
Abstract—In this paper, a new methodology is presented to 
solve multi-objective system redundancy allocation problems.  
A tabu search meta-heuristic approach is used to initially find 
the entire Pareto set, and then a Monte-Carlo simulation 
provides a decision maker with a pruned set of Pareto solutions 
based on decision maker’s predefined objective function 
preferences.  We are aiming to create a bridge between Pareto 
optimality and single solution approaches. 

I. INTRODUCTION

n many actual engineering problems, the decision maker 

is faced with solving multi-objective problems to find at 

least one feasible solution that can be implemented in the 

system design.  When multiple objectives exist, the problem 

is either solved for a single solution or for an entire Pareto 

optimal set. 

A Pareto optimal set is a set of solutions that are all non-

dominated with respect to each other.  While moving from 

one Pareto-optimal point to another, there is always a certain 

amount of sacrifice in one objective to achieve a certain 

advantage in the other.  For any two solutions (decision 

vectors) a, b X (X is the feasible region) for a 

maximization problem, a dominates b, or b is inferior to a if

( ) ( ) {1, 2,..., }i if f i Ka b  and {1,2,...., }j n  where 

( ) ( )j jf fa b . All solutions which are not inferior with 

respect to another solution form a set called the Pareto 

optimal set. 

In this paper, we consider decision maker’s preferences 

about the objectives which can be done in three ways [1].  

The first way is prior to solving the problem: known as a
priori method. This can be done by combining the multiple 

objectives into one composite function, which is then solved 

for an optimal solution.  This single objective can be 

formulated and solved using methods such as utility theory 

[2] or value function [3] or weighted sum [4].  In all of these 

methods, however, choosing the right utilities or weights is a 

challenge, and different settings can result in very different 

final solutions.  There are other methods as well including 

goal programming [5] and the -constraint method [6].  The 
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second way is to specify the decision maker’s preferences 

during the search process of the algorithm.  Such methods 

are known as interactive where the decision maker guides 

the search to desirable parts of the solution space ([7]-[8]).  

The third way is the posterior method where a list of Pareto 

optimal solutions is obtained first, and then, the decision 

maker preferences are applied to find solution(s).  This 

method can be preferable if the decision maker wants to 

consider different preferences, and compare solutions by 

giving different priorities to the objectives in order to 

observe how the solutions change.  A summary of these 

kinds of approaches based on evolutionary optimization are 

provided by Coello Coello [9] and Branke and Deb [10]. 

There are also various meta-heuristics available to achieve 

Pareto optimal solution sets.  Different forms of Tabu 

Search (TS) have been applied to multi-objective problems, 

such as Multi-objective TS (MOTS) by Hertz et al. [11], the 

modified version of the MOTS algorithm by Baykasoglu et
al. [12], TS for Multi-objective Combinatorial Optimization 

(TAMOCO) by Hansen [13], and Multinomial Tabu Search 

(MTS) by Kulturel-Konak et al. [14].  Vector Evaluated 

Genetic Algorithm (VEGA), developed by Schaffer [15], is 

the first algorithm designed to cope with multiple objectives 

simultaneously by exploiting the parallel properties of 

Genetic Algorithms (GAs).  Then, the Multi-objective GA 

(MOGA) is introduced by Fonseca & Fleming [16] and 

Strength Pareto Evolutionary Algorithm (SPEA) by Zitzler 

& Thiele [17].  Multi Objective Simulated Annealing 

(MOSA), developed by Ulungu et al. [18], determines an 

efficient approximation to the Pareto frontier for the 

resolution of multiple objective combinatorial problems.  

For many problems, the Pareto optimal set may include 

hundreds or thousands of solutions.  Eventually, the decision 

maker has to analyze a large number of nondominated 

solutions and select the best one among to implement, which 

can be a very challenging task.   

To alleviate this problem, several new methods, such as 

smart Pareto set by Mattson et al. [19], a relative objective 

weighting scheme by Kasprzak & Lewis [20], have been 

developed that reduce the Pareto optimal set to a set of 

solutions that is attractive to the decision maker and are 

pragmatically sized to help the decision making process.   
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Methods solving a multi-objective problem similar to a 

single objective problem return a single solution. If a 

decision-makers can accurately assign meaningful weights 

or select appropriate value or utility functions, then that is 

the preferred approach. However, these methods can be 

problematic for many practitioners, because assigning 

appropriate numerical values (i.e., weights) to an objective 

function can be challenging and/or confusing.  Therefore, 

the purpose of our study in this paper is to create a bridge 

between Pareto optimality and single solution approaches.  

The approach is specifically for the case when decision-

makers can prioritize or ordinally rank the importance of the 

different objectives, but can not reliably assign numerical 

weights to combine the different objectives into a single 

objective function. 

The first phase of the proposed approach generates a 

Pareto optimal set which is filtered in the second phase to 

obtain a set of solutions that are much smaller in size and 

attractive to the decision maker.  The method is effective 

when especially the decision maker wants to consider 

different preferences.  Once the whole set of Pareto front 

was obtained in the first step of the algorithm, the decision 

maker may change his/her preference, and run the second 

step with different preferences. 

II. METHODOLOGY

A new method is presented to solve the multi-objective 

system design problems, e.g., system Redundancy 

Allocation Problem (RAP).  A more extended version of this 

method, which also considers the uncertainty in reliability 

estimates, is presented in [21].  For multi-objective system 

RAP, the objectives include maximizing system reliability, 

minimizing system weight, minimizing system cost, and 

possibly other objectives.  The proposed approach does not 

require explicit objective function numerical weights or 

utility functions, but it provides prioritized Pareto optimal 

solutions based on a non-numerical ranking of the 

importance of scaled objectives.   

Our proposed methodology includes two steps.  First, a 

TS meta-heuristic approach is used to initially find the 

Pareto-optimal front to the multi-objective optimization 

problems.  Second, prioritized Pareto-optimal solutions are 

found by the Pareto Front Pruning (PFP) method which is 

based on a non-numerical ranking of the importance of 

scaled objectives.  Monte-Carlo simulation of randomly 

selected and prioritized objective weights is used to identify 

promising solutions.  Randomly selected weights are 

generated from an uncertain weight function, fw(w), that 

characterizes the likelihood of possible weight combinations 

based on the decision makers objective function rankings.  

A. Redundancy Allocation Problem 

The objective of the RAP is most often to determine an 

optimal system design to maximize system reliability given 

constraints on the system.  The RAP has been traditionally 

and extensively studied as a single objective problem in the 

literature (see [22]).  In addition, a multi-objective version 

of the problem is also realistic and has been widely studied 

because not only it is applicable and relevant, but also, it is 

challenging to solve.   

An example series-parallel system can be seen in Fig. 1.  

For each subsystem, there are multiple, functionally 

equivalent component that are available to be used in the 

system.  The design can include a single component 

selection for each subsystem, or there may be multiple 

components selected and arranged in parallel.  The decision 

variables are the component choices and the redundancy 

levels.  Kuo & Prasad [23] provides a comprehensive review 

on system reliability optimization.  For series-parallel 

systems with a single objective, Chern [24] demonstrated 

that the RAP is NP-hard.   

Fyffe et al. [25] used dynamic programming to solve the 

RAP by limiting the problem to only one type of component 

available for each subsystem.  Nakagawa & Miyazaki [26] 

demonstrated that a surrogate constraints approach is 

efficient to accommodate multiple constraints with dynamic 

programming.  Integer programming [27], heuristics based 

on integer programming [28]-[29], GAs [30], and TS [22] 

have also been applied to determine the optimal design 

configuration.   

In this paper, we are trying to find the optimal design 

configuration to maximize system reliability (R), to 

minimize system cost (C), and to minimize weight (W) when 

there are multiple component choices available for each of 

several k-out-of-n:G subsystems.  Therefore, the 

mathematical formulation of the problem is given below. 
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Fig. 1.  Series-Parallel System Configuration 
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Notation:

 R, C, W reliability, cost, and weight of the system, 

respectively

 s number of subsystems 

 xi
1 2 ,

( , ,..., )
ii i i mx x x

 xij quantity of jth
 component in subsystem i

 ni total number of components used in subsystem i

(i.e.,
1

im

ij
j

x )

 nmax, i user assigned maximum number of components 

in parallel used in subsystem i
 ki minimum number of components in parallel 

required for subsystem i
Ri(xi|ki) reliability of subsystem i, given ki

 Ci(xi) total cost of subsystem i
 Wi(xi) total weight of subsystem i
 P Final set of nondominated solutions 

 ri rank of objective i
 K number of objectives 

 T number of simulation replications  

I

B. The Multinomial Tabu Search Algorithm 

The multinomial tabu search (MTS) algorithm developed 

by Kulturel-Konak et al. [14] is used to generate a Pareto 

front.  In practice, any meta-heuristic approach could be 

used instead of the MTS algorithm, since the main research 

contribution in this paper is pruning the Pareto- optimal 

front.  MTS algorithm [14] is a canonical TS procedure with 

a simple diversification which directs the search starting 

from a random point whenever nondominated solution list 

has not been updated for a predefined number of moves. 

Further information about canonical and more complex 

versions of TS may be seen in [31] and [32]. 

C. The Pareto Front Pruning Method 

The pre-step of the pruning method is obtaining a full 

Pareto optimal set using MTS.  The objective functions are 

then normalized and prioritized (ranked) according to the 

decision maker’s needs.  The decision maker ranks the 

objectives as the most important, second most important, 

etc. (ties are allowed).  Random objective function weight 

assignments (wi) are then repetitively selected from a joint 

probability density function capturing the previously 

determined sequence of ranked objectives.  In each iteration, 

the multi-objective function is then transformed into a single 

objective function, and the “best” solution obtained is 

recorded for that particular weight combination.  This 

procedure is repeated numerous times resulting in a group of 

solutions that appear as the “best” solution most often.  This 

approach can dramatically reduce the size of the Pareto 

solutions to be presented to the decision maker.  These 

pruned Pareto solutions can then be categorized into priority 

groups, based on the selection frequency, as an aid to the 

decision maker.

The PFP Algorithm for the maximization of all objectives:

c(x) 0 for x P
Normalize each objective 

max min
( ) ( ) /( )i i i if f f fx x  for 

, 1,..,P i Kx
Rank the objectives  

For t=1...T  Do {

Based on the ranks, generate a random weight vector 

{w1, w2,…,wK} such that wi wj if ri rj

Normalize the weights such that 
1

1
K

i
i

w

Calculate
1

( ) ( ) for
K

i i
i

f w f Px x x

Find the best solution x* such that 

( *) max{ ( )}
P

f f
x

x x

c(x*) c(x*)+1}

Remove each solution x from P if c(x)=0

Group the solutions based on c(x)

The new method requires the decision maker to sort (or 

rank) the objective functions in order of their priority.  There 

are different ways to rank the objective functions as well as 

a great deal of flexibility allowed in this method.  For 

example, one objective can be selected as the most important 

objective and assigned a rank of one and a rank of two can 

be assigned to the rest of the objectives. This ranking 

scheme is different from assigning pre-selected weights, or 

utility functions.  An example of ranking objective 

functions:

Preference:  Objective f1(x) is more important than 

objective f3(x), Objective f3(x) is more important than 

objective f2(x)

Ranked objectives = { f1(x),  f3(x),  f2(x)}: r1 > r3> r2

The next stage is to generate a random weight function 

{w1, w2, w3} such that w1 > w3> w2.  An uncertain weight 

function is derived and used to generate random but ranked 

weight sets that can be used to filter solutions to form a 

realistically sized solution set.  This set of solutions 

represents the decision maker’s preferences in the objective 
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functions, and the size of the set enables him or her to 

analyze and identify the solution of his or her choice with 

ease.  From the original Pareto set, there will be a “best” 

solution for a particular weight combination.  This best 

solution is noted and recorded, and then, the process is 

continued numerous times. 

III. NUMERICAL EXAMPLES

The two-step approach (the combination of MTS and 

PFP) is applied successfully to an example series-parallel 

system RAP.  The test problem considered here uses the 

input parameters of the problem originally proposed by 

Fyffe et al. [25].  The component cost, weight, and 

reliability values are given in [25].  An unconstrained 

version of the problem is studied with a pre-defined 

preference of the decision maker.  All algorithms are coded 

in C and run using an Intel Pentium IV with 2.6 GHz 

processor and 1.5 GB RAM.   

Initially, MTS was applied to determine a Pareto optimal 

set.  A permutation encoding of size 
max,

1

s

i
i

n , representing a 

concatenation of the components in each subsystem 

including non-used components (i.e., defined as “blanks” 

when ni < nmax,i) is used.  To obtain an initial feasible 

solution, for each subsystem, s integers between ki and nmax,i

– 3 (inclusive) are chosen according to a discrete uniform 

distribution to represent the number of components in 

parallel (ni).  Then, the ni components are randomly and 

uniformly assigned to the mi different types.  If feasible, it 

becomes the initial solution.  Then, one of the problem 

objectives is equally and randomly chosen as an active 

objective to evaluate candidate solutions.  Moves operate on 

each subsystem.  The first type of move changes the number 

of a particular component type by adding or subtracting one.  

These moves are considered individually for all available 

component types within all subsystems.  The second type of 

move simultaneously adds one component to a certain 

subsystem and deletes another component, of a different 

type, within the same subsystem.  The two types of moves 

are performed independently on the current solution.  The 

structure of the subsystem that has been changed in the 

accepted move is stored in the tabu list.  The dynamic tabu 

list length is changed according to a uniform integer random 

number between [s, 3s].  Finally, the stopping criterion is 

defined as the maximum number of iterations conducted 

without updating the ND solutions list and set to 1,000.  

Furthermore, for this problem, the decision maker’s

preference of the objectives is in the following order: 

Maximizing R, Minimizing C, and Minimizing W (i.e., the 

most important objective is Maximizing R, then Minimizing

C is the second most important, and Minimizing W is the 

least important).  It is a minor change in the algorithm to 

adopt different preferences (see [21]). 

A. Unconstrained Three Objective Problem

We solved the unconstrained version of the problem (1), 

and we have three objectives of maximizing R, minimizing

C and W.  The above stated preference was applied to prune 

the Pareto optimal set found using MTS, and 10,000 

randomly selected weights were obtained to develop the 

pruned Pareto set.  The pruned Pareto set is then 

subjectively divided into priority groups based on selection 

frequency.  The priority groups provide an indication of 

which solutions have similar number of selections.  If a 

particular solution is selected more often, it represents a 

larger region of possible weight combinations given the 

objective function preferences. 

Fig. 2 shows the comparison of the Pareto sets before and 

after pruning with the pre-defined preference.  As seen in 

the figure, the pruning process significantly decreases the 

number of solutions in the Pareto front.  As opposed to 

8,035 Pareto optimal solutions found using MTS, pruned 

Pareto front includes only 80 solutions.  The benefit of the 

new pruning technique can be further seen in Table I which 

displays the frequency and cumulative percentage of the 

pruned Pareto solutions.  In this table, the pruned Pareto 

optimal solutions are further divided into priority groups for 

decision makers.  By following the Pareto principle, we can 

see that only a few solutions are identified as prioritized 

solutions. (i.e., four solutions are encountered 41.84% of 

time with the decision maker’s preference.)  

IV. CONCLUSION

The proposed approach is to reduce the size of the final 

set of non-dominated solutions found by a meta-heuristic 

approach.  From a decision maker perspective, it is usually 

more intuitive and easier to prioritize the objectives than to 

assign them individual weights.  Therefore, the proposed 

method helps achieve a balance between a Pareto optimal 

solution set and a single solution, so that the Pareto set is 

pruned.  The pruned Pareto set gives the decision-maker a 

reasonable sized set of solutions that match his/her 

preferences.

TABLE I

PARETO PRUNED SOLUTIONS IN PRIORITY GROUPS

Group 
# of 

Solutions

Total

Counter 
Frequency % Cum. % 

1 4 4284 0.42 41.84 41.84 

2 5 2633 0.26 26.33 68.17 

3 13 2207 0.22 22.07 90.24 

4 24 976 0.10 9.76 100.00 
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