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Abstract— This paper introduces the HelixPSO Particle Swarm
Optimization (PSO) algorithm for finding minimum energy RNA
secondary structures. It is shown experimentally that HelixPSO
profits when it is combined with a genetic algorithm that finds
a good starting population for HelixPSO. On all test instances
this hybrid variant of HelixPSO performs significantly better
than a state-of-the-art genetic algorithm. Also compared with
another PSO algorithm that has been proposed very recently for
the prediction of RNA secondary structures, HelixPSO is more
efficient both in terms of free energy and correctly predicted base
pairs.

Index Terms— Particle Swarm Optimization; Genetic algo-
rithms; RNA secondary structure;

I. INTRODUCTION

Beyond their function in protein coding, RNA plays an im-
portant rule for many cell functions, such as controlling gene
expression, catalysing chemical reactions or complementing
protein enzyme based activity [1]. The secondary structure of
RNA can be used infer and explain its function (see, e.g., [2],
[3]). Determining the secondary structure of an RNA often
constitutes an essential step towards predicting the tertiary
structure.

Different algorithmic approaches exist for RNA secondary
prediction. Comparative sequence analysis [4] as well as
thermodynamic optimization [5] require sequence information
only. Thermodynamic folding algorithms rely on an energy
model that assumes additive contributions from stacked base
pairs and various types of loops ([6], [7]). The correspond-
ing energy values can be obtained, e.g., with measuring
absorbance melting curves or with microcalorimetry ([8]).

The prediction of RNA secondary structures is particulary
difficult when pseudoknots are involved. One reason for this
is that little is known about energy models involving pseudo-
knots [9]. Another reason is that thermodynamic structure
prediction involving pseudoknots is an NP-complete problem
for the standard energy model [10].

While the benchmark for RNA folding algorithms mfold
[11], uses Dynamic Programming (DP), a number of attempts
have been made to apply metaheuristics to the domain. Most
of the proposed algorithms are genetic algorithms (GAs)
and it has been argued that GAs can simulate the actual
folding process of an RNA sequence and therefore achieve
higher prediction rates of base pairs than DP [12]. Among

those authors proposing GAs for predicting RNA secondary
structure are Shapiro and Navetta [13], van Batenburg et al.
[14], Gultyaev et al. [15], and Benedetti and Morosetti [16].
Initial approaches were rather crude, but continuous refinement
achieved greater prediction accuracy than DP [17]. Massively
parallel implementations [18] as well as efficient algorithms
for small architectures exist [19]. Further work includes Chen
et al. [20], Fogel [21], and Ogata et al. [22]. RnaPredict
and its parallelized version pRnaPredict are the most recent
GAs predicting RNA secondary structure (see [23], [24]).
Very recently, Neethling and Engelbrecht [25] proposed the
first Particle Swarm Optimization algorithm called SetPSO to
predict RNA secondary structures.

Particle Swarm Optimization (PSO) is an optimization tech-
nique that has been developed by Kennedy and Eberhardt [26],
[27]. PSO is inspired by the behaviour of real swarms (e.g.
fish schools or bird flocks) and was originally proposed for the
optimization of real-valued continuous functions. Meanwhile
several variants of PSO for discrete and binary problems
have been developed (e.g., [28]). Further variants of PSO
include multi-objective algorithms (e.g., [29]) and hybrids
that incorporate elements of other approaches of Evolutionary
Computation (e.g., [30]).

In this paper we propose a new PSO approach called
HelixPSO for finding RNA secondary structures with min-
imum free energy. The free energy is calculated with the
RNAeval algorithm from the ViennaRNA package (see [31],
[32]). HelixPSO is compared to the state-of-the-art genetic
algorithm RnaPredict that was developed by Wiese and Glen
[23]. In order to have a direct comparison and to be able
to use RNAeval for energy calculation we reimplemented
RnaPredict. HelixPSO is also compared to the other existing
PSO algorithm for secondary structure prediction SetPSO.

A short overview over RNA secondary structure is given
in Section II. A description of RnaPredict in given in Section
III. The PSO approach and algorithm SetPSO are presented
in Section IV. HelixPSO is introduced in Section V. The
experiments are described Section VI. Results are presented
in Section VII. Conclusions and future work are given in the
final Section VIII.
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II. RNA SECONDARY STRUCTURE

An RNA molecule is a sequence of the nucleotides adenine
(A), guanine (G), cytosine (C), and uracil (U). This sequence
or chain of nucleotides is called the primary structure. The
secondary structure is the result of hydrogen bonds between
nucleotides that are not neighbours in the chain. Typically
these hydrogen bonds occur only between G and C, or A and
U, or G and U (or vice versa). The so connected nucleotides
are called base pairs and are denoted by GC, CG, AU, UA, or
GU, or UG (the first base is the one with the smaller index in
the chain). A main element of secondary RNA structures are
helices, which are sets of two or more adjacent base pairs that
form a ladder like structure. Thus, a helix of size k ≥ 2 consist
of k base pairs with indices (i, j),(i+1, j−1) . . . , (i+k, j−k)
where 1 ≤ i < i + k < j − k < j ≤ n and n is the length
of the RNA sequence. An RNA secondary structure is defined
by a set of helices, such that each nucleotide occurs in at
most one helix and the following properties hold: i) for each
base pair (i, j) of a helix j − i ≥ 3 holds and ii) for any
two base pairs (i, j), (i′, j′) that occur in the helices either
i < i′ < j′ < j or i′ < i < j < j′ holds. Property (i)
implies that the connecting loop between the strands of a helix
has length at least three. Property (ii) means that helices are
nested. It should be mentioned that exceptions from this rules
can be found in real RNA molecules. But as has been done
by many authors we consider only secondary structures that
have this properties.

Several algorithms for secondary structure prediction start
by computing the set H of all possible helices of an RNA
molecule and then trying to find a subset of H that defines an
optimal (in some sense) secondary structure. This is also done
by RnaPredict and both PSO algorithms that are considered
in this paper.

In general, the free energy of an RNA secondary structure
increases with a larger number of base pairs that are included
in helices. But the energy depends also on the type of base
pairs. There exists several functions to compute the free energy
of an RNA secondary structure. In this paper we use the
RNAeval algorithm from the ViennaRNA package (see [31],
[32]).

III. RNAPREDICT

The genetic algorithm RnaPredict ([23]) finds low en-
ergy RNA conformations by applying selection, mutation and
crossover operators to a population of chromosomes. Each
chromosome is a permutation of the elements in the set H
of helices. A subset of H that defines a secondary structure is
derived from a chromosome as follows. Starting with an empty
set the permutation is scanned from the beginning and a helix
is added to the set if it is feasible. To compute the free energy
of a secondary structure the Nussinov-Jacobson energy model,
the individual nearest neighbor (INN) model [33], and the
individual nearest neighbor-hydrogen bond (INN-HB) models
[34] are used in RnaPredict. To be comparable to HelixPSO,
our RnaPredict implementation uses the RNAeval algorithm
of the ViennaRNA package, see [31], [32]. Its energy and

Algorithm 1 RnaPredict
Initialize population with random permutations
for i = 1 to number of iterations do

for j = 1 to (population size/2) do
Select chromosomes c, c′ from population
if random() < pc then

offspring o, o′=CX(c, c′)
if random() < pm then

Mutate(o)
Mutate(o′)

Add best child and best parent to new population
else

Add c and c′ to new population
population=new population
global best=FindGlobalBest(population)

return global best

stacking parameters can be found in [6] and [7]. The algorithm
does not predict pseudo knots.

Mutation is done in RnaPredict by swapping two random
indices in the permutation. Wiese et al. ([23], [35]) have inves-
tigated the optimization behaviour of RnaPredict with a variety
of crossover operators (such as edge recombination crossover
(ERC) [36], OX2 [37], and cycle crossover (CX) [38]) and
different selection operators (Keep-Best-Reproduction (KBR),
Standard Roulette Wheel Selection (STDS)) [39]. For our
implementation of RnaPredict we used the operators that
performed best, namely, the CX and KBR operators. CX
crossover combines a cycle of one permutation with the
remainder of another. It ensures that the result is a permutation
and each value agrees in position with one of the parent
permutations. KBR selection examines two parents and their
two offsprings and always keeps the best child and the best
parent. RnaPredict uses 1-elitism and selects particles for
reproduction via fitness based roulette wheel selection. A
pseudo code of RnaPredict is given in Algorithm 1, where pc

is the crossover probability and pm is the mutation probability.

IV. PSO AND SETPSO
PSO is an iterative optimization heuristic for function

optimization where a swarm of m particles searches in a
multidimensional space (see also [26]). Typically in PSO,
each particle i has a position and a velocity. The velocity is
updated in each iteration according to Formula 1 where: i) the
inertia weight w > 0 controls the influence of the previous
velocity, ii) the current position of the particle is denoted by
xi, iii) parameter c1 > 0 controls the impact of the personal
best position found so far yi (called pbest), iv) parameter
c2 determines the impact of the best position that has been
found so far by any of the particles in neighborhood ŷi of
particle i (called lbest), v) random values r1 and r2 are drawn
with uniform probability from [0, 1]. After velocity update all
particles move with their new velocity to their new positions
(Formula 2). Then for each particle i the objective function
f is evaluated at its new position. If f(xi(t + 1)) < f(yi)
(assuming the function has to be minimized) the personal best
position yi is updated accordingly, i.e. yi is set to xi(t + 1).
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vi(t+1) = w ·vi(t)+ c1 ·r1 · (yi−xi)+ c2 ·r2 · (ŷi−xi) (1)

xi(t + 1) = xi(t) + vi(t + 1) (2)

SetPSO [25] is the first PSO algorithm for finding RNA
secondary structures with minimum free energy. As other
PSO algorithms for discrete problem SetPSO differs from
the standard PSO scheme. Similar to RnaPredict, SetPSO
searches on the set of helices of a given RNA and represents a
secondary structure as a set of helices (which must be feasible
according to the rules given in Section II).

Movement of a particle is defined in terms of addition and
subtraction of helices from the corresponding set. A set O
of helices which is removed from the particles position is
computed from the empty set by adding a helix that is neither
in the pbest solution nor in the lbest solution with probability
pI . A candidate set C of helices which might be added to the
particles position is computed from the empty by adding each
helix of a target solution with probability pC and each helix
from the set of all helices with probability pR. The target
solution is a combination of the particles pbest and lbest
solution. To avoid base pair conflicts, all helices in the set O
are removed before those of the set C are added (if feasible).
The computation of the sets O and C is called the velocity
update and the actual computation of the new solution is the
position update. For more details of SetPSO see [25].

V. HELIXPSO

Algorithm HelixPSO that is proposed in this section is a
PSO algorithm for finding RNA secondary structures with
minimum free energy. Similar as RnaPredict, algorithm He-
lixPSO encodes a secondary structure as a permutation of the
set of all helices of an RNA sequence.

Similar as in SetPSO a particle moves with respect to a
target position. For this each particle i has an associated
set of candidate target positions Ti and for each t ∈ Ti a
weight w(t) > 0. The relative weight of a position in Ti

determines the probability that it is chosen as a target. Ti is
initialized with a random position, i.e., a permutation that is
generated randomly, that has weight 1.0. After each iteration
of HelixPSO each weight is decreased by multiplication with a
parameter ρ, 0 < ρ < 1. A position that has a weight less than
a threshold τ is removed from Ti. The reason is that elements
with a very small weight have only small chances to be chosen
as a target but require much memory space. Then the personal
position and either the global best or the cluster best position
(details are given later) are added to Ti with probability c1 ·r1

and c2 · r2, respectively where r1 and r2 are random numbers
that are chosen uniformly from [0, 1]. Note, that this is similar
to the impact of the personal best and global best values for
the standard PSO scheme (see Formula 1). The initial weight
of each position that is added to Ti is 1.0.

HelixPso is a multi-swarm algorithm where the swarm of
particles is partitioned into several subswarms. Subswarms are
used to encourage the swarm to search in different areas of
the search space. These subswarms are called clusters. All

Algorithm 2 HelixPSO
Initialize the swarm by creating the particles, partition them
into clusters and randomly initialize the permutation vector
of each particle.
Initialize the personal best position for each particle to the
current position.
Calculate the cluster best position for each cluster.
Calculate the global best position.
j = 1
while (j < maximum number of solutions) do

for all particles p do
Let c denote the secondary structure of particle p.
for i = 1 to α do

Chose a target from Tp.
Chose an index idx in the permutation of particle p.
if rand() < 0.1 or if no index was chosen then

Perform a random transposition of two helices in
the permutation vector and let c′ be the corre-
sponding secondary structure.

else
In the permutation of the particle swap the helix
at idx with the helix that is at idx in the target
permutation and let c′ be the corresponding sec-
ondary structure.

j++
Compute the free energy of c′.
if free energy of c′ < free energy of c then

c = c′

Update pbest, cbest, and gbest.
Apply 1-elitism, i.e., reposition the worst particle to the
global best.
For each particle p update Tp.

return gbest

particles in a cluster (with one exception) use their personal
best position and the cluster best position to update their set
of candidate target positions. Only the cluster best particle
(i.e., the particle which has the best personal position within
the cluster) does the update with respect to its personal best
and the global best position. The idea behind this is to ensure
that particles in a cluster stay close to each other, while the
clusters in their entirety should converge towards the global
best solution.

When a particle i has chosen its target position from the
set Ti the particle moves towards the target al follows. The
positions of some helices in the particles own permutation
vector are swapped to make it more similar to the permutation
vector of the target. As not every such transposition causes a
change in the corresponding secondary structure each particle
performs a series of α of transpositions, where α is a parameter
of the algorithm. A transposition is done with probability
β > 0 in direction of the target position as described in
the following. To find the first helix of the transposition
the permutation vector of the particle is scanned from the
beginning. Helices which are at the same place in the particles
and the targets permutation are skipped. Otherwise an index is
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chosen with probability pS > 0. If an index j has been chosen
the helix h of the target permutation at place j is determined.
Then the helix h′ at place j in the particles permutation
is transposed with helix h. Thus, after the transposition the
particle and the target have the same helix h′ at place j. With
probability 1− β > 0 a random transposition is done, i.e., for
two randomly chosen helices their positions in the permutation
of the particle are exchanged.

The series of transpositions is done greedily in HelixPSO,
that is it is accepted only when the new secondary struc-
ture that is generated by the transpositions improves over
the secondary structure before the transpositions were done.
HelixPSO also uses 1-elitism, i.e., after each iteration the
particle at the worst position is reset to the global best position.
The pseudo code of HelixPSO is given in Algorithm 2.

We also tested a hybrid version of HelixPSO were the
starting positions for the swarm are not chosen randomly but
are handed over to HelixPSO from another algorithm. In this
paper we used RnaPredict to compute the starting positions.
This hybrid version of HelixPSO is denoted H-HelixPSO or γ-
H-HelixPSO were γ denotes the relative number of solutions
that are computed by RnaPredict.

VI. EXPERIMENTS

For the experiments we used RNA sequences of different
lengths that have already been used by other authors so that we
can compare HelixPSO with RnaPredict and SetPSO. The four
test sequences are (they are available from the comparative
RNA website [40], the accession number is given in brackets):
i) Aureoumbra lagunensis (U40258), Group I intron, 16S
rRNA with length 468, ii) Drosophila virilis (X05914) 16S
rRNA with length 784, iii) Xenopus laevis (M27605) 16S
rRNA with length 945, iv) Sulfolobus acidocaldarius (D14876)
16S rRNA with length 1492. For these sequences the natural
secondary structures they fold into are also available from the
comparative RNA website.

For RnaPredict we used the same parameter values that were
also used in ([23]): population size 700, number of iterations
400, pm = 0.8, pc = 0.7. Note, that the total number of
solutions that are generated during one run of RnaPredict is
280000.

In [25] the following parameter values were used for
SetPSO: pC = 0.6, pR = 0.5, pI was decreased linearly over
the iterations from 0.9 to 0.1, swarm size 50, and the runs were
done over 700 iterations. Hence, during one run of SetPSO the
total number of solutions that are generated is 35000.

For the comparison with RnaPredict and for most other test
runs the swarm size 500 was used over 560 iterations with
7 clusters. For this test runs the hybrid version of HelixPSO
was used. The relative number of solutions that were used by
RnaPredict to compute a starting population varied with the
size of the RNA sequence. For the shorter sequences (lengths
468 and 784) the value γ = 0.02 was used. For the longer
RNA sequence of length 945 (1492) the value of γ was 0.05
(respectively 0.2). For a comparison with SetPSO the same
swarm size and number of iterations as in [25] were used,
namely swarm size 50 over 700 iterations with 1 cluster.

For the other parameters the following standard values were
used in the test runs (unless stated otherwise): α = 25, β =
0.9, ρ = 0.95, c1 = c2 = 3.0, pS = 0.01.

If not stated otherwise the tests in this paper with RnaPredict
and HelixPSO have be done with a search space that is the set
of all maximal helices, i.e., a helix that can not be extended
by adding a base pair, plus some subhelices of maximal
helices. The subhelices are created from the maximal helices
by iteratively removing terminal base pairs as long as the
resulting structure is still a helix, i.e., at least 2 base pairs
remain. A base pair is called terminal when it includes the
lowest numbered base from all bases that are included in
any base pair of the corresponding helix. For each test case
HelixPSO and RnaPredict were run 300 times (except for RNA
sequence of length 1492 were only 150 runs of each algorithm
were done). For the analysis of the optimization behaviour
the global best solution has been recorded after every 10000
solutions that were generated.

We also conducted tests were the search space consist only
of the maximal helices. For each test case the number of test
runs was 150 (except for RNA sequence of length 1492 were
only 50 runs of each algorithm were done).

VII. RESULTS

A comparison of the optimization behaviour of H-HelixPSO
and RnaPredict is shown in Figure 1. The figure shows for all
four test RNAs the average free energy ∆G of the best so far
found solution during a run for both algorithms. The figures
show that RnaPredict finds in most cases better solutions at
the beginning. But from about 12000 solution generations H-
HelixPSO finds always better solutions. It can also be seen
that H-HelixPSO has still not converged after 280000 solution
generations whereas RnaPredict seems to have already nearly
converged. The free energies of the best secondary structure
that have been found by both algorithms at the end of a
run are shown in Table I for the search space including
subhelices of maximal helices and in Table II for the search
space of maximal helices. It can be seen that H-HelixPSO
found secondary structures which have a free anergy that is
between 1.1 and 3.1 percent (1.6 and 3.4 percent) better than
the secondary structures found by RnaPredict for the search
space including subhelices of maximal helices (respectively
for the search space including only maximal helices).

TABLE I
FREE ENERGY (∆G IN KCAL/MOL) OF SECONDARY STRUCTURES FOUND

AFTER 280000 SECONDARY STRUCTURES HAVE BEEN GENERATED BY

RNAPREDICT AND H-HELIXPSO; RELATIVE IMPROVEMENT OF

H-HELIXPSO

RNA length RnaPredict H-HelixPSO % Improvement
468 -124.4 -126.5 1.7
784 -124.3 -125.7 1.1
945 -207.8 -212.7 2.4

1492 -633.8 -653.5 3.1

A comparison of the runtimes of H-HelixPSO and RnaPre-
dict is shown in Table III. The runtimes were measured on
a PC with Intel Xeon 3.00GHz dual core unit with 4GB
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Fig. 1. Optimization behaviour of RnaPredict and H-HelixPSO over 280000
solution generations on all 4 test RNAs

TABLE II
FREE ENERGY (∆G IN KCAL/MOL) OF SECONDARY STRUCTURES FOUND

AFTER 280000 SECONDARY STRUCTURES HAVE BEEN GENERATED BY

RNAPREDICT AND H-HELIXPSO RUN ON A SEARCH SPACE OF MAXIMAL

HELICES; RELATIVE IMPROVEMENT OF H-HELIXPSO

RNA length RnaPredict H-HelixPSO % Improvement
468 -124.6 -126.9 1.9
784 -123.1 -125.0 1.6
945 -209.3 -213.7 2.1

1492 -629.5 -650.9 3.4

RAM. It has to be mentioned that our implementations for
RnaPredict and H-HelixPSO were not made with a particular
emphasis to minimize the runtime. It can be seen that H-
HelixPSO is between 1.5 and 1.9 times slower on the three
longer RNA sequences and 2.5 times slower on the short RNA
sequence. It should be noted that even when H-HelixPSO is
allowed to generate only half of the number of RNA secondary
structures as RnaPredict then the obtained solution quality of
H-HelixPSO is still better as can be seen in Figure 1.

Table IV shows the free energy of SetPSO (this results are
from [25]) and HelixPSO for two RNA sequences after 35000
solution generations. The two RNA sequences are those from
our four test sequences for which results are also presented in
[25]. It can be seen that HelixPSO finds secondary structures
that have a free energy value ∆G that is more more then 11%
less than the free energy of the secondary structures that are
computed by SetPSO.

Neethling et al. [25] presented the number of base pairs in

TABLE III
RUNTIME OF RNAPREDICT AND H-HELIXPSO IN MINUTES

RNA length RNSPredict H-HelixPSO Ratio
468 2.6 6.6 2.6
784 4.2 6.4 1.5
945 7 13 1.9

1492 133 234 1.8

TABLE IV
FREE ENERGY (∆G IN KCAL/MOL) OF SOLUTIONS FOUND AFTER 35000

SOLUTIONS HAVE BEEN GENERATED BY SETPSO AND HELIXPSO;
RELATIVE IMPROVEMENT OF HELIXPSO

RNA length SetPSO HelixPSO % Improvement
945 -105.8 -120.4 11.8
784 -173.3 -201.8 11.6

TABLE V
NUMBER OF BASE PAIRS (BP) OF THE REFERENCE SECONDARY

STRUCTURE FROM THE RNA WEBSIDE [40], SETPSO AND HELIXPSP;
NUMBER OF BASE PAIRS (#CORRECT BP) THAT ARE THE SAME IN THE

REFERENCE SECONDARY STRUCTURE AND THE SECONDARY STRUCTURE

COMPUTED BY SETPSO AND HELIXPSO

RNA length Reference SetPSO HelixPSO
bp bp #correct bp bp #correct bp

784 233 225.5 29.7 210.3 42.9
945 251 241.8 57.8 196.9 67.0
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Fig. 2. Free energy of best solution found by H-HelixPSO for the RNA
sequence of length 468 after generation of 280000 solutions when different
parameter values are varied and all other parameter values are as in the
standard value set; bars indicate the standard error
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the secondary structure that were computed by SetPSO and
compared this number to the number of base pairs in the true
reference secondary structure that can be found on the RNA
website [40]. They also computed the number of ”correct“
base pairs, i.e., the number of base pairs that are the same
in the SetPSO solution and the reference structure. Table V
presents this results together with the corresponding results for
Helix-PSO. It can be seen that HelixPSO finds significantly
more correct base pairs with respect to the reference secondary
structure (44.4% more for the RNA sequence of length 784
and 15.9% more the RNA sequence of length 945). These
results should be interpreted with care because HelixPSO and
SetPSO use the minimum free energy as their optimization
criterion but not the number of correct base pairs with the
reference structure.
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Fig. 3. Average length of the target set of a particle during a run of HelixPSO
for the RNA sequence of length 486; the run is divided into 10 slices each
corresponding to 28000 generated solutions
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In order to study the influence of different parameters on
the optimization behaviour of H-Helix-PSO we made several
test where the value of one parameter was varied. All other
parameters values were the same as in the standard parameter
set for H-HelixPSO. Figure 2 shows the results. As can be
seen the swarm size has a great influence on the optimization
behaviour. This is no surprise because for a fixed number
of generated solutions the swarm size determines directly the
number of iterations. The principle to use several subswarms
in H-HelixPSO has a clear positive effect on its optimiza-
tion behaviour. The free energy of the best found secondary
structure decreased from -126.5 for one cluster to less then
-127 for 17 clusters. The influence of parameter ρ which
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Fig. 5. Number of accepted solutions after a move during a run of HelixPSO
for the RNA sequence of length 486; the run is divided into 10 slices each
corresponding to 28000 generated solutions
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Fig. 6. Global best RNA secondary structure computed by H-HelixPSO for
the Aureoumbra lagunensis RNA of length 486 over 300 runs

determines the decrease rate of the weights in the target set
on the optimization behaviour is not very strong as long as
ρ < 0.98. For higher values of ρ the solution quality decreases.
One possible reason is that older target psoitions have a very
long influence. The advantage to use RnaPredict to compute
the starting positions for the particles of HelixPSO is not very
strong for the short RNA sequence of length 468. But not too
much effort should be spent by RnaPredict. When more than
50% (γ = 0.5) of the generated solutions are computed by
RnaPredict the free energy of the found secondary structure
is more than -126. The probability pS to skip an index of the
permutation vector when scanning the permutation vector to
determine an index for a transposition operation should not
too be small (not more then 30%) even for the short RNA
sequence of length 468.

To gain further insight into the behaviour of Helix-PSO the
size and the weight distribution of the particles target set was
measured during a run of the algorithm of the RNA sequence
of length 486. Figure 3 shows the number of positions in the
target set. Each bar in the figure is an average over 300 runs
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Fig. 7. Natural fold of the Aureoumbra lagunensis RNA of length 486

and over 28000 solution generations (i.e., the total run over
280000 solution generations was divided into 10 sections).
It can be seen that the target set grows form an average
size of 8 to 14 during the first 1/5 of the total run time
(measured in number of generated solutions). Then, when the
algorithm starts to converge the size of the target set decreases
so that is contains only 4 solutions at end of the run. The
distribution of the probabilities to be chosen for the positions
in the target set (which is determined by the distribution of
the weights) is shown in Figure 4. The positions were grouped
with respect to their probability to be chosen into groups with a
probability in the following intervals [0, 0.001], [0.001, 0.005],
[0.005, 0.01], [0.01, 0.02], [0.02, 0.05], [0.05, .1], and [0.1, 1]. It
can be seen that the target set contains several positions
with a small probability to be chosen at the beginning of a
run so that a particle moves potentially into many different
directions. Later during a run when the algorithm converges
most positions in the vector have a height probability to be
chosen.

HelixPSO uses a greedy strategy for the movement of a
particle so that the transpositions of helices in the permutation
vector of a particle are accepted only if the free energy
of the particle decreases. Figure 5 shows the number of
positions that are accepted during different parts of a run
of Helix-PSO. It can be seen that the number of accepted
solutions decreases during the run from about 2500 (per 28000
generated solutions) to about 500 after 1/3 of the run time. At
the end of the run only very few solutions are accepted after
a move because it has become very difficult to find a position
that is better than the current position of a particle. It is
interesting that HelixPSO can still improve its best so far found
secondary structure even when only few new positions are
accepted during the end of the run. But this might also indicate
a potential for further improvement of HelixPSO because some
particles might stuck into local minima.

Figure 6 shows the best secondary structure of the RNA of
length 486 that was generated by HelixPSO over 300 runs.
Clearly, when compared to the natural fold of the RNA that is
shown in Figure 7 there many differences. Since the aim of H-
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Fig. 8. Two best found RNA secondary structures of H-HelixPSO for the
Aureoumbra lagunensis RNA of length 486 for two randomly chosen runs
(out of the 300 runs)

HelixPSO is to find low energy secondary structures it can not
be expected that the natural fold is matched exactly. Two other
secondary structures that were the best found in two of the 300
runs of H-HelixPSO are in Figure 8. The figure illustrates that
there is still variation in the secondary structures that are found
by H-HelixPSO. But it has to be noted that not all runs found
different secondary structures some structures were found in
several runs.

VIII. CONCLUSIONS

In this paper we have proposed a new Particle Swarm
Optimization (PSO) algorithm called HelixPSO for finding
minimum energy RNA secondary structures. Helix-PSO uses
a multiple swarm approach. Each particle has a target set of
reference positions which are used to define the direction of
movement of a particle. It was shown experimentally that
HelixPSO profits when the starting positions of the parti-
cles are computed by a genetic algorithm (the RnaPredict
genetic algorithm was used for this). The corresponding hybrid
version of HelixPSO is called H-HelixPSO. It was shown
experimentally on four standard RNA sequences with different
lengths (length 486 to length 1492) that H-HelixPSO performs
significantly better than the state-of-the-art genetic algorithm
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RnaPredict. Compared to the other existing PSO algorithm that
has been proposed very recently for the prediction of RNA
secondary structures called SetPSO, the algorithm HelixPSO
found better secondary structures both in terms of free energy
and correctly predicted base pairs.

For future work it will be interesting to investigate whether
Helix-PSO can become a viable candidate also for base pair
prediction. For this other means than only thermodynamic
optimization need to be employed.
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