominated). Mann-Whitney U
statistical significance tests were used where necessary. As we
do not have separate samples for each indicator, the resulting
p-values do not reflect true probabilities. See [15] for details.

A. Experimental Setup
All experiments were run using the PISA framework. The

WFG toolkit was implemented as a variator within PISA.
The WFG PISA variator used real-parameter SBX [16]

crossover with probability 1.0 and ηc = 10 and variable-
wise polynomial mutation probability of 1

n where n is the sum
of the number of position and distance parameters. MOEAs
(referred to as selectors in the PISA framework) were run
using a (100+100) population scheme for 750 generations. All
experiments were repeated 40 times using the NSGA-II and
SPEA2 selectors.

B. Experiment 1
1) Aim and Experimental Setup: The initial experiment was

run using the WFG toolkit with 20 distance parameters and 4
position parameters in 2 objectives under the standard WFG1–
WFG9 test problems. This experiment is intended to determine
the baseline performance for the NSGA-II and SPEA2 selec-
tors to provide a comparison for later experiments.

2) Results: Figures 1(a)-1(r) show box-and-whisker plots
that demonstrate that in most cases NSGA-II bests SPEA2.
These plots show the hypervolume and epsilon values for the
different selectors relative to the hypervolume and epsilon
values of the entire set of solutions achieved by all of the
selectors. Therefore, smaller values are better.

We can see that in almost all cases NSGA-II is as good
or better than SPEA2. For WFG4, under the epsilon metric,
SPEA2 has a smaller median value and it is difficult to visually
determine which MOEA is the best. In this case, we use the
Mann-Whitney statistical test which concludes that NSGA-
II is better than SPEA2 for the epsilon metric with a 0.235
confidence. Even though several of the comparisons do not
have high statistical confidence, it does not seem a stretch to
conclude that NSGA-II is able to provide least as good results

for the WFG problems with these parameters and in many
cases is able to provide better results.

We can see that the results for the hypervolume metric on
the WFG9 problem are over a large range. This could reflect
that WFG9 is difficult problem, given its high degree of non-
separability and parameter dependence.

C. Experiment 2

1) Aim and Experimental Setup: As Section IV-B provides
a baseline for the performance of SPEA2 and NSGA-II, we
would now like to experiment with some of the parameter
options provided by the WFG toolkit. In this case we will
change the number of position parameters which relate to a
solutions position on the Pareto front. Unlike the DTLZ [4]
test problems, WFG has additional parameters that allow us to
experiment with how different selectors perform and stresses
a selectors ability to find a good spread of solutions along
the Pareto front. These experiments were run with 20 distance
parameters and 12 position parameters in 2 objectives.

2) Results: An increase in the number of position parame-
ters does not lead to a dramatic improvement for SPEA2 when
compared to NSGA-II. The results for experiment 2 largely
mimic those of experiment 1 and therefore we omit most plots
from this paper. However, one exception is found in WFG6.
Box plots shown in Figures 2(a) and 2(b) demonstrate that as a
result of additional position parameters SPEA2 is able to beat
NSGA-II. However, the Mann-Whitney U statistical test shows
that SPEA2 only performs better than NSGA-II on WFG6
with 0.182 confidence when compared using the hypervolume
metric. For the remaining test problems NSGA-II is able
to thoroughly beat SPEA2, although in the case of WFG1
and WFG4 it does not do so with an acceptable confidence.
Despite this, it seems reasonable to conclude that the number
of position parameters does not change the conclusion that
NSGA-II is the algorithm of choice for the WFG problems
for 20 distance parameters in 2D.

Though these results are similar to the results in experi-
ment 1, this is unsurprising as NSGA-II and SPEA2 selectors
operate in the objective space. These findings suggest that
despite an increase in the difficulty in achieving good coverage
of the Pareto front, NSGA-II’s selection mechanism still works
well in comparison to SPEA2.
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(a) WFG1 hypervolume (b) WFG2 hypervolume (c) WFG3 hypervolume

(d) WFG4 hypervolume (e) WFG5 hypervolume (f) WFG6 hypervolume

(g) WFG7 hypervolume (h) WFG8 hypervolume (i) WFG9 hypervolume

(j) WFG1 epsilon (k) WFG2 epsilon (l) WFG3 epsilon

(m) WFG4 epsilon (n) WFG5 epsilon (o) WFG6 epsilon

(p) WFG7 epsilon (q) WFG8 epsilon (r) WFG9 epsilon

Fig. 1. WFG: 4 position parameters 2D, hypervolume and epsilon plots
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(a) WFG6 hypervolume (b) WFG6 epsilon

Fig. 2. WFG: 12 position parameters 2D, hypervolume and epsilon plots

D. Experiment 3
1) Aim and Experimental Setup: As we have now tested

SPEA2 and NSGA-II’s performance on the WFG toolkit
problems in two objectives, it is important to compare their
performance in more than two objectives. Experiment 3 aims
to compare the performance of NSGA-II and SPEA2 on
WFG1–WFG9 in three objectives. 20 distance and 12 position
parameters are used as in experiment 3.

2) Results: Figures 3(a)-3(j) show a dramatic change in
the results compared to those achieved in two dimensions.
Whereas NSGA-II was able to perform as well or better
than SPEA2 for all problems in two objectives, in three
objectives SPEA2 bests NSGA-II on almost all problems for
both metrics. The exceptions are WFG3, where NSGA-II is
able to outperform SPEA2 for both metrics, and WFG6 where
NSGA-II wins for the epsilon metric. However, for WFG6
epsilon, the Mann-Whitney U test gives a p-value of 0.473
so any advantage that NSGA-II has for this problem is not
significant.

Overall, these results suggest that NSGA-II’s crowdedness
comparison operator is not as effective on the WFG problems
in 3 objectives as it is for 2 objectives. The results mimic
those found by Zitzler et al. [12] which concluded that SPEA2
has advantages over NSGA-II in higher dimensional spaces
when tested on the DTLZ problems. However, we will see
in the next section that the WFG toolkit allows us to explore
MOEA performance using techniques that are not available
using the DTLZ test suite. Using the toolkit we can change
the properties of the test problem to further explore observed
behaviour.

E. Experiment 4
1) Aim and Experimental Setup: As seen in Section IV-

D, the WFG3 problem was an exception to SPEA2’s overall
dominance on the WFG problems in three objectives. One
theory that explains NSGA-II’s ability to outperform SPEA2
on WFG3 with 3 objectives is that WFG3’s linear shape
favours the NSGA-II selection mechanism. In order to test
this hypothesis, we would like to test a similar problem
without a linear shape. By altering specific properties of a test
problem we can determine which properties most influence
an MOEA’s performance for that problem. In this case, we
believe that shape could be the primary factor causing NSGA-
II to outperform SPEA2. Luckily the WFG toolkit makes this
assertion easy to test.

As test problems in the WFG toolkit are composed of a
series of transformations, including a module for the shape
of the Pareto front, there are two simple ways to test the
above hypothesis. The first way is by applying an alternative
shape transformation to WFG3 to determine whether NSGA-
II loses its advantage. The second is to use the linear shape
from WFG3 on another problem with an alternative shape.

For these experiments, we have altered WFG3 to use the
concave shape transformation as in WFG4, and have applied
the linear shape transformation from WFG3 to WFG8. We use
the same WFG parameters as in Section IV-D.

2) Results: Figures 4(a)-4(f) confirm our assertion that the
linear shape favours NSGA-II. These plots show a total rever-
sal in the results shown in figures 3(a)-3(j) for experiment 3,
as a result of alteration of the shape transformation used.

The fact that we can easily perform such experiments is an
excellent example of where the WFG toolkit excels compared
to the DTLZ and ZDT test problems. The DTLZ and ZDT
test problems are hard-wired and are not easily “tweaked” in
this way and thus it is difficult to see how different problem
properties affect MOEA performance.

V. CONCLUSION AND FUTURE WORK

The WFG toolkit is intended to make it relatively simple to
test MOEAs on a wide range of problem types, characteristics,
and problem parameters. We have tested NSGA-II and SPEA2
over a range of position parameters and objectives on the
standard WFG1–WFG9 test problems.

In doing so, we discovered in Section IV-B that NSGA-II
performs better than SPEA2 on the WFG test problems in
two objectives. Digging deeper, in Section IV-C we looked at
how increasing the number of position parameters, an option
provided by the WFG toolkit, affects an optimiser’s ability to
find and retain good coverage of the Pareto front. While this
did not lead to a large change in the results from the first
experiments, it did cause a reversal in results for the WFG6
test problem.

In Section IV-D we looked at how an increase in the number
of objectives affects an MOEAs performance. In doing so, we
saw a drastic change in SPEA2’s performance in comparison
to NSGA-II. Whereas SPEA2 previously lost to NSGA-II in
almost all cases it now dominates on all problems except for
WFG3.

SPEA2 and NSGA-II’s performance on the WFG3 problem
in Section IV-D gave starkly different results compared to
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(a) WFG1 hypervolume (b) WFG2 hypervolume (c) WFG3 hypervolume

(d) WFG4 hypervolume (e) WFG5 hypervolume (f) WFG6 hypervolume

(g) WFG7 hypervolume (h) WFG8 hypervolume (i) WFG9 hypervolume

(j) WFG1 epsilon (k) WFG2 epsilon (l) WFG3 epsilon

(m) WFG4 epsilon (n) WFG5 epsilon (o) WFG6 epsilon

(p) WFG7 epsilon (q) WFG8 epsilon (r) WFG9 epsilon

Fig. 3. WFG: 12 position parameters 3D, hypervolume and epsilon plots
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(a) WFG3 (concave) hypervolume (b) WFG7 (linear) hypervolume (c) WFG8 (linear) hypervolume

(d) WFG3 (concave) epsilon (e) WFG7 (linear) epsilon (f) WFG8 (linear) epsilon

Fig. 4. WFG modified test problems: 12 position parameters 3D, hypervolume and epsilon plots

the other WFG problems. Such results warranted further
investigation, and ultimately we would like to determine the
properties of WFG3 that cause NSGA-II to outperform SPEA2
on this problem. We modified several of the test problems by
using different shape transformations to demonstrate that it
is WFG3’s linear shape causing NSGA-II to dominate. This
task was performed by swapping the shape modules used in
WFG3 with those used in WFG7 and WFG8. This is a trivial
example of how the WFG toolkit can be used to shed light on
the causes of observed MOEA performance.

The integration of the WFG toolkit within the PISA frame-
work makes it is easy to test new MOEAs on standard bench-
mark problems or to generate new test problems. In addition,
one can refine problem characteristics that cause MOEAs
difficulty. More substantially, the problems themselves can
even be modified to obtain similar problems with alternative
properties so we can further explore MOEA performance.
These capabilities of the WFG toolkit allow us to easily de-
termine where common MOEAs have problems and simplifies
the creation of good benchmark test problems for the future.
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