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Abstract-This paper deals with assessing stability of optimal 
solutions. Two ways are considered: introducing stochastic 
stability based on Lyapunov’s stability as constraints in a single-
objective optimization problem and using it as a second objective. 
The problem from the field of wind energy is taken – 
optimization of electricity production with a novel wind power 
concept called Laddermill. Due to the multi-objectiveness of the 
second approach both problems are programmed with an 
algorithm based on a modification of Pareto-optimization. The 
main conclusion is that multi-objectiveness makes problem 
statement more transparent and also easier to implement and 
faster to compute which makes multi-objective formulation 
desirable for the class of robust optimal control problems. 

 
INTRODUCTION 

The idea of this paper is to demonstrate two – single- and 
multi-objective – less popular ways the stability assessment 
can be introduced directly into optimal control, to compare 
and benchmark them. The following scene has been set up to 
make the ground even. Both approaches are implemented in 
the framework of the same optimization method. Due to the 
multi-objectiveness in the second approach the method of 
choice is a modification of multi-objective Pareto-
optimization. And both approaches compete in solution of the 
same problem from the field of wind energy generation. 

The structure of this paper is following: first we explain 
the wind energy concept that we used for benchmark, then we 
give mathematical statement and algorithm for solution of 
multi-objective problem and finally – a few remarks on the 
differences in a single-objective approach. The paper is 
finished with brief conclusions. 

 
 

MATHEMATICAL MODEL OF LADDERMILL 
A lot of research has been done worldwide on employing 

aerospace technologies for sustainable development and 
particularly on using high altitude winds for clean energy 
production (e.g., [9, 33, 34]). The concept for sustainable 
energy production called Laddermill [27] (see fig. 1) is known 
for 10 years now [28] and refers to the system of kites on one 
rope that drives the generator as kites pull it. The benefits of 
this approach to energy production is a low weight and low 
cost and simplicity of the structure, installation and 
maintenance [26, 21]. Theoretical investigation promises 
capabilities of a vast power output [20]. The concept has been 
successfully tested on a small scale with a single kite and 

several authors contributed to simulation of the kite systems 
(e.g., [23 – 42]) but a robust controller has not been yet 
published for this application. 

 

 
Fig. 1. Artistic drawing of a Laddermill 

 
Among recent optimization studies about kites is a design 

optimization paper of Peter Jackson [16], optimal control 
studies [15] and [3] and [41] are in different stages of 
preparation for publishing. Receding horizon method is used 
in all of them while parameters are different: yaw, lift 
aerodynamic coefficient and cable length in [15] and [3], roll, 
attack angle and cable length in [41]. 

There have been a lot of research in all areas of Pareto-
optimization and robust optimal control. One of the first 
studies in optimal controllers is [17] which has been further 
developed in [10] and many other papers. One of the studies in 
robust stability is [35] which is further developed in papers 
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[6], [4], [19] and many others. Robust optimal control is 
discussed in [44] and [38]. One of the first applications of 
robust control for a flexible structure is [2]. Reference [18] is 
one of the first appearances of fuzzy logic in robust control 
applications. Finally one of the first genetic algorithms to 
utilize the concept of Pareto optimality is presented in [8]. 

The Laddermill is a flexible multi-body structure 
consisting of the kites and the cable. In the simulation of 
movement of the kites presented in this paper only their 
centres of gravity are considered. All kites on the cable have 
the same areas and aerodynamic coefficients and are situated 
at even distances in the upper part of the cable. The cable is 
considered elastic and the magnitude of its oscillations is 
considered small in respect to its length. Fully three 
dimensional equations of motion are used. 

The equations of motion of Laddermill in the Earth-fixed 
reference frame (see fig. 2) are written as in [31]: 
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here j is the number of the kite (from 1 to N), 

 i is the number of coordinate (from 1 to 3), 
 r = (r1, r2, r3) and V = (v1, v2, v3) are the position and 

velocity of the kite relative to the airflow, 
 Rj = rj – rj–1 is the vector pointing from the kite to the 

nearest element of the cable, 
 w = (w1, w2, w3) is the wind velocity, 
 m, S, cD, cF and cL are the kite’s mass, projected area and 

aerodynamic coefficients, 
 d = (d1, d2, d3) is a unit vector pointing from the left wing 

of the kite to the right one (see fig. 3); the three attitude angles 
(roll φ, pitch θ and yaw ψ) affect the components of vector d 
in Earth-fixed reference frame [25], 

 D, L, F and T are the forces of drag, lift, sideward force 
and tension respectively (see fig. 4). 

The cable is simulated as an elastic string [37]: 
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Fig. 2. The general structure of the Laddermill and Earth-fixed reference 

frame (index “E”) 
 

 
Fig. 3. Aerodynamic forces affecting the kite and kite’s attitude in body-fixed 

reference frame (index “B”) 
 

here G and Γ are cable volume and surface respectively,  
 σ is the boundary pressure on the surface (forces of 

tension, aerodynamic forces),  
 n is the vector normal to the surface Γ and 
 F is the sum of the volume forces in the cable (gravity). 
Putting the factual loads on the cable (see fig. 5) into (7) 

transforms it into (8) 
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Fig. 4. Forces acting on a kite 

 

    
Fig. 5. Forces acting on a cable 

 
which is then solved by finite difference method by dividing 
the cable between kites into N cable elements with coordinates 
rj and velocity Vj 
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with the equation (3) for drag and (6) for the tension between 
adjacent cable elements. 
 
 

 

 

MULTI-OBJECTIVE APPROACH 

Mathematical problem statement 
The equations of motion (1) – (6), (9) – (10) can be 

rewritten in the following form: 
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here x is the vector of coordinates and velocities of all kite 
with n = 6N components 
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and u is the vector of controls 
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( ) 3ℜ⊂∈Utu . (15) 
 
Both control functions and parameters should be continuous 
along with their first derivative over time. The set of possible 
coordinates and velocities D dictates that all kites should be 
above the ground at all times and the set of possible controls U 
defines possible attitude angles with which kites can safely 
and stably fly. There are also constraints on how fast control 
can be executed:  

 εu
<

dt
d  (16) 

 
The constraints are taken into account directly by 

executing only allowed control and by excluding the wrong 
trajectories from further consideration. For a more detailed 
study of emergency cases more elaborate approach can be 
used. 

The horizon of this optimal control problem is the end of 
one cycle of energy production which depends on control: 
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There will be two objective and the first objective is 
energy production Φ1: 
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Introduction of uncertain wind 
The possibility of achieving high energy production levels 

depends not only on overall performance of Laddermill and 
it’s optimal control but also on following the optimal 
trajectory. That is why addressing stability is an essential part 
of Laddermill’s mathematical description. One of the factors 
that affects Laddermill’s performance is the wind. For 
example there could be a wind gust that will dramatically 
decrease Laddermill performance in a given moment. Thus the 
robust control methods should be used. The way it is done 
here differs from classical approaches, for example [22]: we 
use methods that originate from evaluating stability. This 
approach has been first published ten years ago [13] and in 
English in 1999 [12]. 

Let us assume that Laddermill’s optimal trajectory )(t∗x  
is known and programmed into the computer of ground station 
but somehow an unpredicted gust of wind arrives. 

Let us take a large number of flight of the same 
Laddermill. The wind gust w  affects the kite number wj  for 
the period of time wT . The number of the kite, speed, direction 
and duration of wind gust are functions of a random argument 
that has normal distribution. According to central limit 
theorem wind speed ( )tw  that affects each kite is a random 
function with normal distribution. Energy produced in varied 
wind conditions is E  and energy produced in a constant wind 
is ∗E . The index of performance of a given trajectory is a trust 
level 
 
 ( )ε<−= ∗∗ EEPP , (21) 

 
here ε  is any number that is set beforehand. Flight trajectory 
is called stable if there is a level of trust ( )∗∗∗∗∗ = PPP  in 
closeness of input data (wind direction wβ  and value w  at 
each kite j ) to a given value and a number ( ) 0>εδ  so that 

the trust level ∗P  is achieved if the following conditions are 
satisfied: 
 
 ( ) ∗∗

β
∗ ≥δ<β−β PP , ( ) ∗∗≥δ<− PwwP w0 .  (22) 

 
 

The result is a definition of stochastic stability 
 
 ( ) ( ) ∗∗∗∗∗ ≥ε<−⇒≥δ<−δ PEEPPwwP ww , (23) 

 
which can be turned around to produce the second objective 
for our problem. Namely, let us find such trajectory that 
minimizes trust interval of energy deviation ε: 
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Here the definition (23) becomes a pair of constraints in the 
form of inequalities [11]. The last of them is formal and serves 
only for filtering out unstable trajectories. 

The operator A transforms controls (14) into objectives 
(18): 
 

Φu →Α : , (26) 
 
The problem (24) with objectives (19), (24), controlling 

functions (14) and constraints (13), (15) and (25) is the 
optimal control problem with two objectives, fixed start, open 
end and constraints. 
 
 
Algorithm of solution 

One of the ways to solve multi-objective optimal control 
problem is to combine two approaches – one optimal control 
method and one method of multi-objective optimization. 

There are several approaches for numerical solution of 
optimal control problems – the principle of maximum [32], 
methods based on the search of solution within a fixed family 
of functions, methods based on decomposition of controlling 
functions into a row over time [7]. All these methods employ 
the substitution of controlling functions with a set of 
controlling variables and further solution of resulting 
optimization problem. The theorem about uniqueness and 
existence of solution of optimal control problem is proven for 
such methods. The adequacy of such transition is also proven 
with known estimates for convergence and stability. The 
operator A (22) is complex and numerically calculated so its 
exploration has been also numerical. 

For simplicity of this part we chose finding solution in the 
family of functions, namely – figures “8” which can be easily 
implemented by controlling the yaw angular velocity (see fig. 
6). The only two parameters such a control has are a for 
magnitude of yaw velocity switches and b for the time it is not 
zero. Given these two parameters we can determine entire 
flight trajectory: 
 
 2ℜ⊂∈CH  (27) 

Now that we expanded an optimal control problem into 
optimization one we need to accurately process it with some 
multi-objective optimization approach. 

Multi-objective optimization problems are usually solved 
by genetic algorithms (e.g., [36]). Another popular approach is 
constructing a single fuzzy objective (e.g., [1]). Its belonging 
function usually has a meaning of “weights” of objectives and 
is determined by the experts. This approach is most commonly 
used in social sciences like economics and usually gives a 
good solution. 
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Fig. 6. Yaw control during one figure “8” of Laddermill assent. Here τ is time 

during one figure “8” τ ∈ [!0,T] and T is it’s period. 
 

There are also heuristic approaches for finding the local 
optimum, which are employed in automated control systems 
(e.g., [43]). These methods allow full automation and are very 
quick but find only the nearest local peak. 

Another approach to multi-objective optimisation is 
Pareto-optimisation (e.g., [5, 14]). 

Pareto-optimal set is defined as follows. A solution u1 is 
said to dominate over another solution u2 if and only if 
 

( ) ( )21 uu ii Φ≥Φ  { }ni ,...,2,1 ∈∀  (28) 
 
and 
 

( ) ( )21 uu ii Φ>Φ  for some { }ni ,...,2,1∈ , (29) 
 
here n is the number of objectives. The solutions that are not 
dominated within the entire control space U (15) – and 
corresponding space C (27) – are denoted as Pareto-optimal 
and constitute the Pareto-optimal set. Following from the 
definition, the Pareto-set can be found by checking the points 
of control space C for dominating each other. The resulting 
approach is slightly more mathematically correct because it 
uses the definition (28)-(29) directly on all points of the set C 
(27). During discretization a desired precision has to be preset 
for mapping the region, and if there are no exponential 
functions in the objectives the discrete problem of finding the 
optimal solution will be equivalent to initial one and solution 
will be found with given precision. Corresponding theorem 
can be found in [39].  

Procedure of the algorithm for solution of discrete 
problem of multi-objective optimization consists of three 
steps: 

1. Creating the table of tests. It means finding objectives 
Φi in all points of area of possible controls C. If objectives do 
not include exponential functions then it is possible to limit 
ourselves to checking some finite number of points which is 
determined from condition of convergence of results. The 
worst approach is building a grid with even intervals between 
points over every coordinate [39]. Monte-Carlo methods are 
usually used in planning of experiment for similar purposes of 
finding unknown value that depends on several parameters. 
Special sequences such as τLP  [40] 

 ∑∑
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produce slightly better results for fewer test points.  
Here q = (qi1, qi2, …, qiN) is the point in the control space C 

(27) – a set of controls that determines certain controlling 
functions (14) and – through the mathematical model of 
Laddermill – certain objectives (19), (24), 
i is the number of the point in the sequence, 
 j is the j-th coordinate of the point in C, 
N is dimension of C. 

If particular point is near the boundary of C then adjacent 
points of the boundary should be included into the table, too. 

2. Determining Pareto-set by checking all test points with 
formulae (28) – (29). 

3. Choosing constraints on objectives.  
 

( )*
2

*
1

* ,ΦΦ=Φ  (33) 
 
are the values chosen by engineer after looking at the table of 
tests. The points that comply with these constraints are 
considered the solution. They belong to the Pareto-set (28)-
(29) and have the desirable values of objectives. 

This algorithm is mathematically transparent and allows 
finding global minimum for problems with up to several 
dozens of objectives and practically unlimited number of 
controlling parameters. What is much more important, taking 
into account the whole area C means that the solution is a 
global one and is unique. 

The third step can be also automated for producing a 
robust controller, but in the case of participation of experts the 
method allows organizing their dialog with computer program 
in an intuitively transparent way so that it is easy to use for 
specialists in areas other than mathematics.  

 
 

Algorithm for calculation of the second objective 
Objective (24) requires stochastic optimization, and one 

of approaches to it is reduction to determinate optimization. 
Corresponding approach can be found in [11]. Its idea is in 
constructing the determinate objective that takes into account 
stochastic nature of certain variables. The resulting 
optimization problem is solved by method of deformable 
polygon and constraints are taken into account by penalty 
method. The resulting algorithm is following: 

1. Get a representative set of energy productions for given 
wind conditions and their variations. The set is called 
representative if  
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2. Set the trust level of varied variable (wind speed).  
3. Achieve given trust level and interval of energy 

production ε . It is done through minimization of the 
difference between ε and its desired value. 

4. Get the initial value of objective from any averaging 
criterion. The statistical average has been used in this work. 

5. Find trust interval of wind speed. Subtract the 
following fine from objective (for wind trust interval 5 m/s): 

 

 ( ) ( ) 5
5

,510
,0

>∆
≤∆

⎩
⎨
⎧

−∆
=∆

w
w

w
wp  (35) 

 
Due to the fact that wind value and angle have normal 

distribution the trust interval for the trust level ∗∗P  can be 
found very simply using the properties of normal distribution: 

 
 ( )( ) ( ) 99.02 ==Φ=σ<− ∗∗PkkwMwP , (36) 
 σ=δ k , (37) 

 
here ( )wM  is an average of w , 
σ  is an average square variation of w  and 
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is a Laplasian function. It is easy to find that k =2.57, so 

 
 σ=δ 57.2 . (39) 
 

 
SINGLE-OBJECTIVE APPROACH 

Single objective approach only maximizes energy 
production while regarding the quality of stability only as 
constraints: 
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Both multi-objective and single-objective solutions are 

found using the same multi-objective approach with stochastic 
addressing uncertainty of the wind. 
 
 

RESULTS 
The solution has been produced for the following values 

of parameters:  
• wind is 15 m/s, directed 45 º between axes OxE and OyE 
• air density is 1.29 kg/m3 and gravity is 9.81 m/s2 

• Laddermill consists of three identical kites with projected 
area 10 m2 and mass 1 kg that are situated on the cable 5 
meters from each other 

• the cable has Young’s modulus 1 GPa and cross-section 
area 1 cm2 and is reeled out with a constant speed 5 m/s. 
Results are given for the third kite of the Laddermill with 

three kites. It is done because on the last kite the movements 
of the third kite has the biggest magnitude for the same yaw 
control and it contributes the biggest part of energy produced 
by Laddermill. Movements of lower kites are similar although 
not exactly the same. 

Figure 7 shows the typical yaw graph for one period, 
corresponding flight trajectory is presented on fig. 8.  

Figures 9 and 10 show one of the competing solutions of 
the multi-objective problem of robust optimal control. It has a 
period T=0.28 s, time ∆=0.09 s and yaw magnitude 93 deg. 

 

 
Fig. 7. One period of yaw circulation during the flight 

 

 
Fig. 8. Downwind view of third kite’s trajectory 

 

 
Fig. 9. Optimal trajectory of the third kite of a 3-kite Laddermill found in the 

multi-objective problem 
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Fig. 10. Optimal trajectory of the third kite of a 3-kite Laddermill found in the 

multi-objective problem 
 

Figures 11 and 12 show the solution of the single- 
objective problem. It has a period T=0.7 s, time ∆=0.3 s and 
magnitude a=90 deg. 

 

 
Fig. 11. Optimal trajectory of the third kite of a 3-kite Laddermill found in the 

single objective problem 
 

 
Fig. 12. Optimal trajectory of the third kite of a 3-kite Laddermill found in the 

single objective problem 

DISCUSSION 

Although the mathematical model needs several 
parameters identified from experiment, some physical 
phenomena still can be observed despite its restrictions: 
• Uncertain wind conditions proved to be not threat for a 

fully controllable kite: all the crashes happened solely due 
to a poor control, energy production mostly benefited 
from random gusts of wind.  

• Another observation is that bigger energy production 
means less stability in the electric power.  

• The faster are the movements of the kite the bigger is the 
influence of wind gusts on the change in energy 
production. 

Solutions of both problems showed that 
• the best kite trajectory has a short period  
• one sharp short movement during this period is more 

preferable than longer more slow loop. It is unclear 
whether it is a universal result or a consequence of the 
predefine shape of control function and limitations of the 
model. Less constrained problem statement will answer 
this question. 
A single-objective problem statement chose its solution 

because of the constraint on wind energy changes. Multi-
objective problem also found this solution but disregarded it 
because although it is much less affected by uncertain wind, it 
also gives less energy. 

Solution of multi-objective problem not only provided 
more data about the phenomenon of Laddermill behavior in 
uncertain wind conditions, it also takes almost twice less time 
because taking constraints into account is obviously more time 
consuming than calculation of a second objective. 

 
 

CONCLUSIONS 
Two less popular methods for stating robust control has 

been demonstrated and compared. They are based on 
definitions of Pareto set and stochastic stability are using little 
more than that which makes them mathematically slightly 
more transparent and easier to ground with necessary 
theorems. 

Both resulting problems can be – at least formally – 
classified as robust- multi-objective- global- optimal control. 
Both have been solved for the same object which has been 
taken from the field of wind energy (Laddermill [27]) with the 
same set of methods. It includes substitution of optimal 
control problem with optimization problem in the family of 
functions, transporting results into multi-objective 
optimization procedure and its execution. Uncertain wind 
conditions have been addressed by the method of stochastic 
optimization. All steps are executed in a mathematically 
grounded way with theorems of uniqueness and existence of 
solution available in literature. This ensures that convergence 
and given precision of the results we produce can be achieved 
and the results themselves are the results of originally stated 
problem, not some other one. The solution obtained is a global 
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solution of a multi-objective optimal control problem for 
power production with Laddermill. 

The same approach can be used in other renewable energy 
applications, as also pointed by Sarkar and Modak [36]. It 
allows a fully automated implementation in devices that will 
exert optimal control while taking into account several 
considerations at once. 
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